US2607104A - Corrugated fabric and method of making the same - Google Patents
Corrugated fabric and method of making the same Download PDFInfo
- Publication number
- US2607104A US2607104A US48196A US4819648A US2607104A US 2607104 A US2607104 A US 2607104A US 48196 A US48196 A US 48196A US 4819648 A US4819648 A US 4819648A US 2607104 A US2607104 A US 2607104A
- Authority
- US
- United States
- Prior art keywords
- fabric
- corrugated
- fabrics
- ply
- rows
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C70/00—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
- B29C70/04—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
- B29C70/06—Fibrous reinforcements only
- B29C70/10—Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres
- B29C70/16—Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length
- B29C70/24—Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length oriented in at least three directions forming a three dimensional structure
-
- A—HUMAN NECESSITIES
- A41—WEARING APPAREL
- A41D—OUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
- A41D31/00—Materials specially adapted for outerwear
- A41D31/04—Materials specially adapted for outerwear characterised by special function or use
- A41D31/06—Thermally protective, e.g. insulating
- A41D31/065—Thermally protective, e.g. insulating using layered materials
-
- A—HUMAN NECESSITIES
- A41—WEARING APPAREL
- A41D—OUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
- A41D31/00—Materials specially adapted for outerwear
- A41D31/04—Materials specially adapted for outerwear characterised by special function or use
- A41D31/10—Impermeable to liquids, e.g. waterproof; Liquid-repellent
- A41D31/102—Waterproof and breathable
-
- A—HUMAN NECESSITIES
- A41—WEARING APPAREL
- A41D—OUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
- A41D31/00—Materials specially adapted for outerwear
- A41D31/04—Materials specially adapted for outerwear characterised by special function or use
- A41D31/14—Air permeable, i.e. capable of being penetrated by gases
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C61/00—Shaping by liberation of internal stresses; Making preforms having internal stresses; Apparatus therefor
- B29C61/02—Thermal shrinking
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C61/00—Shaping by liberation of internal stresses; Making preforms having internal stresses; Apparatus therefor
- B29C61/06—Making preforms having internal stresses, e.g. plastic memory
- B29C61/0608—Making preforms having internal stresses, e.g. plastic memory characterised by the configuration or structure of the preforms
- B29C61/0658—Making preforms having internal stresses, e.g. plastic memory characterised by the configuration or structure of the preforms consisting of fibrous plastics material, e.g. woven
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2027/00—Use of polyvinylhalogenides or derivatives thereof as moulding material
- B29K2027/06—PVC, i.e. polyvinylchloride
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2105/00—Condition, form or state of moulded material or of the material to be shaped
- B29K2105/04—Condition, form or state of moulded material or of the material to be shaped cellular or porous
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2223/00—Use of polyalkenes or derivatives thereof as reinforcement
- B29K2223/04—Polymers of ethylene
- B29K2223/06—PE, i.e. polyethylene
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2227/00—Use of polyvinylhalogenides or derivatives thereof as reinforcement
- B29K2227/06—PVC, i.e. polyvinylchloride
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T156/00—Adhesive bonding and miscellaneous chemical manufacture
- Y10T156/10—Methods of surface bonding and/or assembly therefor
- Y10T156/1002—Methods of surface bonding and/or assembly therefor with permanent bending or reshaping or surface deformation of self sustaining lamina
- Y10T156/1025—Methods of surface bonding and/or assembly therefor with permanent bending or reshaping or surface deformation of self sustaining lamina to form undulated to corrugated sheet and securing to base with parts of shaped areas out of contact
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/24—Structurally defined web or sheet [e.g., overall dimension, etc.]
- Y10T428/24025—Superposed movable attached layers or components
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/24—Structurally defined web or sheet [e.g., overall dimension, etc.]
- Y10T428/24628—Nonplanar uniform thickness material
- Y10T428/24669—Aligned or parallel nonplanarities
- Y10T428/24694—Parallel corrugations
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/24—Structurally defined web or sheet [e.g., overall dimension, etc.]
- Y10T428/24942—Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
Definitions
- This invention relates to corrugated fabrics and method of making the same, and more particularly to two-ply and three-ply woven corrugated fabrics that are highly resilient in resisting lateral compression.
- the primary object of the present invention is to provide a durable corrugated fabric that is highly resilient or elastic to resist lateral compression, and is capable of returning repeatedly to its hollow corrugated shape after it is compressed.
