US2225440A - Austenitic alloy steel - Google Patents

Austenitic alloy steel Download PDF

Info

Publication number
US2225440A
US2225440A US320432A US32043240A US2225440A US 2225440 A US2225440 A US 2225440A US 320432 A US320432 A US 320432A US 32043240 A US32043240 A US 32043240A US 2225440 A US2225440 A US 2225440A
Authority
US
United States
Prior art keywords
steels
nitrogen
manganese
steel
austenite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US320432A
Inventor
Frederick M Becket
Franks Russell
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ELECTRIC METALLURG Co
ELECTRIC METALLURGICAL Co
Original Assignee
ELECTRIC METALLURG Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ELECTRIC METALLURG Co filed Critical ELECTRIC METALLURG Co
Priority to US320432A priority Critical patent/US2225440A/en
Application granted granted Critical
Publication of US2225440A publication Critical patent/US2225440A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese

Definitions

  • the invention relates to corrosion resistant austenitic chromium-manganese-nickel alloy steels and to articles made therefrom, and has for its primary object the improvement of the characteristics of such steels.
  • This application is a division of our application Serial No. 238,560, filed November 3, 1938, issued April 30, 1940, as U. S. Pat. No. 2,198,598, and a continuation of our application filed May 13, 1939, Serial No. 273,424.
  • Steels containing about 12% to 25% chromium, 6% to 14% manganese, a minor part of the manganese being replaced by nickel, and carbon in a proportion not exceeding about 0.2%, are corrosion resistant, tough and ductile.
  • Such steels normally consist of austenite or of a mixture of austenite and a ferritic constituent, the proportion of austenite being largely dependent on the ratio of chromium to austenite-promoting elements in the steel and also on the rate at which the steel has been cooled from elevated temperatures above its upper critical temperature (about 950 C.).
  • the corrosion resistance, toughness, and ductility of these steels are usually greatest when their structure is most nearly completely austenitic and the proportions of chromium and austenite-promoting elements should therefore be carefully selected in order to ensure a steel having the maximum proportion of austenite.
  • the austenite so produced is relatively, unstable and the resultant steels are dimcult to hot work and to heat treat successfully.
  • copper maybe added in amounts up to about 2.5%, and one or more elements of the group consisting of aluminum and silicon may be present in an amount not exceeding 3% and preferably not exceeding 1%.
  • the percentage otnitrogen that can be held in stable combination in these alloys depends on their chromium andmanganese contents. If the chromium content is about 25% and the manganese content is high, the nitrogen content may rise to 0.5%, but when the chromium and manganese contents are lower, it is advisable to keep the nitrogen content below 0.2%, and usually below 0.15%.
  • the nitrogen imparts stability to the austenitic constituent of the steel, strengthens and otherwise improves the properties of the ierritic constituents, particularlyat elevated temperatures, and promotes a fine- .grained structure throughout the steel.- It is toughness to articles which have been fabricated 'by welding, and to those articles either cast or wrought, which, owing to their shape, thickness or other factors, could not be very rapidly cooled by known Practicalmethods.
  • Table A which gives the results of tests made on representative samples of steels of the class in question, with and without additions of nitrogen.
  • these steels are that they may be cold worked to give a material of high yield strength without deleteriously affecting their ductility and toughness. It is believed that this benefit is due largely to the stabilizing effect of nitrogen on the austenite of the steel inasmuch as magnetic tests show that after a given degree of cold work has been imparted to steels of the invention and to I nitrogen-free steels of otherwise similar analysis. the nitrogen-free steels are considerably more magnetic'than those of the invention.
  • BEFORE TESTING STEELE HOT WORKED AND AIR COOLED FROM ABOUT 1050 0.
  • BEFORE TESTING In the above table, the following symbols are used: Y. P. for yield point in thousands of pounds per square inch; M. S. for maximum stress in thousands of pounds per square inch; %EL for percentage elongation; %RA for percentage reduction in area of cross-section accompanying the elongation; Izod to designate the Izod impact resistance in foot pounds; B. H. for the hardness values on the Brinell scale. The tensile tests were made on standard 0.505 in. diameter tensile test samples as specified by the American Society for Testing Materials.
  • the nitrogen addition is also beneficial in improving the physical characteristics of the coldrolled chromium-manganese steels.
  • the steels of the invention can be more severely cold worked than nitrogen-free steels of similar analysis without inducing an undesirable degree of brittleness in the material. This characteristic is of particular importance in articles which have been fabricated by deep drawing inasmuch as the residual stresses ordinarily present in such articles are thus appreciably reduced and a greater degree of permanency in the finished article is ensured.
  • Austenitic alloy steel containing between 12% and 25% chromium; manganese and nickel in total percentage between 6% and 14%, the percentage of manganese being greater than that of the nickel; carbon in a percentage not over 0.12%; 0.05% to 0.2% nitrogen; remainder iron; the proportions of chromium, carbon, manganese,

