US2127336A - Change-over or switch device for radio frequency feed leads - Google Patents

Change-over or switch device for radio frequency feed leads Download PDF

Info

Publication number
US2127336A
US2127336A US17650A US1765035A US2127336A US 2127336 A US2127336 A US 2127336A US 17650 A US17650 A US 17650A US 1765035 A US1765035 A US 1765035A US 2127336 A US2127336 A US 2127336A
Authority
US
United States
Prior art keywords
line
radio frequency
connections
leads
switch device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US17650A
Inventor
Leng Leopold
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Telefunken AG
Original Assignee
Telefunken AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Telefunken AG filed Critical Telefunken AG
Application granted granted Critical
Publication of US2127336A publication Critical patent/US2127336A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/10Auxiliary devices for switching or interrupting
    • H01P1/12Auxiliary devices for switching or interrupting by mechanical chopper

Definitions

  • switch arrangements of this kind involve comlt ⁇ paratively complicated schemes.
  • the harmful effect of dummy conductors is eliminated by compensating for the wattless current in them.
  • a capacity or an inductance may be used which takes a wattless current of like size as the Vdummy piece.
  • Aanother piece of conductor could be connected instead of a concentrated capacity or inductance, for the same purpose.
  • Two pieces of lengths of conductors of likesurge impedance, which are open at the end or both'short circuited at the end, Y will compensate each other whenever the sum total of their lengths is equal to one-half wave length, or an odd multiple of a half wave. If one of these pieces is open, and the other one short circuited, compensation will be produced when the sum total of their lengths is a quarter wave length, or an odd multiple of a quarter wave.
  • FIGs. 1 and 2 illustrate schematically, by Way of example, two embodiments of the invention.
  • Fig. 3 illustrates an enlarged portion of Fig. 2 showing the relationship of the various conductors and the switches employed to ⁇ achieve the desired result.
  • Fig. 1 the assumption is made that two transmitters shall be adapted to be connected together with four aerials of different, though fixed, wave lengths.
  • the piece of conductor marked 3--3 acts as a dummy conductor which absorbs current.
  • a piece of conductor marked 3-31V is connected in such a way that it, together with the piece 3-3" will result in a length substantially equal to half a wave or three half-waves, etc., in accordance with the teachings set forth above.
  • switch devices may be designed in the form of line selectors which are specially suited for concentric energy feed leads or downleads (tubular or cable leads).
  • line selectors which are specially suited for concentric energy feed leads or downleads (tubular or cable leads).
  • FIG. 2 One simplified embodiment is shown in Fig. 2, wherein four transmitters A, B, C, D, are each adapted to be united, ad libitum, by suitable switching mechanism to any one of eight aerials I-VIII of dissimilar but xed wavelength. Let us say it is desired to connect aerial VI with transmitter A. For this purpose, a piece of lead Aa, at the place marked avr, must be united with the lead VI-VI'.
  • avr-VI is so dimensioned that, together with av1-a, it will result in a length equal to a half-wave or an odd multiple thereof.
  • the piece of lead Bb is extended a length equal to the distance d; Cc twice the said distance, etc. If dummy lengths of conductor equal to the wave length are provided for the other antennae, the compensation will also be accurate in their case for connection with any desired transmitter.
  • Fig. 3 shows the relationship of the various conductors of Fig. 2 and the switchingl arrangement employed to connect the four transmitters A, B, C and D to the various aerials I to VIII, inclusive.
  • an antenna in circuit with said antenna, individual connections extending from said lead up to said transmitters, and switching means for selectively connecting each transmitter to its associated connection, and a dummy line connected to said energy supply lead for compensating for the effect of one of said connections when said one connection is not in circuit with its associated transmitter.
  • said dummy lead is open ended and has a surge impedance substantially equal to the surge impedance of said one connection, the sum total of the lengths of said dummy lead and said one connection being equal to an odd multiple of half the length of the working wave.
  • a switching system for connecting together any of a plurality of sources of radio frequency energy with any of a plurality of loads, comprising individual energy feed leads from said sources of radio frequency energy to connections leading to said loads, switches for individually connecting any one of said feed leads with any one of said connections, and compensating means adapted to be connected to said leads and connections whenever said switches are operated for absorbing wattless current of substantially equal magnitude and of opposite phase to the wattless current existing in the idle circuit connections simultaneously and operatively coupled to said feed leads and connections when connected together.
  • a switching system for connecting together any of a plurality of sources of radio frequency energy with any of a plurality of loads comprising individual energy feed leads from said sources of radio frequency energy to connections leading to said loads, switches for individually connecting any one of said feed leads withany one of said connections, and compensating means adapted to be connected to said leads and connections whenever said switches are operated for absorbing wattless current of substantially equal magnitude and of opposite phase to the wattless current existing in the idle circuit connections simultaneously and operatively coupled to said feed leads and connections when connected together, said compensating means comprising a section of line whose electrical length added to the electrical length of one or more idle connections in circuit therewith is equal substantially to an odd integral multiple of one-half the working Wave.
  • the method of compensating for wattless currents due to idle connections which includes simultaneously absorbing a Wattless current of substantially equal magnitude and of opposite phase to the current in said idle connections.
  • a switching system having, in combination, a rst and second source of high frequency oscillations, a load including a line connected to said load, switches for connecting said first and second sources to different points on said line, and a section of line for compensating for the idle portion of said line when only one of said sources is connected to said line, said section of line having a surge impedance equal to the surge impedance of the idle portion of the line at the point of connection, the electrical length of said section together with the electrical length of said idle portion being substantially equal to an odd integral multiple of one-half the operating wave, said idle portion and said section of line each having one open end.
  • a switching system having, in combination, a rst and second source of high frequency oscillations, a load including a line connected to said load, switches for connecting said rst and second sources to diierent points on said line, and a section of line for compensating for the idle portion of said line when only one of said sources is connected to said line, said section of line having a surge impedance equal to the surge impedance of the idle portion of the line at the point of connection, the electrical length of said section, together with the electrical length of said idle portion, being substantially equal to an odd integral multiple of one-half the operating wave.
  • a switching system having, in combination, a first and second source of high frequency oscillations, a load including a line connected to said load, switches for connecting said first and second sources to different points on said line, and a section of line for compensating for the idle portion of said line when only one of said sources is connected to said line, said section of line having a surge impedance equal to the surge impedance of the idle portion of the line at the point of connection, the electrical length of said section, together with the electrical length of said idle portion, being substantially equal to an odd integral multiple of one-quarter the operating wave, .at least one end of either said idle portion or said section of line being open.

