US2720997A - Seal for electron discharge device - Google Patents

Seal for electron discharge device Download PDF

Info

Publication number
US2720997A
US2720997A US280786A US28078652A US2720997A US 2720997 A US2720997 A US 2720997A US 280786 A US280786 A US 280786A US 28078652 A US28078652 A US 28078652A US 2720997 A US2720997 A US 2720997A
Authority
US
United States
Prior art keywords
seal
glass
bridge
sealed
electron discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US280786A
Inventor
Hampton J Dailey
Donald M Wroughton
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CBS Corp
Original Assignee
Westinghouse Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Westinghouse Electric Corp filed Critical Westinghouse Electric Corp
Priority to US280786A priority Critical patent/US2720997A/en
Application granted granted Critical
Publication of US2720997A publication Critical patent/US2720997A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J5/00Details relating to vessels or to leading-in conductors common to two or more basic types of discharge tubes or lamps
    • H01J5/20Seals between parts of vessels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J19/00Details of vacuum tubes of the types covered by group H01J21/00
    • H01J19/28Non-electron-emitting electrodes; Screens
    • H01J19/32Anodes
    • H01J19/34Anodes forming part of the envelope
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2893/00Discharge tubes and lamps
    • H01J2893/0001Electrodes and electrode systems suitable for discharge tubes or lamps
    • H01J2893/0002Construction arrangements of electrode systems
    • H01J2893/0003Anodes forming part of vessel walls
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2893/00Discharge tubes and lamps
    • H01J2893/0033Vacuum connection techniques applicable to discharge tubes and lamps
    • H01J2893/0037Solid sealing members other than lamp bases