Description

Patented Dec. 17, 1940 UNITED STATES I PATENT OFFICE 2,225,440 AUSTENITIC ALLOY SlEEL Frederick M. Becket, New York, and ltussell Franks, Niagara Falls, N. Y., assignors to Electro Metallurgical Company, a corporation of West 3 Claims.
The invention relates to corrosion resistant austenitic chromium-manganese-nickel alloy steels and to articles made therefrom, and has for its primary object the improvement of the characteristics of such steels. This application is a division of our application Serial No. 238,560, filed November 3, 1938, issued April 30, 1940, as U. S. Pat. No. 2,198,598, and a continuation of our application filed May 13, 1939, Serial No. 273,424.
Steels containing about 12% to 25% chromium, 6% to 14% manganese, a minor part of the manganese being replaced by nickel, and carbon in a proportion not exceeding about 0.2%, are corrosion resistant, tough and ductile. Such steels normally consist of austenite or of a mixture of austenite and a ferritic constituent, the proportion of austenite being largely dependent on the ratio of chromium to austenite-promoting elements in the steel and also on the rate at which the steel has been cooled from elevated temperatures above its upper critical temperature (about 950 C.). The corrosion resistance, toughness, and ductility of these steels are usually greatest when their structure is most nearly completely austenitic and the proportions of chromium and austenite-promoting elements should therefore be carefully selected in order to ensure a steel having the maximum proportion of austenite. The austenite so produced is relatively, unstable and the resultant steels are dimcult to hot work and to heat treat successfully.
During hot working, these steels have a tendency to tear, check or crack, apparently because of the partial decomposition of the austenite under the conditions of high temperature and mechanical work, forming a small amount of an undesirable territic constituent throughout the austenite matrix. This small proportion of ferritic constituent formed during hot working appearsto have a serious detrimental effect on the hot working characteristics of steels oi the class in question.
Measures relying for their beneficial effect on the production of a stable austenite have been proposed to improve the hot workability and heat treating characteristics of the foregoing steels, but none has been entirely satisfactory. One proposal has been to increase the carbon content and thus, by promoting a more stable austenite, to restrict the decomposition of that constituent. This expedient, while improving the hot work ability and heat treating characteristics of the steel, has a deleterious effect on the corrosion resisting properties of the metal and is of little or no value. It has also been proposed to promote a more stable austenite by increasing the manganese content or combined nickel and manganese content of the steel, but this expedient is only partially effective and is, moreover, relatively expensive. The use of a very high proportion of nickel has the added disadvantage of increasing the hot-stillness of the metal, thereby increasing the dimculty of hot working it.
We have found that the addition of relatively small amounts of nitrogen to steels containing about 12% to 25% chromium, 6% to 14% of a mixture of manganese and nickel wherein the percentage of manganese is greater than that of the nickel; and carbon in an amount less than 0.20%, and preferably less than 0.12%, considerably improves the hot working, heat treating, and other characteristics of such steels without impairing their excellent corrosion resisting and physical properties or without substantially increasing their resistance to deformation at hot working temperatures. The nitrogen content is uniformly distributed throughout the steel and should be in an amount at least 0.05% but not exceeding 0.5%. As is customary in steels of this class, copper maybe added in amounts up to about 2.5%, and one or more elements of the group consisting of aluminum and silicon may be present in an amount not exceeding 3% and preferably not exceeding 1%. The percentage otnitrogen that can be held in stable combination in these alloys depends on their chromium andmanganese contents. If the chromium content is about 25% and the manganese content is high, the nitrogen content may rise to 0.5%, but when the chromium and manganese contents are lower, it is advisable to keep the nitrogen content below 0.2%, and usually below 0.15%.