Description

L. LENG 2, CHANGE-OVER 0R swIToE DEVICE EDR RADIO FREQUENCY EEED LEADS Aug. 16, 1938.
Filed April 22, 1935 MAA/swzm? .G EN E m m E O Ww E L/ Wm. )l l W. m y E l W.. V f W l m U .d l. c D 5 VI; .CL Mn W|| M r ,a FM f y ,f m E E J Patented Aug. 16, 1938 N PATENT OFFICE CHAN GE-OVER R,
SWITCH DEVICE FDR RADIO FREQUENCY FEED' LEADS Leopold Leng, Berlin, Germany, assigner to Telefunken Gesellschaft fr Drahtlose Telegraphie m. h. H., Berlin, Germany, a corporation cf Germany Application April 22,
1935, Serial No. 17,650
In Germany May 3, 1934 9 Claims.
`In changing the connections of radio frequency leads (downleads), for instance, for selectively establishing connections between a plurality of y, transmitters and antennae, there exists the difculty that dummy pieces of conductor remain connected with the transmission line or leads which, on changing connections, take a capacitive or inductive current so that the conditions of `matching of the lead with the transmitter or l0 antenna are disturbed. For this reason, circuit schemes have been conceived which will also cause dummy conductors to be disconnected whenever such circuit changes are effected. However,
switch arrangements of this kind involve comlt `paratively complicated schemes.
According to this invention, the harmful effect of dummy conductors is eliminated by compensating for the wattless current in them. For such compensation, according to the length of the dummy conductor piece compared with the length of the communication Wave, a capacity or an inductance may be used which takes a wattless current of like size as the Vdummy piece. Also, Aanother piece of conductor could be connected instead of a concentrated capacity or inductance, for the same purpose. Two pieces of lengths of conductors of likesurge impedance, which are open at the end or both'short circuited at the end, Ywill compensate each other whenever the sum total of their lengths is equal to one-half wave length, or an odd multiple of a half wave. If one of these pieces is open, and the other one short circuited, compensation will be produced when the sum total of their lengths is a quarter wave length, or an odd multiple of a quarter wave.
Figs. 1 and 2 illustrate schematically, by Way of example, two embodiments of the invention; and
Fig. 3 illustrates an enlarged portion of Fig. 2 showing the relationship of the various conductors and the switches employed to` achieve the desired result.
In Fig. 1, the assumption is made that two transmitters shall be adapted to be connected together with four aerials of different, though fixed, wave lengths. For instance, when transmitter A is connected with antenna III, the piece of conductor marked 3--3 acts as a dummy conductor which absorbs current. In order that the effect thereof may be compensated, a piece of conductor marked 3-31V is connected in such a way that it, together with the piece 3-3" will result in a length substantially equal to half a wave or three half-waves, etc., in accordance with the teachings set forth above.
In the same manner, and upon the identical principle, switch devices may be designed in the form of line selectors which are specially suited for concentric energy feed leads or downleads (tubular or cable leads). One simplified embodiment is shown in Fig. 2, wherein four transmitters A, B, C, D, are each adapted to be united, ad libitum, by suitable switching mechanism to any one of eight aerials I-VIII of dissimilar but xed wavelength. Let us say it is desired to connect aerial VI with transmitter A. For this purpose, a piece of lead Aa, at the place marked avr, must be united with the lead VI-VI'. What remains are the dummy ends avl-a and avr-VIC The portion avr-VI is so dimensioned that, together with av1-a, it will result in a length equal to a half-wave or an odd multiple thereof. In order that the conditions (relations) may also be proper when the aerial VI is connected with the transmitter B, C, or D, the piece of lead Bb is extended a length equal to the distance d; Cc twice the said distance, etc. If dummy lengths of conductor equal to the wave length are provided for the other antennae, the compensation will also be accurate in their case for connection with any desired transmitter.
l In the above exemplified embodiment the assumption has been made that both dummy or idle pieces are open, or that both have been short circuited. Of course, it is also feasible to combine open pieces with short circuited ones; the sum total of the wattless currents (or reactive currents) of the idle pieces or dummies could be made equal to a quarter wave or an odd multiple thereof. It is likewise feasible to combine both forms in one switch device inprder to adapt the arrangement t0 optimum conditions.
Fig. 3 shows the relationship of the various conductors of Fig. 2 and the switchingl arrangement employed to connect the four transmitters A, B, C and D to the various aerials I to VIII, inclusive.
What is claimed is:
