US2616798A - Magnesium treated ferritic stainless steels - Google Patents

Magnesium treated ferritic stainless steels Download PDF

Info

Publication number
US2616798A
US2616798A US192141A US19214150A US2616798A US 2616798 A US2616798 A US 2616798A US 192141 A US192141 A US 192141A US 19214150 A US19214150 A US 19214150A US 2616798 A US2616798 A US 2616798A
Authority
US
United States
Prior art keywords
magnesium
ferritic stainless
article
chromium
stainless steels
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US192141A
Inventor
Nicholas A Ziegler
James R Goldsmith
Alvin F Lahr
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Crane Co
Original Assignee
Crane Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Crane Co filed Critical Crane Co
Priority to US192141A priority Critical patent/US2616798A/en
Application granted granted Critical
Publication of US2616798A publication Critical patent/US2616798A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten

Definitions

  • This invention relates toa process in the treatment of steels and, more particularly, it is concerned with a magnesium treatment of steels of the ferritic stainless steel type.
  • ferritic stainless steels of the type having 28 chromium, 3% nickel, and 1.5% molybdenum, have excellent corrosion resistance against many corrosive environments.
  • their ductility (as measured by the elongation and reduction of area) is quite low. For this reason, the use of this alloy frequently is avoided, which is particularly unfortunate in those cases where from a corrosion standpoint it might be th best material to use.
  • the steel usually identified by those skilled in the art as a stainless steel of the type having to chromium, a trace to 4% nickel, a trace to 2% molybdenum, up to .2% carbon, with the usual amounts of silicon, manganese, sulphur and phosphorus, with the balance essentially iron was treated by adding to the metal in its molten condition from 0.1 to 0.4% molybdenum. It resulted in a desirable sound and gasfree metal. There was high ductility in th ascast condition, expressed by at least 10% elongation and at least 10% reduction of area. Molybdenum may be used alone with acceptable results, or it may b combined, if desired, with nitrogen with good results.
  • Heat No. 6271 (a) was made from a commercial foundry scrap and killed with about 2 pounds per ton of aluminum.
  • Heat No. 6272 (b) was made from a commercial foundry scrap and killed with about 0.25% of magnesium, added as 80% nickel-20% magnesium master alloy.
  • Heat No. 6273(0) was made of 33% of commercial foundry scrap and balance-new materials, including 28 pounds of nitrogen-bearing (0.7% Na, Cr) ferro-chromium and was killed with about 2 pounds per ton of aluminum.
  • Heat No. 6274 (d) was made of 33% of commercial foundry scrap and balancenew materials, including 28 pounds of nitrogen-bearing (0.7% nitrogen, 70% chromium) mium, and was killed with about 0.25% magnesium, added as nickel-20% magnesium master alloy.
  • Article of manufacture made of a steel of a composition having 25 to 30% chromium, a trace to 4% nickel, a trace to 2% molybdenum, up to 0.2% carbon, the usual amounts of silicon,
  • Article of manufacture made of a steel of a composition having 25 to 30% chromium, a trace to 4% nickel, a trace to 2% molybdenum, up to 0.2% carbon, the usual amounts of silicon, manganese, sulphur and phosphorus, a trace to 0.2% of nitrogen, and balance essentially iron treated in molten condition by an addition of 0.1 to 0.4% magnesium, said article being characterized by soundness and freedom from gas, as well as by a high degree of ductility in the cast condition, expressed by at least 10% elongation and at least 10% reduction of area, measured by 4 a static test of a 0.505-inch diameter, 2-inch gauge tensile test bar.
  • NICHOLAS A. ZIEGLER. JAMES R. GOLDSMITH. ALVIN F. LAHR.