We have observed that the nitrogen imparts stability to the austenitic constituent of the steel, strengthens and otherwise improves the properties of the ierritic constituents, particularlyat elevated temperatures, and promotes a fine- .grained structure throughout the steel.- It is toughness to articles which have been fabricated 'by welding, and to those articles either cast or wrought, which, owing to their shape, thickness or other factors, could not be very rapidly cooled by known Practicalmethods. I
Other valuable characteristics resulting from the addition of nitrogen to the steels herein described are that the yield point, maximum strength, and impact strength of the hot-worked steels tested at room temperature are at least as good as those properties of nitrogen-free steels of otherwise similar analysis, while their ductility is substantially increased.
Improvements in the physical properties of the hot-worked steels are indicated in Table A which gives the results of tests made on representative samples of steels of the class in question, with and without additions of nitrogen.
these steels is that they may be cold worked to give a material of high yield strength without deleteriously affecting their ductility and toughness. It is believed that this benefit is due largely to the stabilizing effect of nitrogen on the austenite of the steel inasmuch as magnetic tests show that after a given degree of cold work has been imparted to steels of the invention and to I nitrogen-free steels of otherwise similar analysis. the nitrogen-free steels are considerably more magnetic'than those of the invention.
While we have disclosed several specific embodiments of our invention, it is evident that suchembodiments are by way of example, and may be modified within the scope of the invention as defined in the appended claims.
We claim:
1. Austenitic alloy steel containing between Table .4
Composition (remainder Fe) Tensile test results Perce t Percent Percent Percent Percent Percent Percent Mn N1 0 N Y. P. M. 5. EL RA Imd B. H.
STEELS HOT WORKED ANflWATER QUENCHED FROM ABOUT 1050 0. BEFORE TESTING STEELE HOT WORKED AND AIR COOLED FROM ABOUT 1050 0. BEFORE TESTING In the above table, the following symbols are used: Y. P. for yield point in thousands of pounds per square inch; M. S. for maximum stress in thousands of pounds per square inch; %EL for percentage elongation; %RA for percentage reduction in area of cross-section accompanying the elongation; Izod to designate the Izod impact resistance in foot pounds; B. H. for the hardness values on the Brinell scale. The tensile tests were made on standard 0.505 in. diameter tensile test samples as specified by the American Society for Testing Materials.
The nitrogen addition is also beneficial in improving the physical characteristics of the coldrolled chromium-manganese steels. The steels of the invention can be more severely cold worked than nitrogen-free steels of similar analysis without inducing an undesirable degree of brittleness in the material. This characteristic is of particular importance in articles which have been fabricated by deep drawing inasmuch as the residual stresses ordinarily present in such articles are thus appreciably reduced and a greater degree of permanency in the finished article is ensured. Another valuable characteristic of 12% and 25% chromium; between 6% and 14% of manganese and nickel, the percentage of manganese being greater than that of the nickel; carbon in a percentage not over 0.2%; 0.05% to 0.5% nitrogen; remainder iron; the nitrogen serving to materially improve the hot working characteristics of the steel.
2. Austenitic alloy steel containing between 12% and 25% chromium; manganese and nickel in total percentage between 6% and 14%, the percentage of manganese being greater than that of the nickel; carbon in a percentage not over 0.12%; 0.05% to 0.2% nitrogen; remainder iron; the proportions of chromium, carbon, manganese,
and nickel being inefiective to prevent the formation of an undesirable ferritic constituent if the nitrogen were not present.
3. A steel article hot worked under conditions that promote the formation of a ferritic constituentand subsequently quenched from above the upper critical temperature (about 950 C.) and composed of a steel as defined in claim 2.
FREDERICK M. BECKET. aussnu. mums.
US320432A 1940-02-19 1940-02-19 Austenitic alloy steel Expired - Lifetime US2225440A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US320432A US2225440A (en) 1940-02-19 1940-02-19 Austenitic alloy steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US320432A US2225440A (en) 1940-02-19 1940-02-19 Austenitic alloy steel

