US2726369A - Amplitude control unit - Google Patents

Amplitude control unit Download PDF

Info

Publication number
US2726369A
US2726369A US241122A US24112251A US2726369A US 2726369 A US2726369 A US 2726369A US 241122 A US241122 A US 241122A US 24112251 A US24112251 A US 24112251A US 2726369 A US2726369 A US 2726369A
Authority
US
United States
Prior art keywords
phase
control unit
bridge
energy
amplitude control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US241122A
Inventor
Himmel Leon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Micronas GmbH
International Telephone and Telegraph Corp
Original Assignee
Deutsche ITT Industries GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Deutsche ITT Industries GmbH filed Critical Deutsche ITT Industries GmbH
Priority to US241122A priority Critical patent/US2726369A/en
Priority to GB17564/52A priority patent/GB711752A/en
Application granted granted Critical
Publication of US2726369A publication Critical patent/US2726369A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/201Filters for transverse electromagnetic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S1/00Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith
    • G01S1/02Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith using radio waves

Definitions

  • This invention relates to radio frequency energy distribution systems and more particularly to the amplitude control feature thereof.
  • An object of this invention is to provide an amplitude control unit which may be adjusted for selected amplitude distribution of signal energy between two loads without affecting the phase relation of the energy at the loads.
  • a feature of the invention is the simplicity of the control unit.
  • a bridge circuit with loads connected to two diagonal junctions and supplying radio frequency energy to the other two diagonal junctions, one leg of a quarter wavelength bridge being provided with a transposition or of a length one-half wave length greater than the quarter wave lengths of the other three legs, the signal energy may be applied therethrough to the loads at desired amplitude level relationship without altering the phase relationship of energy supplied to the loads.
  • This supply of radio frequency energy to the bridge is done through a phase changer having two phase changing portions, one for each side of the bridge. Altering the phase shift of the two portions simultaneously and in opposite equal amounts the currents supplied to the bridge, results in current output to the loads varying in amplitude according to the adjustment of the phase changer, but without alteration of the phase relationship of the energy at the loads.
  • Fig. 1 is a schematic illustration of an amplitude control unit in accordance with the principles of this invention
  • Figs. 2 and 3 are vector diagrams used in explaining the operation of the amplitude control unit
  • Fig. 4 is an alternative form of phase changer that may be used in the control unit
  • Fig. 5 is a view in side elevation of another phase changer that may be used in the control unit.
  • Fig. 6 is a cross-sectional view taken along line 6-6 of Fig. 6.
  • the amplitude control unit comprises a source of radio frequency energy 1 and a phase changing device 2, whereby radio frequency energy may be supplied with controlled phase to a bridge circuit.
  • the phase changer 2 comprises a conductor having a loop or cavity 3 with which a probe 4 is in coupled relation.
  • the bridge circuit 5 to which the phased energy is supplied is provided with two loads 6 and 7 connected to two diagonal junctions 8 and 9, while the phased input energy is fed to the other two diagonal junctions 10 and 11 by means of transmission lines 12 and 13.
  • the bridge comprises three quarter wavelength legs 14, 15, and 16 and one three-quarter wavelength leg 17.
  • the legs are made up of coaxial lines.
  • the three-quarter wavelength leg 17 provides the equivalent of the usual transposition, this leg being one-half wavelength longer than the one-quarter wavelength legs 14, 15, and 16.
  • the current distribution may be represented by vectors I16 and 126 to the load 6 and I17 and 127 to the load 7.
  • These vectors may be represented as shown in Fig. 2, the vectors I16, I26, and 117 being in phase while the vector I27 is out of phase. This represents the condition when the phase changer portions of 3 as determined by the position of 4 are equal.
  • the vectors I16 and I26, Fig. 3 add to deliver the current sum to the load 6.