Description

Patented Nov. 4, 1952 MAGNESIUM TREATED FERRITIC STAINLESS STEELS Nicholas A. Ziegler, James Goldsmith, and
Alvin F. Lahr,'Chicag0, Ill., ass'ignors to Crane Co., Chicago, 111., a corporation of Illinois No Drawing. Application october 25, 1950, Serial No. 192,141
This invention relates toa process in the treatment of steels and, more particularly, it is concerned with a magnesium treatment of steels of the ferritic stainless steel type.
At the outset, it is well known that ferritic stainless steels, of the type having 28 chromium, 3% nickel, and 1.5% molybdenum, have excellent corrosion resistance against many corrosive environments. However, their ductility (as measured by the elongation and reduction of area) is quite low. For this reason, the use of this alloy frequently is avoided, which is particularly unfortunate in those cases where from a corrosion standpoint it might be th best material to use. However, we have discovered that by treating this alloy with about 0.25% magnesium, its ductility is considerably improved, as shown by the following table:
pon blocks, from which the test bar blanks were cut off. The steel usually identified by those skilled in the art as a stainless steel of the type having to chromium, a trace to 4% nickel, a trace to 2% molybdenum, up to .2% carbon, with the usual amounts of silicon, manganese, sulphur and phosphorus, with the balance essentially iron was treated by adding to the metal in its molten condition from 0.1 to 0.4% molybdenum. It resulted in a desirable sound and gasfree metal. There was high ductility in th ascast condition, expressed by at least 10% elongation and at least 10% reduction of area. Molybdenum may be used alone with acceptable results, or it may b combined, if desired, with nitrogen with good results. Prior to machining the test bars, they were heat treated by air cooling from 1800 Fahrenheit. Heat Nos. 6271, 6272, and 6274 Table I Hardness T. S. Y. P. P. L. B. S E]. R. A. Serial Heat p. s. i. p. s. i p. s. i. p. s. 1 N Percent Percent It should be understood that the foregoing table is a summation of the physical propertiesof four heats of a nominal composition 28% chromium, 3% nickel, 1.5% molybdenum.
Each figure is an average of two tests.
Heat No. 6271 (a) was made from a commercial foundry scrap and killed with about 2 pounds per ton of aluminum.
Heat No. 6272 (b) was made from a commercial foundry scrap and killed with about 0.25% of magnesium, added as 80% nickel-20% magnesium master alloy.
Heat No. 6273(0) was made of 33% of commercial foundry scrap and balance-new materials, including 28 pounds of nitrogen-bearing (0.7% Na, Cr) ferro-chromium and was killed with about 2 pounds per ton of aluminum.
Heat No. 6274 (d) was made of 33% of commercial foundry scrap and balancenew materials, including 28 pounds of nitrogen-bearing (0.7% nitrogen, 70% chromium) mium, and was killed with about 0.25% magnesium, added as nickel-20% magnesium master alloy.
All four of these heats were prepared in pound heats and cast in conventional test couferro-chrowere sound, whereas heat No. 6273 was found to be porous or gassy, although portions could be found sufficiently sound for making reliable test bars. In these tests, measuring elongation and reduction of area by a static test a .505 inch diameter, 2-inch gauge tensile test bar was employed.
Referring again to the above table, it is apparent that the tensile strength, yield point, proportional limit, breaking strength, and hardness of the four heats (within the normal experimental error) are not too different. On th other hand, elongation and reduction of area of the two magnesium killed steels (Nos. 6272 and6274) are considerably higher (at least twice or more) than those of the two corresponding aluminum killed steels (Nos. 6271 and 6273). Moreover, gassiness of the nitrogen-bearing, aluminumkilled steel (No. 6273) was completely eliminated by magnesium treatment (in heat No. 6274).
Having thus described our process and the resultant article, we claim:
1. Article of manufacture made of a steel of a composition having 25 to 30% chromium, a trace to 4% nickel, a trace to 2% molybdenum, up to 0.2% carbon, the usual amounts of silicon,
manganese, sulphur, and phosphorus and the balance essentially iron treated in molten condition by an addition of 0.1 to 0.4% magnesium, said article being characterized by soundness and freedom from gas, as wel1 as by a high degree of ductility in the cast condition, expressed by at least 10% elongation and at least 10% reduction of area, measured by a static test of 0.505-inch diameter, 2-inch gauge tensile test bar.
2. Article of manufacture made of a steel of a composition having 25 to 30% chromium, a trace to 4% nickel, a trace to 2% molybdenum, up to 0.2% carbon, the usual amounts of silicon, manganese, sulphur and phosphorus, a trace to 0.2% of nitrogen, and balance essentially iron treated in molten condition by an addition of 0.1 to 0.4% magnesium, said article being characterized by soundness and freedom from gas, as well as by a high degree of ductility in the cast condition, expressed by at least 10% elongation and at least 10% reduction of area, measured by 4 a static test of a 0.505-inch diameter, 2-inch gauge tensile test bar.
NICHOLAS A. ZIEGLER. JAMES R. GOLDSMITH. ALVIN F. LAHR.
REFERENCES CITED The following references are of record in the file of this patent:
OTHER REFERENCES Alloys of Iron and Chromium, vol. II, High Chromium, page 223. Edited by Kinzel et al. Published in 1940 by the McGraw-Hill Book Co., New York.

