US2678325A - Alkali-refining of fatty glycerides in the presence of a tartaric compound - Google Patents

Alkali-refining of fatty glycerides in the presence of a tartaric compound Download PDF

Info

Publication number
US2678325A
US2678325A US105674A US10567449A US2678325A US 2678325 A US2678325 A US 2678325A US 105674 A US105674 A US 105674A US 10567449 A US10567449 A US 10567449A US 2678325 A US2678325 A US 2678325A
Authority
US
United States
Prior art keywords
refining
alkali
tartaric acid
oil
tartaric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US105674A
Inventor
John A Carlson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lever Brothers Co
Original Assignee
Lever Brothers Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lever Brothers Co filed Critical Lever Brothers Co
Priority to US105674A priority Critical patent/US2678325A/en
Application granted granted Critical
Publication of US2678325A publication Critical patent/US2678325A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11BPRODUCING, e.g. BY PRESSING RAW MATERIALS OR BY EXTRACTION FROM WASTE MATERIALS, REFINING OR PRESERVING FATS, FATTY SUBSTANCES, e.g. LANOLIN, FATTY OILS OR WAXES; ESSENTIAL OILS; PERFUMES
    • C11B3/00Refining fats or fatty oils
    • C11B3/02Refining fats or fatty oils by chemical reaction
    • C11B3/06Refining fats or fatty oils by chemical reaction with bases

Definitions

  • This invention relats to the alkali-refining of fatty'glyceride stocks in the presence of a small amount of a tartaric acid, and especially in one embodiment to the alkali-refining of soybean oil in the presence of a small amount of tartaric acid.
  • alkali-refining involves di-phasic separation of an aqueous phase containing undesirable impurities, and a refined oil phase.
  • the phases may be allowed to separate by ravity, as in kettle refining, or may be separated by centrifugal means.
  • the alkali neutralizes the free fatty acids to form soap, which separates in the aqueous phase along with other impurities.
  • the art is confronted with the problem of minimizing these losses of neutral oil, which are a serious economic factor in th large scale refinin processes. This is especially true in batch or kettle refining.
  • the refining losses may be markedly reduced if the alkali-refining is carried out in the presence of a tartaric acid.
  • This invention is of great commercial significance, inasmuch as it permits alkali-refining in large scale conventional kettles with relatively low losses, e. g., comparable to those obtained by the use of centrifugal equipment, to give a resulting product of satisfactory quality. This permits the use of kettle equipment which is available in many cases.
  • the presence of the tartaric additive also tends to improve the centrifugal refining process, but, of course, the difference is not so marked since the losses in the centrifugal process are relatively lower.
  • the objects achieved in accordance with the invention include th provision of methods of alkali-refining fatty glyceride stocks with relatively low refining losses; Wherein the refinin is carried out in the presence of a tartaric acid;
  • alkali-refinin soybean oil in the presence of tartaric acid is described.
  • the tartaric acid used is the commercial racemic mixture. Either of the optically active forms of the acid is operative, but such forms would not be used for economic reasons.
  • the maximum amount of caustic used is calculated from the usual formula form of a 14 B. aqueous solution. In the case of the expeller soybean oils, the maximum amount +0.54 mol of caustic is used in the form of a 12 Be. aqueous solution. Unless otherwise indicated, all amounts and percentages are on an anhydrous weight basis, relative to the amount of oil treated. In the examples immediately following, 0.1 of tartaric acid is used as the additive. It is added to the caustic and then the resulting mixture is immediately added to the oil, at about room temperature, with agitation. Then the temperature of the mixture is raised to about C., with agi tation. Then the mixture is settled.
  • the refined oil may be removed from the settled foots, e. g., by means of a skim pipe.
  • the settled mixture may be given a 10% by weight still water wash, and after settling, the aqueous phase removed.
  • the resulting product is of satisfactory quality, and may be bleached with fullers earth or with acid activated clay, and further processed to prepare a shortening.
  • kettle refining is represented in the above examples, and this is of greatest commercial significance at this time.
  • the excesses of caustic and the concentrations are not critical and may be varied to give a similar efficient result.
  • the tartaric compound may be added to the caustic before it is added to the oil, or added to the oil separately at the same time the caustic is added or later.
  • a slow breaking cottonseed oil of 1.1% F. F. A. is refined with 6.3% of 140 B. caustic soda in accordance with the above-described procedure, using 0.1% of tartaric acid. The following results are typical.
  • Example 15 the additive was prepared in the form of a 10% water solution and. then added to the caustic.
  • the method of Example 14 is to be preferred.
  • the amount of the tartaric acid should be sufi'icient to reduce the refining loss and not so large, etc, as to increase it.
  • An amount of the additive of up to about 0.75% and preferably in the range of 0.02 to about 0.5% by weight calculated as anhydrous, and based on the weight of oil, will generally be suitable.
  • Use of mixtures of the tartaric acids is included in the invention.
  • alkali metal hydroxide Any alkali metal hydroxide may be used as the alkali, but caustic soda is generally used commercially and is preferred.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microbiology (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Fats And Perfumes (AREA)