- a durable corrugated fabric that is highly resilient or elastic to resist lateral compression, and is capable of returning repeatedly to its hollow corrugated shape after it is compressed.
- Such a fabric permits a free flow of air along its corrugated channels, and if desired from one channel to another. It has good heat insulating properties to provide protection from heat or cold, and its insulating properties may be increased by filling its channels with insulating fibers or other insulating material.
- the elastic resistance of this fabric to lateral compression gives it a cushioning action comparable to that of a sponge rubber.
- this corrugated fabric may be worn next to the body as underwear in arctic clothing. It can be used as a cushioning insole in shoes, and to line the soles and upper part of boots such as muisseks worn in arctic climate. It may also be used in outer garments worn in cold climates, for example in a parka, and its corrugated channels may be filled with insulating materials such as glass fibers, textile fibers, feathers or foamed rubberlike material, or the fabric may be used with these hollow channels unfilled.
- this material When this material is worn as an undergarment under extreme arctic conditions the wearer may be kept warm by supplying warm air from a suitable source to the garment made of this corrugated fabric so that the warm air will pass through the corrugated channels to heat the body of the wearer. On the other hand if such a garment is worn where the temperature is very high the body of the wearer may be cooled by forcing cooled air through the channels of the garment made of this corrugated fabric.
- the present material may also be used to make a yielding inner sole or hat band.
- the present corrugated fabric may be used as rug underlay; asa sound absorbing material; and as means for circulating conditioned air for heating or cooling purposes. Also several layers of this material may be placed one on top the other to form a illow or mattress, or a single layer may be used as a yielding cover for a sponge rubber cushion or mattress.
- the two-ply and three-ply corrugated resilient fabrics contemplated by the present invention are easy to make;
- the three-ply fabric comprising a top fabric, bottom fabric and much stiffer and resilient intermediate fabric can be woven on a into the weave of the adjacent fabric to secure loom in a single operation.
- To accomplish this it is necessary to so construct the top and bottom fabrics that they can be shrunk or contracted in one direction to a pronounced degree upon the application of heat, while the stifier and more resilient intermediate fabric should not shrink under the heat treatment, so that the shrinking of the outer fabrics will corrugate the intermediate fabric. It is important in carrying out the present invention that the outer fabrics when shrunk shall remain shrunk to hold the intermediate fabric corrugated.
- the intermediate fabrics be secured to the top fabric and to the bottom fabric along spaced rows, and that the rows of the bottom fabric be positioned about half way between those of the top fabric.
- the purpose of this is to secure the intermediate fabric to the outer fabrics in such a manner as to cause the intermediate fabric to be corrugated when the top and bottom fabrics are shrunken, and also to have the corrugated loops securely attached to the top and bottom fabrics. This causes the loops of the intermediate fabric to be uniformly spaced and firmly held in place, and these loops hold the top and bottom fabrics spaced apart with a resilient cushion-like action.
- the intermediate fabric preferably is formed with an open weave that will permit air passing through one channel to pass laterally from one channel to another, so that if one channel is blocked by being compressed the air can readily pass laterally to another channel.
- a, two-- ply construction it is formed'by simply omitting one of the outer shrinkable fabrics of the three-ply construction.
- the top and bottom fabrics may have the same construction, and may be woven of cotton yarn or other suitable yarns, but it is important that those yarns that extend in the direction in which the fabric is to be shrunkenhave associated therewith heat-contractable filaments, which when heated will contract or shrink the fabric in which they are woven about 50% and'hold such fabric shrunk.
- the resilient intermediate fabric should not shrink at this temperature, so that when the outer fabrics are shrunken and held in the shrunken condition by the heat contractable filaments, the non-shrinking intermediate fabric will the rows which secure the intermediate fabric alternately to the top and bottom fabric may be produced by carrying a few yarnsfrom one fabric the two fabrics-together in a well known manner.
- the two fabrics are woven simultaneously and secured together by the weave along spaced rows.
- Fig. l is a perspective view of a triple-ply woven fabric as it appears when it comes off the loom.
- Fig. 2 is a perspective view of the triple-ply fabric of Fig. 1 after it has been heat treated to shrink the outer fabrics and corrugate the intermediate fabric.