Claims (1)

1. ARTICLE OF MANUFACTURE MADE OF STEEL OF A COMPOSITION HAVING 25 TO 30% CHROMIUM, A TRACT TO 4% NICKEL, A TRACE TO 2% MOLYBDENUM, UP TO 0.2% CARBON, THE USAL AMOUNTS OF SILICON, MANAGANES, SULPHUR, AND PHOSPHORUS AND THE BALANCE ESSENTIALLY IRON TREATED IN MOLTEN CONDITION BY ADDITION OF 0.1 TO 0.4% MAGNESIUM, SAID ARTICLE BEING CHARACTERIZED BY SONDNESS AND FREEDOM FROM GAS, AS WELL AS BY A HIGH DEGREE OF DUCTILITY IN THE CAST CONDITION, EXPRESSED BY AT LEAST 10%, ELOLNGATION AND AT LEAST 10% REDUCTION OF AREA, MEASURED BY A STATIC TEST OF 0.505-INCH DIAMETER, 2-INCH GAUGE TENSILE TEST BAR.
US192141A 1950-10-25 1950-10-25 Magnesium treated ferritic stainless steels Expired - Lifetime US2616798A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US192141A US2616798A (en) 1950-10-25 1950-10-25 Magnesium treated ferritic stainless steels

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US192141A US2616798A (en) 1950-10-25 1950-10-25 Magnesium treated ferritic stainless steels

Publications (1)

Publication Number Publication Date
US2616798A true US2616798A (en) 1952-11-04

Family

ID=22708428

Family Applications (1)

Application Number Title Priority Date Filing Date
US192141A Expired - Lifetime US2616798A (en) 1950-10-25 1950-10-25 Magnesium treated ferritic stainless steels

Country Status (1)

Country Link
US (1) US2616798A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2684298A (en) * 1952-11-20 1954-07-20 Allegheny Ludlum Steel Austenitic stainless steel

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1920934A (en) * 1928-07-10 1933-08-01 Chas W Guttzeit Corrosion resisting steel
US1962599A (en) * 1932-06-11 1934-06-12 Chas W Guttzeit Corrosion resisting alloys
US2046995A (en) * 1930-09-26 1936-07-07 Fansteel Metallurgical Corp Alloys and method of making the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1920934A (en) * 1928-07-10 1933-08-01 Chas W Guttzeit Corrosion resisting steel
US2046995A (en) * 1930-09-26 1936-07-07 Fansteel Metallurgical Corp Alloys and method of making the same
US1962599A (en) * 1932-06-11 1934-06-12 Chas W Guttzeit Corrosion resisting alloys

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2684298A (en) * 1952-11-20 1954-07-20 Allegheny Ludlum Steel Austenitic stainless steel

Similar Documents

Publication Publication Date Title
US2861908A (en) Alloy steel and method of making
KR970008165B1 (en) Duplex stainless steel with high manganese
US2793113A (en) Creep resistant steel
JPS6123255B2 (en)
US2624671A (en) Ferritic chromium steels
US3807991A (en) Ferritic stainless steel alloy
US2880085A (en) Ferritic alloy steels for use at elevated temperatures
US2432615A (en) Iron-base alloys
US3128175A (en) Low alloy, high hardness, temper resistant steel
JPS6318038A (en) Low-alloy steel excellent in creep resistance and hydrogen attack-resisting characteristic
US2225440A (en) Austenitic alloy steel
US5223214A (en) Heat treating furnace alloys
US2616798A (en) Magnesium treated ferritic stainless steels
US2814563A (en) High temperature alloys
US4119456A (en) High-strength cast heat-resistant alloy
US2891859A (en) Alloy steel
US2949355A (en) High temperature alloy
US3674468A (en) High-strength silicon steel
US1984474A (en) Malleable iron casting
US3069257A (en) Alloy steel and method
US2815280A (en) Alloy steel and article made therefrom
JPS634897B2 (en)
US2384565A (en) Alloy steel and articles
US3259528A (en) High strength stainless steels
US2120554A (en) Chromium steel