Description

Patented May 11, 1954 OFFHIE ALKALI-REFINING F FATTY GLYCERIDES IN THE PRESENCE OF A TARTARIC COM- POUND John A. Carlson, Old Tappan, N. J., assignor to Lever Brothers Company, Cambridge, Mass, a
corporation of Maine No Drawing. Application July 19, 1949, Serial No. 105,674
13 Claims. (Cl. 260424) This invention relats to the alkali-refining of fatty'glyceride stocks in the presence of a small amount of a tartaric acid, and especially in one embodiment to the alkali-refining of soybean oil in the presence of a small amount of tartaric acid.
The alkali-refining of fatty glyceride stocks has long been practiced, and extensive information as to procedural details is available in the literature; e. g., Industrial Oil and Fat Products by Alton E. Bailey, Interscience Publishers, Inc., New York, N. Y., 1945, which describes refining processes, among others, that are characterized as the dry method and the wet method. Vegetable Fats and Oils by George S. J amieson, Reinhold Publishing Corporation, New York, 1943, is a further reference.
Generally, alkali-refining involves di-phasic separation of an aqueous phase containing undesirable impurities, and a refined oil phase. The phases may be allowed to separate by ravity, as in kettle refining, or may be separated by centrifugal means. The alkali neutralizes the free fatty acids to form soap, which separates in the aqueous phase along with other impurities. There is usually some saponification of the neutral glycerides and some entrainment of the oil in the soap. The art is confronted with the problem of minimizing these losses of neutral oil, which are a serious economic factor in th large scale refinin processes. This is especially true in batch or kettle refining.
In accordance with the invention, it has been found that the refining losses may be markedly reduced if the alkali-refining is carried out in the presence of a tartaric acid.
This invention is of great commercial significance, inasmuch as it permits alkali-refining in large scale conventional kettles with relatively low losses, e. g., comparable to those obtained by the use of centrifugal equipment, to give a resulting product of satisfactory quality. This permits the use of kettle equipment which is available in many cases. The presence of the tartaric additive also tends to improve the centrifugal refining process, but, of course, the difference is not so marked since the losses in the centrifugal process are relatively lower.
The objects achieved in accordance with the invention include th provision of methods of alkali-refining fatty glyceride stocks with relatively low refining losses; Wherein the refinin is carried out in the presence of a tartaric acid;
the provision of processes of alkali-refining soybean oil in the presence of a small amount of tartaric acid; and other objects which will be apparent as details or embodiments of the invention are set forth hereinafter.
In order to facilitate a clear understanding of the invention, an illustrative embodiment of alkali-refinin soybean oil in the presence of tartaric acid is described. The tartaric acid used is the commercial racemic mixture. Either of the optically active forms of the acid is operative, but such forms would not be used for economic reasons.
The maximum amount of caustic used is calculated from the usual formula form of a 14 B. aqueous solution. In the case of the expeller soybean oils, the maximum amount +0.54 mol of caustic is used in the form of a 12 Be. aqueous solution. Unless otherwise indicated, all amounts and percentages are on an anhydrous weight basis, relative to the amount of oil treated. In the examples immediately following, 0.1 of tartaric acid is used as the additive. It is added to the caustic and then the resulting mixture is immediately added to the oil, at about room temperature, with agitation. Then the temperature of the mixture is raised to about C., with agi tation. Then the mixture is settled. In accordance with the dry method, the refined oil may be removed from the settled foots, e. g., by means of a skim pipe. In accordance with the wet method, the settled mixture may be given a 10% by weight still water wash, and after settling, the aqueous phase removed. The following results are typical when refining by the dry method:
Extracted soybean oil Percent Loss in Refining Example Percent Addltlve No. F. r A.
. Blank 1th Reduc Add. tlon The above reductions in refining losses are noteworthy, especially when the small amount of additive used is considered. The amount of additive may be increased, e. g., following the procedure of Example 6, except using 0.20% of the additive, the same reduction in loss is obtained. In a similar procedure, using 0.5% of the additive, slightly poorer refining losses are obtained than with 0.2%.
The resulting product is of satisfactory quality, and may be bleached with fullers earth or with acid activated clay, and further processed to prepare a shortening.