Definitions

  • the Housekeeper type of seal requires that the metal part, such as a copper anode, be machined, drawn, ground or rolled to a thin cross-section before it is sealed to the glass, with the result that such seals are easily damaged and the anodes usually may not be salvaged or reused.
  • This type of seal is resonably good for medium and low frequencies, but the thin edge may overheat at high frequencies due to skin effects or other causes, and generally is not acceptable in electron discharge devices involving high frequencies or in other devices where strength is needed or high temperatures prevail.
  • the alloy seal above referred to has marked advantage over the Housekeeper seal, particularly for use in making seals with external electrodes and for large lead-in constructions, and also for use with high frequency devices and devices requiring strength or in those where a large heat variation is involved.
  • Prior art seals of this character have two principal defects, namely 1) the alloy is magnetic, which results in high losses with radio frequency, and (2) the length of the alloy part between the glass and electrode, for instance which is generally of different metal, such as copper, has to be sufliciently extensive to avoid modification of the expansion of the alloy. In this respect, it is further a fact that as the desired diameter of the seal is increased, the length of the alloy portion also has to be increased.
  • the present invention is directed to the elimination of the noted disadvantages and to otherwise improve upon alloy seals between glass and another material.
  • a more specific object of the invention is to minimize separation, by intervention of the alloy, of the glass and metal parts being sealed.
  • Another object is to accommodate differential of expansion between parts by sliding contact.
  • a closely related object is to provide a flexible seal spanning the sliding contact.
  • Fig. 1 is a sectional elevation of an electronic device having a seal in accordance with the present invention.
  • Fig. 2 is a section of the seal with additional indication of a positioning rib and pipe connections for cooling purposes for the seal.
  • the arbitrarily selected electronic device is a triode having a filamentary cathode 10 surrounded by a grid 11 and having an external anode 12 which also constitutes part of the evacuated envelope.
  • a glass bowl or basal portion 13 comprises another major portion of the evacuated envelope. The invention is directed more especially to the provision of a novel expansive seal between the anode and the glass bowl.
  • the margin of the anode next its end opening into the bowl is reduced somewhat in outside diameter thereby providing a neck 14 and an external shoulder 15 at the end of the neck next to the body of the anode.
  • a flat ring 16 which is preferably copper, is slid onto the neck and seats against the shoulder and is soldered or otherwise secured in that position with a vacuumtight joint.
  • the mouth end of the glass bowl 13 is decidedly larger than the neck which accordingly projects into the said mouth end of the bowl, and the edge of the bowl accordingly underlies the flat surface of ring 16 inward from the outer circumference and outward from the inner circumference of the ring.
  • An annular bridge or trough member 17 is provided with a reentrant annular groove or trough 18 to receive the end margin of the bowl, said bridge having side flanges .1? at its inner and outer peripheries, directed toward said flat surface of the ring and embedded and sealed therein.
  • Said bridge is preferably of flexible metal such as thin copper, silver or the like and can both flex and stretch as required under influences of expansion or contraction of the ring and bowl.
  • the bridge or trough member 17 is copper, silver or other electrically low resistance material, it will not have the high radio frequency resistance inherent in the two popular seals of the prior art referred to above. Furthermore, since the bridge member can flex readily and does not carry the weight of the bowl or anode or other elements of the device, it can be very thin, this characteristic being also permitted in view of the fact that the shortness of the flanges and doubling back of the material to obtain the reentrant formation, renders deformation by atmospheric pressure exceedingly unlikely.
  • annular channel element 20 having approximately the same coeflicient of expansion as the glass of bowl 13.
  • Said channel element 20 is preferably the above-mentioned alloy referred to under the trademark Kovar and the glass of the bowl is the borosilicate glass likewise identified above.
  • the intervening thickness of the material forming the trough 18 is surface and a cylindrical glass thin enough to readily respond to expansion and .con-.
  • the ring may be provided as shown in Fig. 2 with an annular projection or rib 21 between the outer flange 19 of the bridge and said Kovar channel element and so positioned that as the copper ring contracts to normal condition after an expansion thereof said projection will engage the channel element and automatically slide it back to concentric relation to the ring *in event it did not of itself return to that relation.
  • the space enclosed by the bridge and area of the ring thereunder may have pipe connections 22 thereto for circulation of a fluid coolant in said space.
  • An electron discharge device having a radial metallic surface and a cylindrical glass member requiring vacuumtight seal therebetween, a flexible metallic bridging element having opposite flanges and with said flanges sealed to and projecting from the said metallic surface, an intermediate portion of said bridging element traversing the end of and sealed to said glass member, and an element interposed in. juxtaposition to the said intermediate portion of said bridging element between said flanges and making contact with said metallic surface.
  • An electron discharge device having a radial metallic member requiring vacuumtight seal therebetween, a flexible metallic bridging element having opposite flanges and with said flanges sealed to and projecting from the said metallic surface, an intermediate portion of said bridging element traversing the end of and sealed to said glass member and an element interposed in juxtaposition to the said intermediate portion of said bridging element and making slidable contact with said metallic surface, said element and glass member having substantially the same coeflicient of expansion.
  • An electron discharge device having a radial metallic surface and a cylindrical glass member requiring vacuumtight seal therebetween, a flexible metallic bridging element having opposite flanges and with said flanges sealed to and projecting from the said metallic surface, an intermediate portion of said bridging element traversing the end of and sealed to said glass member, and an element interposed in juxtaposition to the said intermediate portion of said bridging element and making contact with said metallic surface, said element and glass member having substantially the same coefiicient of expansiou.
  • An electron discharge device having a metallic surface transverse to a central axis and a cylindrical glass member coaxial thereto, a flexible metallic bridge over an annular part of said metallic surface and sealed thereto at the annular peripheries of said bridge, and an element between said bridge and said surface maintaining distance of said bridge thereat from said surface, and said glass member being sealed to said bridge in opposition to said element.
  • An electron discharge device having a metallic surface transverse to a central axis and a cylindrical glass member coaxial thereto, a flexible metallic bridge over an annular part of said metallic surface and sealed thereto at the annular peripheries of said bridge, and an element between said bridge and said surface maintaining distance of said bridge thereat from said surface, said element having slidable engagement with said surface and said glass member being sealed to said bridge in opposition to said element.
  • An electron discharge device having a metallic surface transverse to a central axis and a cylindrical glass member coaxial thereto, a reentrant annular bridge having flanges scaled to the said surface and with the reentrant portion in proximity to said surface between said flanges and sealed to said glass member, a channel element on said reentrant portion interposed between said portion and said surface and slidable on said surface, and a positioning projection next an edge of said element and fixed with respect to said surface for actuation of said element and bridge to normal concentric location on said surface.