  • the current vectors I17 and I27 subtract with the current difference delivered to the load 7.
  • Either a balanced or coaxial line may be used with a suitably balanced bridge.
  • the bridge comprises a coaxial form and the phase changer 2 comprises a single motion control such as probe 4 whereby one line is lengthened and the other is shortened simultaneously.
  • a form of movable phase adjuster comprising a coaxial line comprising outer and inner conductors 18 and 19 in two separated sections positioned for telescoping relation with a bridging coaxial transmission line permanently connected to line 20 from radio frequency source 1.
  • the opposite ends of the line 18, 19 may be connected to the junctions 10 and 11 of the bridge shown in Fig. 1.
  • the inner telescoping coaxial structure to which line 20 is connected comprises an outer conductor 21 and an inner conductor 22, the ends of each being provided with brushes or other sliding contacts 23 and 24 for sliding engagement in a telescoping fashion with respect to the inner and outer conductors 18 and 19.
  • Figs. 5 and 6 show another phase changer comprising parallel conductors 25 and 26 disposed in a semi-circle on opposite sides of a rotating conductor; a sector of which is provided with a layer of dielectric 28.
  • the lines 25 and 26 are fed over lines 29 and 30.
  • the rotor is moved relative to the parallel lines the effect is similar to moving a probe along the parallel lines.
  • the movement of the dielectric between the parallel lines thus produces a phase change in the output ends of the parallel line system which is complementary for the two sides of the bridge.
  • An amplitude control unit for varying the amplitude of the output radio frequency energy while maintaining constant the phase of said output energy and constant impedance to the source of radio frequency energy comprising a bridge circuit the legs of which comprise transmission lines with the legs so proportioned in length that one leg thereof is the equivalent of a three-quarter wavelength leg as compared to a quarter wavelength for the other three legs, output means for connecting two loads at two diagonal junctions of the bridge, a source of radio frequency energy, means including two conductive paths to apply said energy to the other two diagonal junctions of the bridge and means to vary simultaneously and in complementary relation the electrical length of said two conductive paths.
  • phase changing means includes a phase changing structure divided substantially equally between two portions coupled respectively to said two paths, one
  • An amplitude control unit according to claim 1, wherein the means for changing the phase includes a conductor having an arcuate configuration with the ends thereof coupled respectively to said two paths, and a probe coupled to said source, said probe being disposed for adjustment along said arcuate conductor.
  • phase changing means includes a coaxial structure having brushes at the ends of the inner and outer conductors thereof for sliding telescoping relation respectively with the inner and outer conductors of said two coaxial lines, and means coupling energy from said source to said coaxial structure.
  • phase changer comprises a parallel line circuit coupled between said two conductive paths, means for feeding said circuit from said source and a rotor disposed between said lines with a sector of conductive material adapted to determine the impedance relationship of said parallel circuit as said sector is moved therealong.
  • An amplitude control unit for varying the amplitude of the output radio frequency energy while maintaining constant the phase of said output energy and constant impedance to the source of radio frequency energy, comprising a bridge circuit having one leg thereof arranged to obtain an equivalent of a three-quarter wavelength leg as compared to a quarter wavelength for the other three legs, output means for connecting two loads at two diagonal junctions of the bridge, a source of radio frequency energy, first and second coaxial lines coupled to the other two diagonal junctions of said bridge, a Y coupler of coaxial line construction coupling said source to said first and second lines in parallel, and means for adjustably telescoping said Y coupler in a complementary manner with respect to said first and second lines, whereby the length of the line connections between said source and said two other junctions are variable in complementary relation.