- Fig. 3 on a larger scale, is a side view of a heat shrinkable yarn such as is woven into the top and bottom fabrics in the direction in which these fabrics are to be shrunken.
- Fig. 4 is a sectional view of a fabric such as shownin Fig. 2 but having the upper face there- .of covered with a water-proof coating.
- Fig. 5 is a sectional view of a fabric such as shown in Fig. 2 but having the corrugated channels filled with an insulating material such as textile or glass fibers.
- Fig. 6 is a sectional view of a fabric similar to that shown in Fig. 2 in which the corrugated channels are filled with a blown rubber-like insulating material;
- Fig. 7 is a sectional View ow a two-ply fabric constructed in accordance with the present invention.
- the three-ply or triple-ply fabric shown in all views of the drawing, except Figs. .3 and 7 comprises a top fabric La bottom fabric I Land an intermediate or inner fabric l2.
- the outer fabrics l and H are preferably identical as to weave and as to the warp and weft yarns used in the weave.
- the intermediate fabric I2 is preferably woven of .much stiffer and more resil- .yarns 14 of the fabrics l8 and H however are of special construction so that they will cause the fabric to shrink a substantial amount in the di rection of the wefts under the application of heat. Therefore the weft yarns M are preferably constructed as shown in Fig. 3 in which the weft yarn is formed of.
- thermoplastic filament-l5 "below a temperaturethat would injure or shrink appreciably the intermediate sheet 12.
- the pronounced contractile propertycof the thermoplastic filament-l5 depends onwhat'is known as another. shrunken weft-wise of the fabric by immersing elastic memory, that is the property of many high molecular weight polymers of returning, when heated, to a shorter length from which it was drawn out at some previous stage in its manufacture.
- heat shrinkable synthetic filaments examples include:
- Vinyon an oriented copolymer of vinyl chloride (88 to 90% with vinyl acetate (10 to 12%);
- non-heat shrinkable synthetic filaments examples include:
- Dacron an oriented polyester of terephthalic acid with ethylene glycol.
- the temperature range over which the greater part of the shrinkage takesplace varies with the particular variety of thermoplastic yarnemployed, and is a well known characteristic of each type of yarn. ,As the upper end of the shrinkage temperature range is approached the amount of further shrinkage taking place decreases and finally becomes practically nil.
- a greater part of the shrinkage takesplace in the range from .F. to F., and asthe temperature rises above 175 F. the further shrinkage becomes less and less and virtually no further change in length occurs above 210 which is the highest temperature to which the triple-ply fabric of the'present invention is subjected.
- the temperature used should not .be sufficient to destroy or melt the filament l5, since this shrunken filament .is relied upon to hold the outer fabrics H) and H in the contracted condition in which they are shown in Fig.2.
- the intermediate fabric 12 is preferably woven entirely of a relatively stiff and resilient synthetic filament arn such as Saran, a copolymer of 'vinylidene chloride and vinyl chloride containing less than 10% 'plasticizer, Saran does not shrink appreciably at temperatures below 212 F. While the fabric 12 is preferably woven entirely of Saran, Velon, a plasticized vinylidene chloride resinous filament may be used, as may also a nylon monofilament. This fabric 12 should be woven of yarns that are large enough to give the desired resiliency and stiffness to the finished corrugated fabric, and such fabric is preferably constructed with an open weave so that vair travelling in one corrugated channel may pass readily from one channel to another.
- a relatively stiff and resilient synthetic filament arn such as Saran, a copolymer of 'vinylidene chloride and vinyl chloride containing less than 10% 'plasticizer, Saran does not shrink appreciably at temperatures below 212 F. While the fabric 12 is preferably woven entirely of
- the three fabrics in, H and 12 are preferably woven simultaneously onv a loom, and the top fabric IE1 .and intermediate fabric l2 arewoven together lengthwise .of the fabric along the spaced rows 16.
- the intermediate fabric l2 and bottom fabric H are similarly .woven together lengthwise of the fabric along the spaced rows [7, and the rows 1.! are preferablyso positioned that they lie half -way between the rows l6 .as Will be apparent from the drawing.
- the triple-ply corrugated fabric shown in Fig. 2 is highly resilient to resist lateral compression, and will resemble a sponge rubber sheet in its soft resilient properties to expand laterally after being compressed. This resiliency is due largely to the construction described in which the sheets l0 and II when once shrunken will not stretch to allow the sheet I2 to straighten out.