Description

Oct. 18, 1955 H. J. DAILEY ETAL SEAL FOR ELECTRON DISCHARGE DEVICE Filed April 5, 1952 MD J H United States Patent SEAL FOR ELECTRON DISCHARGE DEVICE Hampton J. Dailey, Verona, N. J., and Donald M. Wroughton, Pittsburgh, Pa., assignors to Westinghouse Electric Corporation, East Pittsburgh, Pa., a corporation of Pennsylvania Application April 5, 1952, Serial No. 280,786
6 Claims. (Cl. 220--2i3) At the present time there are two popular constructions for effecting seals between a metal part, exemplified herein by an anode, and a glass part, such as a basal bowl, of an electron discharge device. One, known as the Housekeeper seal, as shown in U. S. Patent 1,294,466 of February 18, 1919, utilizes a feather edge on the metal part which, by virtue of its thinness, can stretch or contract in conformity to the expansion and contraction of the glass to which it is attached. The other is one utilizing an alloy and a glass, such as defined in Patent 2,062,335 of December 1, 1936, wherein both materials have substantially equal coefficients of expansion. The metal of that patent is sold in the trade under the trademark designation of Kov-ar and the glass is one known as a borosilicate glass and identified in the trade as Corning glass No. 705. Example of a seal using these materials is illustrated in Patent 2,062,836 in which it will be observed the need for feathering the metal is avoided.
The Housekeeper type of seal requires that the metal part, such as a copper anode, be machined, drawn, ground or rolled to a thin cross-section before it is sealed to the glass, with the result that such seals are easily damaged and the anodes usually may not be salvaged or reused. This type of seal is resonably good for medium and low frequencies, but the thin edge may overheat at high frequencies due to skin effects or other causes, and generally is not acceptable in electron discharge devices involving high frequencies or in other devices where strength is needed or high temperatures prevail.
The alloy seal above referred to, has marked advantage over the Housekeeper seal, particularly for use in making seals with external electrodes and for large lead-in constructions, and also for use with high frequency devices and devices requiring strength or in those where a large heat variation is involved. Prior art seals of this character have two principal defects, namely 1) the alloy is magnetic, which results in high losses with radio frequency, and (2) the length of the alloy part between the glass and electrode, for instance which is generally of different metal, such as copper, has to be sufliciently extensive to avoid modification of the expansion of the alloy. In this respect, it is further a fact that as the desired diameter of the seal is increased, the length of the alloy portion also has to be increased.
The present invention is directed to the elimination of the noted disadvantages and to otherwise improve upon alloy seals between glass and another material. A more specific object of the invention is to minimize separation, by intervention of the alloy, of the glass and metal parts being sealed.
Another object is to accommodate differential of expansion between parts by sliding contact.
A closely related object is to provide a flexible seal spanning the sliding contact.
Other objects of the invention will appear to persons skilled in the art to which it appertains as the description proceeds, both by direct reference thereto and by implication from the context.
Fig. 1 is a sectional elevation of an electronic device having a seal in accordance with the present invention; and
Fig. 2 is a section of the seal with additional indication of a positioning rib and pipe connections for cooling purposes for the seal.
In the specific embodiment of the invention illustrated in said drawing, the arbitrarily selected electronic device is a triode having a filamentary cathode 10 surrounded by a grid 11 and having an external anode 12 which also constitutes part of the evacuated envelope. A glass bowl or basal portion 13 comprises another major portion of the evacuated envelope. The invention is directed more especially to the provision of a novel expansive seal between the anode and the glass bowl.
According to the present showing, the margin of the anode next its end opening into the bowl, is reduced somewhat in outside diameter thereby providing a neck 14 and an external shoulder 15 at the end of the neck next to the body of the anode. A flat ring 16, which is preferably copper, is slid onto the neck and seats against the shoulder and is soldered or otherwise secured in that position with a vacuumtight joint. The mouth end of the glass bowl 13 is decidedly larger than the neck which accordingly projects into the said mouth end of the bowl, and the edge of the bowl accordingly underlies the flat surface of ring 16 inward from the outer circumference and outward from the inner circumference of the ring. An annular bridge or trough member 17 is provided with a reentrant annular groove or trough 18 to receive the end margin of the bowl, said bridge having side flanges .1? at its inner and outer peripheries, directed toward said flat surface of the ring and embedded and sealed therein. Said bridge is preferably of flexible metal such as thin copper, silver or the like and can both flex and stretch as required under influences of expansion or contraction of the ring and bowl.
In addition to the advantage included in the foregoing description, it may be further called to attention that since the bridge or trough member 17 is copper, silver or other electrically low resistance material, it will not have the high radio frequency resistance inherent in the two popular seals of the prior art referred to above. Furthermore, since the bridge member can flex readily and does not carry the weight of the bowl or anode or other elements of the device, it can be very thin, this characteristic being also permitted in view of the fact that the shortness of the flanges and doubling back of the material to obtain the reentrant formation, renders deformation by atmospheric pressure exceedingly unlikely. Again, it will be observed that since there is no edge-to-edge seal, such as in the mentioned prior art, there is no concentration of an electrostatic field at the seal, and thus the structure is beneficially employed in high frequency devices. Another advantage of the described seal is that the rounded or humped formation of the flanges with the reentrant portion of the bridge member at both sides of the seal constitute corona shields that minimize the number of electrostatic lines of force that can terminate on the metal-to-insulator seal. The bridge or trough member 17 bridges an annular area of the ring surface between the two flanges 19 of said member.