Description

Dec. 6, 1955 L. HIMMEL AMPLITUDE CONTROL UNIT Filed Aug. 9, 1951 R E SOURC E RE SOURCE lNVENTOR LEON H/MMEL BY fl ATTORNEY United States Patent AMPLITUDE CONTROL UNIT Leon Himmel, Cedar Grove, N. 1., assignor to International Telephone and Telegraph Corporation, a corporation of Maryland Application August 9, 1951, Serial No. 241,122
6 Claims. (Cl. 333-7) This invention relates to radio frequency energy distribution systems and more particularly to the amplitude control feature thereof.
In instrument landing systems and radio beacons for guiding aircraft, it is desirable to provide devices for controlling the amplitude level of the signal modulated radio frequency energy at certain associated antennas. One of the difiiculties is to provide such control without altering the phase of the energy. An object of this invention, therefore, is to provide an amplitude control unit which may be adjusted for selected amplitude distribution of signal energy between two loads without affecting the phase relation of the energy at the loads.
A feature of the invention is the simplicity of the control unit. By employing a bridge circuit with loads connected to two diagonal junctions and supplying radio frequency energy to the other two diagonal junctions, one leg of a quarter wavelength bridge being provided with a transposition or of a length one-half wave length greater than the quarter wave lengths of the other three legs, the signal energy may be applied therethrough to the loads at desired amplitude level relationship without altering the phase relationship of energy supplied to the loads. This supply of radio frequency energy to the bridge is done through a phase changer having two phase changing portions, one for each side of the bridge. Altering the phase shift of the two portions simultaneously and in opposite equal amounts the currents supplied to the bridge, results in current output to the loads varying in amplitude according to the adjustment of the phase changer, but without alteration of the phase relationship of the energy at the loads.
The above-mentioned and other features and objects of this invention and the manner of attaining them will become more apparent by reference to the following description taken in conjunction with the accompanying drawings, wherein:
Fig. 1 is a schematic illustration of an amplitude control unit in accordance with the principles of this invention;
Figs. 2 and 3 are vector diagrams used in explaining the operation of the amplitude control unit;
Fig. 4 is an alternative form of phase changer that may be used in the control unit;
Fig. 5 is a view in side elevation of another phase changer that may be used in the control unit; and
Fig. 6 .is a cross-sectional view taken along line 6-6 of Fig. 6.
Referring to Fig. 1, the amplitude control unit comprises a source of radio frequency energy 1 and a phase changing device 2, whereby radio frequency energy may be supplied with controlled phase to a bridge circuit. The phase changer 2 comprises a conductor having a loop or cavity 3 with which a probe 4 is in coupled relation. The bridge circuit 5 to which the phased energy is supplied, is provided with two loads 6 and 7 connected to two diagonal junctions 8 and 9, while the phased input energy is fed to the other two diagonal junctions 10 and 11 by means of transmission lines 12 and 13. The bridge comprises three quarter wavelength legs 14, 15, and 16 and one three-quarter wavelength leg 17. The legs are made up of coaxial lines. The three-quarter wavelength leg 17 provides the equivalent of the usual transposition, this leg being one-half wavelength longer than the one- quarter wavelength legs 14, 15, and 16.
It will be noted that energy supplied at loads 6 and 7 through arms 15. and 14 is also cophasal while energy supplied to these loads through arms 16 and 17 is always antiphasal. Thus a phase relation between energy at loads 6 and 7 is maintained for all adjustments of phase shifter 2.
Referring to the vector diagrams of Figs. 2 and 3, and assuming that I1 and I2 are the currents supplied to the two junctions 10 and 11, the current distribution may be represented by vectors I16 and 126 to the load 6 and I17 and 127 to the load 7. These vectors may be represented as shown in Fig. 2, the vectors I16, I26, and 117 being in phase while the vector I27 is out of phase. This represents the condition when the phase changer portions of 3 as determined by the position of 4 are equal. The vectors I16 and I26, Fig. 3, add to deliver the current sum to the load 6. The current vectors I17 and I27 subtract with the current difference delivered to the load 7. As the phase angle is simultaneously shortened and lengthened by corresponding amounts for I1 and 12, the condition will change as illustrated in Fig. 3. From Fig. 3 it can be seen that both of the current vectors I15 and he vary in amplitude but that they maintain a constant phase relation. The vector sum of the currents I1 and I2 is thus delivered to the load 6 and the vector difference is delivered to load 7. Since it is the function of a bridge to isolate the two load inputs, the currents I1 and I2 are applied to loads of constant impedance, and hence will be constant themselves. The total input impedance is thus a constant. Various forms of impedance matching may be used to satisfy the input impedance requirements of the system with which the amplitude control unit is associated. Either a balanced or coaxial line may be used with a suitably balanced bridge. As shown in Fig. 1, the bridge comprises a coaxial form and the phase changer 2 comprises a single motion control such as probe 4 whereby one line is lengthened and the other is shortened simultaneously.