l. In combination, an antenna, a iirst transmitter and a second transmitter, an energy supply lead in circuit with said antenna, individual connections extending from said lead up to said transmitters, and switching means for selectively connecting each transmitter to its associated connection, and a dummy line connected to said energy supply lead for compensating for the effect of one of said connections when said one connection is not in circuit with its associated transmitter.
2. A system in accordance with claim l, characterized in this that said dummy lead is open ended and has a surge impedance substantially equal to the surge impedance of said one connection, the sum total of the lengths of said dummy lead and said one connection being equal to an odd multiple of half the length of the working wave.
3. A switching system for connecting together any of a plurality of sources of radio frequency energy with any of a plurality of loads, comprising individual energy feed leads from said sources of radio frequency energy to connections leading to said loads, switches for individually connecting any one of said feed leads with any one of said connections, and compensating means adapted to be connected to said leads and connections whenever said switches are operated for absorbing wattless current of substantially equal magnitude and of opposite phase to the wattless current existing in the idle circuit connections simultaneously and operatively coupled to said feed leads and connections when connected together.
4. An arrangement in accordance with claim 3, characterized in this that said compensating means comprises a concentrated reactance.
5. A switching system for connecting together any of a plurality of sources of radio frequency energy with any of a plurality of loads, comprising individual energy feed leads from said sources of radio frequency energy to connections leading to said loads, switches for individually connecting any one of said feed leads withany one of said connections, and compensating means adapted to be connected to said leads and connections whenever said switches are operated for absorbing wattless current of substantially equal magnitude and of opposite phase to the wattless current existing in the idle circuit connections simultaneously and operatively coupled to said feed leads and connections when connected together, said compensating means comprising a section of line whose electrical length added to the electrical length of one or more idle connections in circuit therewith is equal substantially to an odd integral multiple of one-half the working Wave.
6. In a circuit employing radio frequency energy, the method of compensating for wattless currents due to idle connections which includes simultaneously absorbing a Wattless current of substantially equal magnitude and of opposite phase to the current in said idle connections.
7. A switching system having, in combination, a rst and second source of high frequency oscillations, a load including a line connected to said load, switches for connecting said first and second sources to different points on said line, and a section of line for compensating for the idle portion of said line when only one of said sources is connected to said line, said section of line having a surge impedance equal to the surge impedance of the idle portion of the line at the point of connection, the electrical length of said section together with the electrical length of said idle portion being substantially equal to an odd integral multiple of one-half the operating wave, said idle portion and said section of line each having one open end.
8. A switching system having, in combination, a rst and second source of high frequency oscillations, a load including a line connected to said load, switches for connecting said rst and second sources to diierent points on said line, and a section of line for compensating for the idle portion of said line when only one of said sources is connected to said line, said section of line having a surge impedance equal to the surge impedance of the idle portion of the line at the point of connection, the electrical length of said section, together with the electrical length of said idle portion, being substantially equal to an odd integral multiple of one-half the operating wave.
9. A switching system having, in combination, a first and second source of high frequency oscillations, a load including a line connected to said load, switches for connecting said first and second sources to different points on said line, and a section of line for compensating for the idle portion of said line when only one of said sources is connected to said line, said section of line having a surge impedance equal to the surge impedance of the idle portion of the line at the point of connection, the electrical length of said section, together with the electrical length of said idle portion, being substantially equal to an odd integral multiple of one-quarter the operating wave, .at least one end of either said idle portion or said section of line being open.
LEOPOLD LENG.
US17650A 1934-05-03 1935-04-22 Change-over or switch device for radio frequency feed leads Expired - Lifetime US2127336A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE2127336X 1934-05-03