Between the ring and the reentrant groove 18 of the trough is an annular channel element 20 having approximately the same coeflicient of expansion as the glass of bowl 13. Said channel element 20 is preferably the above-mentioned alloy referred to under the trademark Kovar and the glass of the bowl is the borosilicate glass likewise identified above. The intervening thickness of the material forming the trough 18 is surface and a cylindrical glass thin enough to readily respond to expansion and .con-.
traction of the Kovar and the glass, and is sealed to both. Since the glass is sealed to the copper trough and the flanges of the bridge are sealed to the copper ring, a vacuumtight closure is effected between the ring and glass. Consequential upon being subjected to the external atmospheric pressure, the bowl tends to seat at its rim edge toward the flat face of the ring. The channel element thickness limits approach of the reentrant portion 18 of the bridge member toward the face of the ring. Greater radial expansion, due to heat in the ring transmitted from the anode by conduction, or otherwise, is readily accommodated by the Kovar channel element 20 sliding on the face of the ring and by flexure of the bridge flanges.
If so desired, the ring may be provided as shown in Fig. 2 with an annular projection or rib 21 between the outer flange 19 of the bridge and said Kovar channel element and so positioned that as the copper ring contracts to normal condition after an expansion thereof said projection will engage the channel element and automatically slide it back to concentric relation to the ring *in event it did not of itself return to that relation.
Again, if so desired, the space enclosed by the bridge and area of the ring thereunder may have pipe connections 22 thereto for circulation of a fluid coolant in said space. V a We claim:
1. An electron discharge device having a radial metallic surface and a cylindrical glass member requiring vacuumtight seal therebetween, a flexible metallic bridging element having opposite flanges and with said flanges sealed to and projecting from the said metallic surface, an intermediate portion of said bridging element traversing the end of and sealed to said glass member, and an element interposed in. juxtaposition to the said intermediate portion of said bridging element between said flanges and making contact with said metallic surface.
2. An electron discharge device having a radial metallic member requiring vacuumtight seal therebetween, a flexible metallic bridging element having opposite flanges and with said flanges sealed to and projecting from the said metallic surface, an intermediate portion of said bridging element traversing the end of and sealed to said glass member and an element interposed in juxtaposition to the said intermediate portion of said bridging element and making slidable contact with said metallic surface, said element and glass member having substantially the same coeflicient of expansion.
3. An electron discharge device having a radial metallic surface and a cylindrical glass member requiring vacuumtight seal therebetween, a flexible metallic bridging element having opposite flanges and with said flanges sealed to and projecting from the said metallic surface, an intermediate portion of said bridging element traversing the end of and sealed to said glass member, and an element interposed in juxtaposition to the said intermediate portion of said bridging element and making contact with said metallic surface, said element and glass member having substantially the same coefiicient of expansiou.
4. An electron discharge device having a metallic surface transverse to a central axis and a cylindrical glass member coaxial thereto, a flexible metallic bridge over an annular part of said metallic surface and sealed thereto at the annular peripheries of said bridge, and an element between said bridge and said surface maintaining distance of said bridge thereat from said surface, and said glass member being sealed to said bridge in opposition to said element.
5. An electron discharge device having a metallic surface transverse to a central axis and a cylindrical glass member coaxial thereto, a flexible metallic bridge over an annular part of said metallic surface and sealed thereto at the annular peripheries of said bridge, and an element between said bridge and said surface maintaining distance of said bridge thereat from said surface, said element having slidable engagement with said surface and said glass member being sealed to said bridge in opposition to said element.
6. An electron discharge device having a metallic surface transverse to a central axis and a cylindrical glass member coaxial thereto, a reentrant annular bridge having flanges scaled to the said surface and with the reentrant portion in proximity to said surface between said flanges and sealed to said glass member, a channel element on said reentrant portion interposed between said portion and said surface and slidable on said surface, and a positioning projection next an edge of said element and fixed with respect to said surface for actuation of said element and bridge to normal concentric location on said surface.
References Cited in the file of this patent UNITED STATES PATENTS Re. 23,284 McArthur et al Oct. 17, 1950 2,449,759 Barschdorf Sept. 21, 1948 2,472,942 Drieschman et al June 14, 1949 2,504,521 Greiner Apr. 18, 1950 2,513,920 De Walt July 4, 1950
US280786A 1952-04-05 1952-04-05 Seal for electron discharge device Expired - Lifetime US2720997A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US280786A US2720997A (en) 1952-04-05 1952-04-05 Seal for electron discharge device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US280786A US2720997A (en) 1952-04-05 1952-04-05 Seal for electron discharge device