- the construction of Fig. 2 having the corrugated passages extending warp-wise thereof will permit the free flow of air length-wise of these passages, and if the fabric is compressed at any point to close a corrugated passage the air can pass laterally through the open weave of the sheet l2 and around such obstruction.
- blowable rubber-like material 20 such for example as strips of vinyl chloride containing a blowing agent, so that when the fabric is heated to shrink the sheets [0 and H weft-wise as above described, the vinyl chloride strips will blow to fill up these corrugated passages and thereby provide a lightweight sheet material having excellent resilient properties.
- the two-ply corrugated fabric of Fig. '7 is produced by employing a shrinkable fabric 2
- that is similar to either fabric ID or II above described and by weaving it along the rows 22 to a much stiffer fabric 23 that is similar to the fabric l2.
- the triple-ply corrugated fabric contemplated by the present invention may be used in some fields with its channels open so that air may flow therethrough and in other fields with these channels closed, and due to the relative stiffness of the inner fabric I2 a resilient corrugated fabric, having excellent cushion-like resistance to lateral compression can be produced.
- This resistance to such lateral compression may be varied within a wide range by varying the size, number and stifiness of the warp and weft yarns employed in the inner fabric l2.
- a triple-ply corrugated fabric comprising a woven top and bottom fabric both containing oriented synthetic filaments, a much stiffer resilient but non-elastic intermediate fabric formed largely of coarse synthetic yarns and woven to the top fabric along'spaced rows and to the bottom fabric along other spaced rows that lie about half-way between the top rows, the top and bottom fabrics being permanently contracted a substantial amount by said filaments that are heat shrunken in a direction to draw said rows towards each other so that the resilient non-contracted intermediate fabric is held corrugated by the contracted top and. bottom fabrics, and this corrugated fabric holds the top and bottom fabrics yieldingly spaced apart with sufficient strength to keep the corrugated passages open when the fabric is subjected to a substantial pressure.
- a triple-ply corrugated fabric comprising an open-weave top fabric and an open weave bottom fabric both containing oriented synthetic filaments, a much stiffer open-weave, non-elastic intermediate fabric formed largely of coarse synthetic yarns and woven to the top fabric along spaced rows and to the bottom fabric along other spaced rows that lie about half-way between the top rows, the top and bottom fabrics being permanently contracted a substantial amount by said filaments that are heat shrunken in a direction to draw said rows towards each other so that the resilient non-contracted intermediate fabric is held corrugated by the contracted top and bottom fabrics, and this corrugated fabric holds the top and bottom fabrics yieldingly spaced apart with suiiicient strength to keep a weight of one-half pound per square inch from flattening out the corrugations.
- a triple-ply corrugated fabric comprising a woven top and bottom fabric both containing oriented synthetic filaments, a much stiffer resilient but non-elastic intermediate fabric formed largely of coarse synthetic yarns and Woven to the top fabric along spaced rows and to the bottom fabric along other spaced rows that lie about half-way between the top rows, the top and bottom fabrics being permanently contracted a substantial amount by said filaments that are heat shrunken in adirection to draw said rows towards each other so that the resilient non-contracted intermediate fabric is held corrugated by the contracted top and bottom fabrics, and this corrugated fabric holds the top and bottom fabrics yieldingly spaced apart with sufficient strength to support a weight of one-half pound to the square inch without reducing the thickness of the corrugated fabric as much. as 50 per cent.
- the method of making a triple-ply corrugated fabric which comprises, weaving simultaneously heat shrinkable top and bottom fabrics each containing oriented heat-shrinkable synthetic filaments and a much stiffer but resilient and substantially non-shrinkable intermediate fabric formed largely of coarse synthetic yarns so as to unite the intermediate fabric with the top fabric and bottom fabric along spaced rows, then heating this triple-ply fabric sufficiently to permanently shrink the top and bottom fabrics a substantial'amount relatively to the intermediate fabric in a direction to draw said rows towards each other to thereby corrugate the intermediate fabric with the corrugated loops secured alternately to the top and bottom fabric and adapted to support a substantial load without causing the corrugations to flatten out.