An embodiment of kettle refining is represented in the above examples, and this is of greatest commercial significance at this time. The excesses of caustic and the concentrations are not critical and may be varied to give a similar efficient result. The tartaric compound may be added to the caustic before it is added to the oil, or added to the oil separately at the same time the caustic is added or later.
The following examples illustrate the use of the additive in a centrifugal refining process. Tartaric acid in an amount of 0.1% is added to 20 1%. caustic and then the latter mixed with degummed extracted soybean oil and agitated at a temperature of 75 F. for 20 minutes before being introduced into the centrifugal machine. The excess caustic was, 0.3%. The following results are typical.
Percent LOss in Refining Exam le Percent No. Addltlve F. 12A. h
Blank i Add. tion 7 Tartaric acid 0.4 1.50 0.70 0.80 8 do 0.4 1.40 0.90 0.50
Percent Loss in Refining Example Percent No. Addmv" F. r. A. Blank With Reduc- Add. tion 9 Tartaric acid. 1.0 6.20 3.78 2. 42 1.0 6.10 3. 80 2. 30 1.0 5.90 3. 84 2.06 1.0 5. 40 4.10 1.30 1. 0 5. 60 3. 74 1. 86
These reductions in refining loss would be reflected in great commercial savings, since cottonseed oil is available in large quantities and the success of the process in refining it is important.
A slow breaking cottonseed oil of 1.1% F. F. A. is refined with 6.3% of 140 B. caustic soda in accordance with the above-described procedure, using 0.1% of tartaric acid. The following results are typical.
Percent Loss in Refining Example Percent Addmve With Reduc- Blank Add. tion 14 Tartaric acid 1.1 6. 36 4. 1. 86 15 "(l0 1.1 6. 36 4.70 1.66
In the case of Example 15, the additive was prepared in the form of a 10% water solution and. then added to the caustic. The method of Example 14 is to be preferred.
Following the usual alkali-refining procedures as applied to known fats and oils (e. g, as described in the literature), especially vegetable oils, refining losses may be reduced substantially by including a small amount of tartaric acid.
In general, the amount of the tartaric acid should be sufi'icient to reduce the refining loss and not so large, etc, as to increase it. An amount of the additive of up to about 0.75% and preferably in the range of 0.02 to about 0.5% by weight calculated as anhydrous, and based on the weight of oil, will generally be suitable. Use of mixtures of the tartaric acids is included in the invention.
Any alkali metal hydroxide may be used as the alkali, but caustic soda is generally used commercially and is preferred.
in view of the foregoing disclosures, variations and modifications thereof will be apparent to those skilled in the art, and the invention contemplates all such variations and modifications except as do not come within the scope of the appended claims.
I claim:
1. In the processes of alkali-refining a d;- gummed fatty glyceride stock by treatment with aqueous alkali and alkali-refining nondegummed fatty glyceride stocks by treatment with aqueous alkali in which at the same time the gums are decomposed by the alkali and dissolved therein, and separating an aqueous phase containing gum residues, if any, and undesirable impurities from a refined oil phase, the improvement which comprises introducing at any stage in the aiizali refining step a small amount up to about 0.75% of a tartaric acid on an anhydrous weight basis relative to the amount of oil treated to reduce the refining losses.
2. The process of claim 1, wherein the phases are separated centrifugally.
3. The process of claim 2 in which the centrifugal separation is carried out in a continuous process.
4. The process of claim 1, wherein the phases are formed into separate layers by settling.
5. The process of claim 4, wherein the aqueous phase is drawn off from below the oil phase.
6. The process of claim 4, wherein the oil phase is drawn off from above the aqueous phase.
7. The process of claim 1, wherein the fatty glyceride is a soybean oil.
8. The process of claim 1, wherein the fatty glyceride is a cottonseed oil.
9. The process of claim 1, wherein the tartaric acid is racemic tartaric acid.
10. The process of claim 1, wherein the tartaric acid is added to the alkali just before the latter is added to the oil.
11. The process of claim 1, wherein the tartaric acid is added in an amount within the range of 0.02% to 0.5%.
12. The process of claim 1, wherein the fatty glyceride treated is soybean oil, the tartaric acid is racemic tartaric acid, the phases are separated by gravity, and the aqueous phase drawn 011 from below the oil phase.
13. The process of claim 1, wherein the fatty 6 glyceride treated is cottonseed oil, the tartaric acid is racemic tartaric acid, the phases are separated by gravity, and the aqueous phase drawn oil from below the oil phase.
References Cited in the file Of this patent UNITED STATES PATENTS Number Name Date 2,242,188 Thurman May 13, 1941 FOREIGN PATENTS Number Country Date 1,484 Great Britain June 15, 1864