Publications (1)

Publication Number Publication Date
US2720997A true US2720997A (en) 1955-10-18

Family

ID=23074649

Family Applications (1)

Application Number Title Priority Date Filing Date
US280786A Expired - Lifetime US2720997A (en) 1952-04-05 1952-04-05 Seal for electron discharge device

Country Status (1)

Country Link
US (1) US2720997A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2880349A (en) * 1954-06-17 1959-03-31 Eitelmccullough Inc Ceramic electron tube
US2903614A (en) * 1957-02-11 1959-09-08 Eitel Mccullough Inc Envelope structures for electron tubes
US2923847A (en) * 1956-09-27 1960-02-02 Gen Electric Grid shim
US2948992A (en) * 1957-02-21 1960-08-16 Gen Electric Co Ltd Glass compositions and glass-to-metal seals
US2966592A (en) * 1956-03-26 1960-12-27 Westinghouse Electric Corp Vacuum-tight windows
US3115957A (en) * 1959-02-18 1963-12-31 Eitel Mccullough Inc Art of sealing quartz to metal
US3125698A (en) * 1964-03-17 Karl-birger persson
US3136050A (en) * 1959-11-17 1964-06-09 Texas Instruments Inc Container closure method
US3171519A (en) * 1960-09-06 1965-03-02 Gen Electric Seal construction
US3182845A (en) * 1965-05-11 Housing for an electronic device
US3351800A (en) * 1965-01-04 1967-11-07 Gen Electric Discharge device with compensated anode structure