- the method of making a triple-ply corrugated fabric which comprises, weaving simultaneously heat shrinkable top and bottom fabrics each containing oriented heat-shrinkable synthetic filaments and a much stiller but resilient and substantially non-shrinkable intermediate fabric formed largely of coarse synthetic yarns so as to unite the intermediate fabric with the top fabric and bottom fabric along spaced rows, then heating this triple-ply fabric sufficiently to permanently shrink the top and bottom fabrics a substantial amount relatively to the intermediate fabric in a direction to draw said rows towards each other to thereby corrugate the intermediate fabric with the corrugated loops SB- cured alternately to the top and bottom fabric so that these corrugations will not be flattened out by a pressure of one-half pound per square inch on the corrugated fabric.
Landscapes
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Composite Materials (AREA)
- Mechanical Engineering (AREA)
- Woven Fabrics (AREA)
- Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
Description
Aug. 19, 1952 O T 2,607,104
CORRUGATED FABRIC AND METHOD OF MAKING THE SAME Filed Sept. 8, 1948 IN VEN TOR. 5017714621 FfiJTf/P Patented Aug. 19, 1952 CORRUGATED FABRIC AND METHOD OF MAKING THE SAME Boutwell H. Foster, Maplewood, N. J., assignor to United States Rubber Company, New York, N. Y., a corporation of New Jersey Application September 8, 1948, Serial No. 48,196
Claims.
This invention relates to corrugated fabrics and method of making the same, and more particularly to two-ply and three-ply woven corrugated fabrics that are highly resilient in resisting lateral compression.
The primary object of the present invention is to provide a durable corrugated fabric that is highly resilient or elastic to resist lateral compression, and is capable of returning repeatedly to its hollow corrugated shape after it is compressed. Such a fabric permits a free flow of air along its corrugated channels, and if desired from one channel to another. It has good heat insulating properties to provide protection from heat or cold, and its insulating properties may be increased by filling its channels with insulating fibers or other insulating material. Furthermore the elastic resistance of this fabric to lateral compression gives it a cushioning action comparable to that of a sponge rubber.
The uses for this corrugated fabric are numerous. It may be worn next to the body as underwear in arctic clothing. It can be used as a cushioning insole in shoes, and to line the soles and upper part of boots such as mukluks worn in arctic climate. It may also be used in outer garments worn in cold climates, for example in a parka, and its corrugated channels may be filled with insulating materials such as glass fibers, textile fibers, feathers or foamed rubberlike material, or the fabric may be used with these hollow channels unfilled.
When this material is worn as an undergarment under extreme arctic conditions the wearer may be kept warm by supplying warm air from a suitable source to the garment made of this corrugated fabric so that the warm air will pass through the corrugated channels to heat the body of the wearer. On the other hand if such a garment is worn where the temperature is very high the body of the wearer may be cooled by forcing cooled air through the channels of the garment made of this corrugated fabric. The present material may also be used to make a yielding inner sole or hat band.
In addition to the above mentioned uses in the clothing field, the present corrugated fabric may be used as rug underlay; asa sound absorbing material; and as means for circulating conditioned air for heating or cooling purposes. Also several layers of this material may be placed one on top the other to form a illow or mattress, or a single layer may be used as a yielding cover for a sponge rubber cushion or mattress.
The two-ply and three-ply corrugated resilient fabrics contemplated by the present invention are easy to make; The three-ply fabric comprising a top fabric, bottom fabric and much stiffer and resilient intermediate fabric can be woven on a into the weave of the adjacent fabric to secure loom in a single operation. To accomplish this it is necessary to so construct the top and bottom fabrics that they can be shrunk or contracted in one direction to a pronounced degree upon the application of heat, while the stifier and more resilient intermediate fabric should not shrink under the heat treatment, so that the shrinking of the outer fabrics will corrugate the intermediate fabric. It is important in carrying out the present invention that the outer fabrics when shrunk shall remain shrunk to hold the intermediate fabric corrugated. It is also important in the three-ply construction that the intermediate fabrics be secured to the top fabric and to the bottom fabric along spaced rows, and that the rows of the bottom fabric be positioned about half way between those of the top fabric. The purpose of this is to secure the intermediate fabric to the outer fabrics in such a manner as to cause the intermediate fabric to be corrugated when the top and bottom fabrics are shrunken, and also to have the corrugated loops securely attached to the top and bottom fabrics. This causes the loops of the intermediate fabric to be uniformly spaced and firmly held in place, and these loops hold the top and bottom fabrics spaced apart with a resilient cushion-like action.