In Fig. 4 a form of movable phase adjuster is shown comprising a coaxial line comprising outer and inner conductors 18 and 19 in two separated sections positioned for telescoping relation with a bridging coaxial transmission line permanently connected to line 20 from radio frequency source 1. The opposite ends of the line 18, 19 may be connected to the junctions 10 and 11 of the bridge shown in Fig. 1. The inner telescoping coaxial structure to which line 20 is connected, comprises an outer conductor 21 and an inner conductor 22, the ends of each being provided with brushes or other sliding contacts 23 and 24 for sliding engagement in a telescoping fashion with respect to the inner and outer conductors 18 and 19. By moving the Y coupler represented by structure 21, 22 and line 20 to the right or left as viewed in Fig.5, the phase of the currents applied to the bridge are varied simultaneously and in opposite relation whereby a corresponding amplitude variation is obtained at the outputs of the bridge.
Figs. 5 and 6 show another phase changer comprising parallel conductors 25 and 26 disposed in a semi-circle on opposite sides of a rotating conductor; a sector of which is provided with a layer of dielectric 28. The lines 25 and 26 are fed over lines 29 and 30. As the rotor is moved relative to the parallel lines the effect is similar to moving a probe along the parallel lines. The movement of the dielectric between the parallel lines thus produces a phase change in the output ends of the parallel line system which is complementary for the two sides of the bridge.
While I have described above the principles of my invention in connection with specific apparatus, it is to be clearly understood that this description is made by way of example only and not as a limitation to the scope of my invention as set forth in the objects thereof and in the accompanying claims.
I claim:
1. An amplitude control unit for varying the amplitude of the output radio frequency energy while maintaining constant the phase of said output energy and constant impedance to the source of radio frequency energy comprising a bridge circuit the legs of which comprise transmission lines with the legs so proportioned in length that one leg thereof is the equivalent of a three-quarter wavelength leg as compared to a quarter wavelength for the other three legs, output means for connecting two loads at two diagonal junctions of the bridge, a source of radio frequency energy, means including two conductive paths to apply said energy to the other two diagonal junctions of the bridge and means to vary simultaneously and in complementary relation the electrical length of said two conductive paths.
2. An amplitude control unit according to claim 1, wherein the phase changing means includes a phase changing structure divided substantially equally between two portions coupled respectively to said two paths, one
portion controlling the phase of energy to one side of the bridge and the other portion controlling the phase of energy to the other side of the bridge, and means for adjusting the phase changing structure to simultaneously lengthen one phasing portion and shorten correspondingly the other phasing portion.
3. An amplitude control unit according to claim 1, wherein the means for changing the phase includes a conductor having an arcuate configuration with the ends thereof coupled respectively to said two paths, and a probe coupled to said source, said probe being disposed for adjustment along said arcuate conductor.
4. An amplitude control unit acording to claim 1, wherein said two paths comprise coaxial lines and the phase changing means includes a coaxial structure having brushes at the ends of the inner and outer conductors thereof for sliding telescoping relation respectively with the inner and outer conductors of said two coaxial lines, and means coupling energy from said source to said coaxial structure.
5. An amplitude control unit according to claim 1, wherein the phase changer comprises a parallel line circuit coupled between said two conductive paths, means for feeding said circuit from said source and a rotor disposed between said lines with a sector of conductive material adapted to determine the impedance relationship of said parallel circuit as said sector is moved therealong.
6. An amplitude control unit for varying the amplitude of the output radio frequency energy while maintaining constant the phase of said output energy and constant impedance to the source of radio frequency energy, comprising a bridge circuit having one leg thereof arranged to obtain an equivalent of a three-quarter wavelength leg as compared to a quarter wavelength for the other three legs, output means for connecting two loads at two diagonal junctions of the bridge, a source of radio frequency energy, first and second coaxial lines coupled to the other two diagonal junctions of said bridge, a Y coupler of coaxial line construction coupling said source to said first and second lines in parallel, and means for adjustably telescoping said Y coupler in a complementary manner with respect to said first and second lines, whereby the length of the line connections between said source and said two other junctions are variable in complementary relation.
References Cited in the file of this patent UNITED STATES PATENTS 2,095,758 Mabry Oct. 12, 1937 2,409,449 Sanders Oct. 15, 1946 2,414,431 Alford Jan. 21, 1947 2,437,067 Bingley Mar. 2, 1948 2,461,832 Meacham Feb. 15, 1949 2,543,827 Brown Mar. 6, 1951 2,544,842 Lawson Mar. 13, 1951
US241122A 1951-08-09 1951-08-09 Amplitude control unit Expired - Lifetime US2726369A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US241122A US2726369A (en) 1951-08-09 1951-08-09 Amplitude control unit
GB17564/52A GB711752A (en) 1951-08-09 1952-07-11 Amplitude control unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US241122A US2726369A (en) 1951-08-09 1951-08-09 Amplitude control unit