Publications (1)

Publication Number Publication Date
US2225440A true US2225440A (en) 1940-12-17

Family

ID=23246405

Family Applications (1)

Application Number Title Priority Date Filing Date
US320432A Expired - Lifetime US2225440A (en) 1940-02-19 1940-02-19 Austenitic alloy steel

Country Status (1)

Country Link
US (1) US2225440A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2423665A (en) * 1944-10-05 1947-07-08 Lebanon Steel Foundry Acid resistant alloy
US2657130A (en) * 1952-12-31 1953-10-27 Armco Steel Corp High-temperature steel and articles
US3165401A (en) * 1957-03-20 1965-01-12 Int Harvester Co Alloy steel for cast parts resistant to high temperatures and corrosion
US3753693A (en) * 1971-05-06 1973-08-21 Armco Steel Corp Chromium-nickel-manganese-nitrogen austenitic stainless steel
US3770426A (en) * 1971-09-17 1973-11-06 Republic Steel Corp Cold formable valve steel
US3861908A (en) * 1973-08-20 1975-01-21 Crucible Inc Duplex stainless steel
EP0171868A1 (en) * 1984-07-03 1986-02-19 Allegheny Ludlum Corporation Austenitic stainless steel for low temperature service
EP0391007A1 (en) * 1989-04-05 1990-10-10 Manoir Industries Intermediate member for connecting a part made from manganese steel to a part made from carbon steel, process for connecting these materials using this intermediate member and assembly obtained by this process
EP0694626A1 (en) * 1994-07-26 1996-01-31 Acerinox S.A. Austenitic stainless steel with low nickel content
GB2359095A (en) * 2000-02-14 2001-08-15 Jindal Strips Ltd Stainless steel

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2423665A (en) * 1944-10-05 1947-07-08 Lebanon Steel Foundry Acid resistant alloy
US2657130A (en) * 1952-12-31 1953-10-27 Armco Steel Corp High-temperature steel and articles
US3165401A (en) * 1957-03-20 1965-01-12 Int Harvester Co Alloy steel for cast parts resistant to high temperatures and corrosion
US3753693A (en) * 1971-05-06 1973-08-21 Armco Steel Corp Chromium-nickel-manganese-nitrogen austenitic stainless steel
US3770426A (en) * 1971-09-17 1973-11-06 Republic Steel Corp Cold formable valve steel
US3861908A (en) * 1973-08-20 1975-01-21 Crucible Inc Duplex stainless steel
EP0171868A1 (en) * 1984-07-03 1986-02-19 Allegheny Ludlum Corporation Austenitic stainless steel for low temperature service
EP0391007A1 (en) * 1989-04-05 1990-10-10 Manoir Industries Intermediate member for connecting a part made from manganese steel to a part made from carbon steel, process for connecting these materials using this intermediate member and assembly obtained by this process
FR2645547A1 (en) * 1989-04-05 1990-10-12 Manoir Ind INSERT FOR CONNECTING A MANGANESE STEEL WORKPIECE TO ANOTHER CARBON STEEL PIECE, CONNECTING METHOD USING SAID INSERT, AND ASSEMBLY OBTAINED THEREBY
AU615764B2 (en) * 1989-04-05 1991-10-10 Manoir Industries Improvements in or relating to insert for the connection of a manganese steel part to a carbon steel part, insert-connecting method and assembly obtained thereby
EP0694626A1 (en) * 1994-07-26 1996-01-31 Acerinox S.A. Austenitic stainless steel with low nickel content
GB2359095A (en) * 2000-02-14 2001-08-15 Jindal Strips Ltd Stainless steel

Similar Documents

Publication Publication Date Title
US3366471A (en) High strength alloy steel compositions and process of producing high strength steel including hot-cold working
US2225440A (en) Austenitic alloy steel
US3726723A (en) Hot-rolled low alloy steels
US2229065A (en) Austenitic alloy steel and article made therefrom
US3453102A (en) High strength,ductile maraging steel
US2158651A (en) Steel
US3216823A (en) Low alloy steel
US2198598A (en) Austenitic alloy steel
US3132025A (en) Alloy steel
US2194178A (en) Low alloy steel
US3347663A (en) Precipitation hardenable stainless steel
US3318690A (en) Age hardening manganese-containing maraging steel
US2264355A (en) Steel
US3262823A (en) Maraging steel
US3392065A (en) Age hardenable nickel-molybdenum ferrous alloys
US3336168A (en) Weldable tough steel essentially composed of chromium and manganese and method of manufacturing the same
US4049430A (en) Precipitation hardenable stainless steel
US2978319A (en) High strength, low alloy steels
US2138289A (en) Chromium-manganese-nickel steel
US2813788A (en) Nickel-chromium-iron heat resisting alloys
US1990590A (en) Alloy steel
US2949355A (en) High temperature alloy
US3396013A (en) Beryllium-containing maraging steel
US2624670A (en) Chromium steels
US3594158A (en) Strong,tough,corrosion resistant maraging steel