The intermediate fabric preferably is formed with an open weave that will permit air passing through one channel to pass laterally from one channel to another, so that if one channel is blocked by being compressed the air can readily pass laterally to another channel. When a, two-- ply construction is desired it is formed'by simply omitting one of the outer shrinkable fabrics of the three-ply construction.
In making the three-ply construction the top and bottom fabrics may have the same construction, and may be woven of cotton yarn or other suitable yarns, but it is important that those yarns that extend in the direction in which the fabric is to be shrunkenhave associated therewith heat-contractable filaments, which when heated will contract or shrink the fabric in which they are woven about 50% and'hold such fabric shrunk. The resilient intermediate fabric should not shrink at this temperature, so that when the outer fabrics are shrunken and held in the shrunken condition by the heat contractable filaments, the non-shrinking intermediate fabric will the rows which secure the intermediate fabric alternately to the top and bottom fabric may be produced by carrying a few yarnsfrom one fabric the two fabrics-together in a well known manner. Likewise in the two-ply construction the two fabrics are woven simultaneously and secured together by the weave along spaced rows.
The above and other objects of the corrugated fabric of the present invention and method of making the same will be further understood from the following description when read in connection with the accompanying drawing, wherein Fig. l is a perspective view of a triple-ply woven fabric as it appears when it comes off the loom.
Fig. 2 is a perspective view of the triple-ply fabric of Fig. 1 after it has been heat treated to shrink the outer fabrics and corrugate the intermediate fabric.
Fig. 3, on a larger scale, is a side view of a heat shrinkable yarn such as is woven into the top and bottom fabrics in the direction in which these fabrics are to be shrunken.
Fig. 4 is a sectional view of a fabric such as shownin Fig. 2 but having the upper face there- .of covered with a water-proof coating.
Fig. 5 is a sectional view of a fabric such as shown in Fig. 2 but having the corrugated channels filled with an insulating material such as textile or glass fibers.
. Fig. 6 is a sectional view of a fabric similar to that shown in Fig. 2 in which the corrugated channels are filled with a blown rubber-like insulating material; and
Fig. 7 is a sectional View ow a two-ply fabric constructed in accordance with the present invention.
The three-ply or triple-ply fabric shown in all views of the drawing, except Figs. .3 and 7 comprises a top fabric La bottom fabric I Land an intermediate or inner fabric l2. The outer fabrics l and H are preferably identical as to weave and as to the warp and weft yarns used in the weave. 'The intermediate fabric I2 is preferably woven of .much stiffer and more resil- .yarns 14 of the fabrics l8 and H however are of special construction so that they will cause the fabric to shrink a substantial amount in the di rection of the wefts under the application of heat. Therefore the weft yarns M are preferably constructed as shown in Fig. 3 in which the weft yarn is formed of. two cotton yarns l and a much smaller heat shrinkable resinous filament I5 such asVinyon" and which will shrink or contract to a pronounced degree-under the application of heat. TheseXyarns I5 and filament I5 are twisted together as shown. Should a more dense fabric be desired-at I!) and. the warp may be formed of cotton alone as above described while the weft is formed of Vinyon :alone, or similar shrinkable resinous filaments.
"below a temperaturethat would injure or shrink appreciably the intermediate sheet 12. The pronounced contractile propertycof the thermoplastic filament-l5 depends onwhat'is known as another. shrunken weft-wise of the fabric by immersing elastic memory, that is the property of many high molecular weight polymers of returning, when heated, to a shorter length from which it was drawn out at some previous stage in its manufacture.
Examples of heat shrinkable synthetic filaments that may be used are:
l. Vinyon, an oriented copolymer of vinyl chloride (88 to 90% with vinyl acetate (10 to 12%);
2. An oriented polymerized ethylene (polyethylene).
Examples of non-heat shrinkable synthetic filaments that may be used are:
l. Saran, an oriented copolymer of vinylidene chloride with a small proportion (about 4 to 10 generally about 5% of vinyl chloride);
2. Dacron, an oriented polyester of terephthalic acid with ethylene glycol.
The temperature range over which the greater part of the shrinkage takesplace varies with the particular variety of thermoplastic yarnemployed, and is a well known characteristic of each type of yarn. ,As the upper end of the shrinkage temperature range is approached the amount of further shrinkage taking place decreases and finally becomes practically nil. For example, inithe :case of 'Vinyon, which works very well, a greater part of the shrinkage takesplace in the range from .F. to F., and asthe temperature rises above 175 F. the further shrinkage becomes less and less and virtually no further change in length occurs above 210 which is the highest temperature to which the triple-ply fabric of the'present invention is subiected. The temperature used should not .be sufficient to destroy or melt the filament l5, since this shrunken filament .is relied upon to hold the outer fabrics H) and H in the contracted condition in which they are shown in Fig.2.