Claims (1)

1. IN THE PROCESSES OF ALKALI-REFINING A DEGUMMED FATTY GLYCERIDE STOCK BY TREATMENT WITH AQUEOUS ALKALI AND ALKALI-REFINING NONDEGUMMED FATTY GLYCERIDE STOCKS BY TREATMENT WITH AQUEOUS ALKALI IN WHICH AT THE SAME TIME THE GUMS ARE DECOMPOSED BY THE ALKALI AND DISSOLVED THEREIN, AND SEPARATING AN AQUEOUS PHASE CONTAINING GUM RESIDUES, IF ANY, AND UNDERSIRABLE IMPURITIES FROM A REFINED OIL PHASE, THE IMPROVEMENT WHICH COMPRISES INTRODUCING AT ANY STAGE IN THE ALKALIREFINING STEP A SMALL AMOUNT UP TO ABOUT 0.75% OF A TARTARIC ACID ON AN ANHYDROUS WEIGHT BASIS RELATIVE TO THE AMOUNT OF OIL TREATED TO REDUCEE THE REFINING LOSSES.
US105674A 1949-07-19 1949-07-19 Alkali-refining of fatty glycerides in the presence of a tartaric compound Expired - Lifetime US2678325A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US105674A US2678325A (en) 1949-07-19 1949-07-19 Alkali-refining of fatty glycerides in the presence of a tartaric compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US105674A US2678325A (en) 1949-07-19 1949-07-19 Alkali-refining of fatty glycerides in the presence of a tartaric compound

Publications (1)

Publication Number Publication Date
US2678325A true US2678325A (en) 1954-05-11

Family

ID=22307146

Family Applications (1)

Application Number Title Priority Date Filing Date
US105674A Expired - Lifetime US2678325A (en) 1949-07-19 1949-07-19 Alkali-refining of fatty glycerides in the presence of a tartaric compound

Country Status (1)

Country Link
US (1) US2678325A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0456300A1 (en) * 1990-05-04 1991-11-13 Unilever N.V. Method of refining glyceride oil

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2242188A (en) * 1940-08-30 1941-05-13 Refining Inc Refining of vegetable oils

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2242188A (en) * 1940-08-30 1941-05-13 Refining Inc Refining of vegetable oils

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0456300A1 (en) * 1990-05-04 1991-11-13 Unilever N.V. Method of refining glyceride oil

Similar Documents

Publication Publication Date Title
DK153228B (en) PROCEDURE FOR DEGUMING OF TRIGLYCERID OILS
US4035402A (en) Dewaxing process for vegetable oils
KR890001463B1 (en) Refined edible oil and process for its preparation
US4100181A (en) Process for obtaining free fatty acids from soap stock
US2678325A (en) Alkali-refining of fatty glycerides in the presence of a tartaric compound
JPH06234992A (en) Method of purifying triglyceride oil with alkali
US2782216A (en) Refining vegetable oils
US2507184A (en) Alkali-refining of fatty glycerides in the presence of an inorganic phosphate compound
US5210242A (en) Process for soap splitting using a high temperature treatment
US3102898A (en) Process for the purification of glyceride oils
US2334850A (en) Refining of fatty acid esters and fatty acids
US3737444A (en) Continuous process for the separation of mixtures of fatty acids of different melting points
US2678326A (en) Method of refining oils with polycarboxylic acids
EP0099201B1 (en) Process for refining triglyceride oils
US2255875A (en) Process of refining vitaminiferous oils
US2666074A (en) Refining fatty oils
US1610854A (en) Purification of wool fat
US2115668A (en) Refining fatty oils and fats
US2390990A (en) Process of refining oil and for producing soap
US2190590A (en) Process of refining glyceride oils
US2465969A (en) Purification of a fatty oil
US3065249A (en) Process of refining fats and oils
US3440253A (en) Method of refining vegetable and animal oils
US2551496A (en) Process for refining cottonseed oil
US4427572A (en) Process for the manufacture of soap