Publications (1)

Publication Number Publication Date
US2127336A true US2127336A (en) 1938-08-16

Family

ID=7986236

Family Applications (1)

Application Number Title Priority Date Filing Date
US17650A Expired - Lifetime US2127336A (en) 1934-05-03 1935-04-22 Change-over or switch device for radio frequency feed leads

Country Status (1)

Country Link
US (1) US2127336A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2938999A (en) * 1958-05-19 1960-05-31 William A Etter Antenna-switching system
US3009118A (en) * 1959-04-14 1961-11-14 Continental Electronics Mfg Radio frequency transmission line switching system
US3208071A (en) * 1961-05-22 1965-09-21 Jack R Potthoff Receiver distribution system
US3678415A (en) * 1969-06-30 1972-07-18 Nippon Electric Co Multiple port hybrid circuit
US4811032A (en) * 1986-10-22 1989-03-07 Bbc Brown Boveri Ag Method for monitoring and controlling an antenna selector and antenna selector for carrying out the method
US5504495A (en) * 1991-06-28 1996-04-02 General Signal Corporation Field convertible NTSC/HDTV broadcast antennas

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2938999A (en) * 1958-05-19 1960-05-31 William A Etter Antenna-switching system
US3009118A (en) * 1959-04-14 1961-11-14 Continental Electronics Mfg Radio frequency transmission line switching system
US3208071A (en) * 1961-05-22 1965-09-21 Jack R Potthoff Receiver distribution system
US3678415A (en) * 1969-06-30 1972-07-18 Nippon Electric Co Multiple port hybrid circuit
US4811032A (en) * 1986-10-22 1989-03-07 Bbc Brown Boveri Ag Method for monitoring and controlling an antenna selector and antenna selector for carrying out the method
US5504495A (en) * 1991-06-28 1996-04-02 General Signal Corporation Field convertible NTSC/HDTV broadcast antennas

Similar Documents

Publication Publication Date Title
US2127336A (en) Change-over or switch device for radio frequency feed leads
US2567235A (en) Impedance matching arrangement for high-frequency antennae
US2433183A (en) Antenna system
US2454907A (en) Radio-frequency network
US2188389A (en) Electrical high frequency signaling system
US2241582A (en) Arrangement for matching antennae for wide frequency bands
US2511574A (en) Antenna circuit
US2216964A (en) Coupling system
US2428831A (en) Radio power division network
US2404832A (en) Switch for high-frequency electrical oscillations
US3311831A (en) Coaxial combiner-separator for combining or separating different electrical signals
US2397543A (en) Differential coupling arrangement
US2594167A (en) Ultrahigh-frequency bridge circuits
US2788495A (en) Coupling circuit
CN105244590A (en) Ultra wide band power divider
US2794184A (en) Multiple resonant slot antenna
US2110278A (en) Translating circuit
US2327485A (en) Broad band antenna
US1901025A (en) Aerial
US20190238165A1 (en) Antenna feed in a wireless communication network node
US2205250A (en) Radio and other high frequency feeder arrangements
US2572672A (en) Impedance transforming network
US2237765A (en) Antenna
US2391880A (en) Coupling circuit
US2373458A (en) Transmission line coupling system