The intermediate fabric 12 is preferably woven entirely of a relatively stiff and resilient synthetic filament arn such as Saran, a copolymer of 'vinylidene chloride and vinyl chloride containing less than 10% 'plasticizer, Saran does not shrink appreciably at temperatures below 212 F. While the fabric 12 is preferably woven entirely of Saran, Velon, a plasticized vinylidene chloride resinous filament may be used, as may also a nylon monofilament. This fabric 12 should be woven of yarns that are large enough to give the desired resiliency and stiffness to the finished corrugated fabric, and such fabric is preferably constructed with an open weave so that vair travelling in one corrugated channel may pass readily from one channel to another.
The three fabrics in, H and 12 are preferably woven simultaneously onv a loom, and the top fabric IE1 .and intermediate fabric l2 arewoven together lengthwise .of the fabric along the spaced rows 16. The intermediate fabric l2 and bottom fabric H are similarly .woven together lengthwise of the fabric along the spaced rows [7, and the rows 1.! are preferablyso positioned that they lie half -way between the rows l6 .as Will be apparent from the drawing.
When the fabric of thepresent invention comes oifof the loom will appear as shown in Fig. 1 with the fabrics if), H and. i2 contacting one The..,outerfabrics It and H are then the'fabric in hot water havinga temperatureof about 280 F.--for-a; few.minutes. This will cause the resinous filaments .15 wrapped .around ..the
yarns I5 to shrink the plied yarns [4 about 50% to form the construction of Fig. 2. Since the stiff intermediate fabric [2 is not shrunken by this hot water treatment it will buckle to form the corrugations shown in Fig. 2, which corrugations are anchored to the top sheet l0 along the rows 16 and to the bottom sheet I I along the rows 11.
The triple-ply corrugated fabric shown in Fig. 2, is highly resilient to resist lateral compression, and will resemble a sponge rubber sheet in its soft resilient properties to expand laterally after being compressed. This resiliency is due largely to the construction described in which the sheets l0 and II when once shrunken will not stretch to allow the sheet I2 to straighten out. The construction of Fig. 2 having the corrugated passages extending warp-wise thereof will permit the free flow of air length-wise of these passages, and if the fabric is compressed at any point to close a corrugated passage the air can pass laterally through the open weave of the sheet l2 and around such obstruction.
In some cases it may be desirable to render one or possibly both of the outer sheets I0 and l I impervious to air. Such a construction is shown in Fig. 4 in which the outer face of the sheet In is shown as covered with the coating H! of latex. In
this construction of Fig. 4 the lower sheet H is pervious to air while the upper sheet is impervious to air or moisture.
In some cases it may not be desirable to have air flow freely along the corrugated loops of the fabric of Fig. 2 in which case these loops may be filled with insulating fibers such as glass or tex tile fibers [9 as shown in Fig. 5 to thereby improve the heat insulating properties of this corrugated fabric. Instead of filling the corrugated passages with fibers as shown in Fig. 5, it may be desirable to introduce in these corrugated passages strands of blowable rubber-like material 20, such for example as strips of vinyl chloride containing a blowing agent, so that when the fabric is heated to shrink the sheets [0 and H weft-wise as above described, the vinyl chloride strips will blow to fill up these corrugated passages and thereby provide a lightweight sheet material having excellent resilient properties.
The two-ply corrugated fabric of Fig. '7 is produced by employing a shrinkable fabric 2| that is similar to either fabric ID or II above described and by weaving it along the rows 22 to a much stiffer fabric 23 that is similar to the fabric l2. In order that a better understanding may be 'had of the present invention, the following tables are given of one embodiment of the present invention, and show the properties of the original fabric as it comes off the loom, and of the finished fabric after it has been heat-shrunken or condensed by hot water.