Publications (1)

Publication Number Publication Date
US2726369A true US2726369A (en) 1955-12-06

Family

ID=22909354

Family Applications (1)

Application Number Title Priority Date Filing Date
US241122A Expired - Lifetime US2726369A (en) 1951-08-09 1951-08-09 Amplitude control unit

Country Status (2)

Country Link
US (1) US2726369A (en)
GB (1) GB711752A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2855569A (en) * 1955-11-22 1958-10-07 Itt Phase shifter

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2095758A (en) * 1935-11-29 1937-10-12 Westinghouse Electric & Mfg Co Transmitter
US2409449A (en) * 1943-12-30 1946-10-15 Rca Corp Phase modulator
US2414431A (en) * 1942-07-01 1947-01-21 Standard Telephones Cables Ltd Radio beacon
US2437067A (en) * 1943-11-17 1948-03-02 Philco Corp Adjusting means for transmission lines
US2461832A (en) * 1943-06-22 1949-02-15 Bell Telephone Labor Inc Phase shifting apparatus
US2543827A (en) * 1948-12-30 1951-03-06 Rca Corp Percentage modulation control network
US2544842A (en) * 1943-06-23 1951-03-13 James L Lawson Overload protection of highfrequency receivers

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2095758A (en) * 1935-11-29 1937-10-12 Westinghouse Electric & Mfg Co Transmitter
US2414431A (en) * 1942-07-01 1947-01-21 Standard Telephones Cables Ltd Radio beacon
US2461832A (en) * 1943-06-22 1949-02-15 Bell Telephone Labor Inc Phase shifting apparatus
US2544842A (en) * 1943-06-23 1951-03-13 James L Lawson Overload protection of highfrequency receivers
US2437067A (en) * 1943-11-17 1948-03-02 Philco Corp Adjusting means for transmission lines
US2409449A (en) * 1943-12-30 1946-10-15 Rca Corp Phase modulator
US2543827A (en) * 1948-12-30 1951-03-06 Rca Corp Percentage modulation control network

Also Published As

Publication number Publication date
GB711752A (en) 1954-07-07

Similar Documents

Publication Publication Date Title
US7474172B2 (en) Capacitively coupled variable power divider
US6788165B2 (en) Variable power divider
US2579327A (en) High-frequency energy absorbing variable coupling device
Babale et al. Single Layered $4\times4 $ Butler Matrix Without Phase-Shifters and Crossovers
US3013227A (en) Phase trimmer for strip transmission line
US6078227A (en) Dual quadrature branchline in-phase power combiner and power splitter
US2951996A (en) Variable transmission network
US2860308A (en) High frequency transmission line coupling device
US4876239A (en) Microwave switch having magnetically biased superconductive conductors
US2726369A (en) Amplitude control unit
WO2016179799A1 (en) Double-frequency phased array
US2948863A (en) Signal channeling system
Jizat et al. Dual band beamforming network integrated with array antenna
US20190036189A1 (en) A phase shifter including a branchline coupler having phase adjustment sections formed by connectable conductive pads
US2397543A (en) Differential coupling arrangement
US2510064A (en) Radio-frequency transmission system
US2526678A (en) Ultra high frequency coupling
US3195075A (en) Variable directional coupler
US3036301A (en) Communication systems
CN110459838A (en) Phase shifter, phased array antenna equipment and phase-moving method
US2705752A (en) Microwave communication system
US2127336A (en) Change-over or switch device for radio frequency feed leads
US2391880A (en) Coupling circuit
US5877659A (en) 90° phase shifter apparatus and method using a directly coupled path and a switched path
US2633531A (en) Broad band antenna system