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2449759A (en) * 1944-05-05 1948-09-21 Sprague Electric Co Electrical seal
US2472942A (en) * 1947-03-18 1949-06-14 Eitel Mccuilough Inc Electron tube
US2504521A (en) * 1948-05-01 1950-04-18 Gen Electric Quartz-to-metal seal
US2513920A (en) * 1947-08-14 1950-07-04 Gen Electric Fluid-cooled electric discharge device
USRE23284E (en) * 1950-10-17 Ultra high frequency electric dis

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE23284E (en) * 1950-10-17 Ultra high frequency electric dis
US2449759A (en) * 1944-05-05 1948-09-21 Sprague Electric Co Electrical seal
US2472942A (en) * 1947-03-18 1949-06-14 Eitel Mccuilough Inc Electron tube
US2513920A (en) * 1947-08-14 1950-07-04 Gen Electric Fluid-cooled electric discharge device
US2504521A (en) * 1948-05-01 1950-04-18 Gen Electric Quartz-to-metal seal

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3125698A (en) * 1964-03-17 Karl-birger persson
US3182845A (en) * 1965-05-11 Housing for an electronic device
US2880349A (en) * 1954-06-17 1959-03-31 Eitelmccullough Inc Ceramic electron tube
US2966592A (en) * 1956-03-26 1960-12-27 Westinghouse Electric Corp Vacuum-tight windows
US2923847A (en) * 1956-09-27 1960-02-02 Gen Electric Grid shim
US2903614A (en) * 1957-02-11 1959-09-08 Eitel Mccullough Inc Envelope structures for electron tubes
US2948992A (en) * 1957-02-21 1960-08-16 Gen Electric Co Ltd Glass compositions and glass-to-metal seals
US3115957A (en) * 1959-02-18 1963-12-31 Eitel Mccullough Inc Art of sealing quartz to metal
US3136050A (en) * 1959-11-17 1964-06-09 Texas Instruments Inc Container closure method
US3171519A (en) * 1960-09-06 1965-03-02 Gen Electric Seal construction
US3351800A (en) * 1965-01-04 1967-11-07 Gen Electric Discharge device with compensated anode structure

Similar Documents

Publication Publication Date Title
US1293441A (en) Combined metal and glass structure and method of forming same.
US2720997A (en) Seal for electron discharge device
US2413689A (en) Electron discharge device
US2462921A (en) Electron discharge tube
US2920785A (en) Glass-to-metal seals for cathode-ray tubes
US2455381A (en) Cathode assembly for electron discharge devices
US2527127A (en) Electronic discharge device
US3024300A (en) Vacuum seal for electron tubes
US2190302A (en) Glass-metal seal
US2402029A (en) Electron device and method of manufacture
US2504522A (en) Quartz-to-metal seal
US2941109A (en) Tube having planar electrodes
US2423066A (en) Metal-glass and the like seals
US2684777A (en) Vacuum-tight joint for metal, glass, or like material pieces
US2300931A (en) Metal-porcelain-glass vacuumtight structure
US3124714A (en) bendorf
US2192892A (en) Glass-to-metal seal
US2509906A (en) Glass-to-metal seal
US2336488A (en) Metal seal member
US1947417A (en) Electric discharge tube
US2492295A (en) Spark gap device
US2164910A (en) Electronic discharge tube
US2704169A (en) Electronic tube
US2312350A (en) Discharge device
US2412987A (en) Vacuum tube connection