Table I Fin- Off the loom ished 1. Ounces per sq. yd 14.0 29.1 2. Warps per in., Top 22 42 3. Warps per in., Bottom 22 42 4. Warps per in., lumen... 22. 23 5. Wefts per in., Top 36. 6. Watts per in., Bottom 36. 40 7. Wefts per in., Inner 18 20 8. Warp yarn, Top 208/2 cotton H..- 9. Warp yam, Bottom 208/2 cotton-.." 10. Warp yam. Innen. 1400 den. Saran 11. Weft yarn, Top 12. Weft yarn, Bottom. Same as top.... 13. Weft yarn, Inner 1400 den. Saran.
1 2-30S/1 cotton twisted with 1-40 den. Vinyon 15 T. P. I.
6 Table II Some of the physical properties of the finished fabric shown in Fig. 2 are:
Strength, warp hlgsn s Resilience Per cent cotton," Per cent Vinyon Per cent Saran do The compressibility and resiliency given in Table II are found as follows. A sample of the fabric is placed under load, the load increasing in fractions of a pound in this sequence: 0.1, 0.2, 0.35, 0.5, 0.75, 1.0, 1.5 and. 2.0 lbs/sq. in. Thickness of the sample is read at each loading. The load is then removed in the reverse sequence until the sample is under a pressure of 0.1 lb./sq. inch. compressibility is taken to be where A is the original thickness at the 0.1 lb. load and B is the thickness at the 2.0 lb. load. Resiliency is A B X where A and B are as expressed above and C is the thickness at the final load of 0.1 lb./sq. in. after removing the load to that point.
It will be seen from the foregoing that the triple-ply corrugated fabric contemplated by the present invention may be used in some fields with its channels open so that air may flow therethrough and in other fields with these channels closed, and due to the relative stiffness of the inner fabric I2 a resilient corrugated fabric, having excellent cushion-like resistance to lateral compression can be produced. This resistance to such lateral compression may be varied within a wide range by varying the size, number and stifiness of the warp and weft yarns employed in the inner fabric l2.
Having thus described my invention, what I claim and desire to protect by Letters Patent is:
1. A triple-ply corrugated fabric, comprising a woven top and bottom fabric both containing oriented synthetic filaments, a much stiffer resilient but non-elastic intermediate fabric formed largely of coarse synthetic yarns and woven to the top fabric along'spaced rows and to the bottom fabric along other spaced rows that lie about half-way between the top rows, the top and bottom fabrics being permanently contracted a substantial amount by said filaments that are heat shrunken in a direction to draw said rows towards each other so that the resilient non-contracted intermediate fabric is held corrugated by the contracted top and. bottom fabrics, and this corrugated fabric holds the top and bottom fabrics yieldingly spaced apart with sufficient strength to keep the corrugated passages open when the fabric is subjected to a substantial pressure.
2. A triple-ply corrugated fabric, comprising an open-weave top fabric and an open weave bottom fabric both containing oriented synthetic filaments, a much stiffer open-weave, non-elastic intermediate fabric formed largely of coarse synthetic yarns and woven to the top fabric along spaced rows and to the bottom fabric along other spaced rows that lie about half-way between the top rows, the top and bottom fabrics being permanently contracted a substantial amount by said filaments that are heat shrunken in a direction to draw said rows towards each other so that the resilient non-contracted intermediate fabric is held corrugated by the contracted top and bottom fabrics, and this corrugated fabric holds the top and bottom fabrics yieldingly spaced apart with suiiicient strength to keep a weight of one-half pound per square inch from flattening out the corrugations.
3. A triple-ply corrugated fabric, comprising a woven top and bottom fabric both containing oriented synthetic filaments, a much stiffer resilient but non-elastic intermediate fabric formed largely of coarse synthetic yarns and Woven to the top fabric along spaced rows and to the bottom fabric along other spaced rows that lie about half-way between the top rows, the top and bottom fabrics being permanently contracted a substantial amount by said filaments that are heat shrunken in adirection to draw said rows towards each other so that the resilient non-contracted intermediate fabric is held corrugated by the contracted top and bottom fabrics, and this corrugated fabric holds the top and bottom fabrics yieldingly spaced apart with sufficient strength to support a weight of one-half pound to the square inch without reducing the thickness of the corrugated fabric as much. as 50 per cent.
4. The method of making a triple-ply corrugated fabric which comprises, weaving simultaneously heat shrinkable top and bottom fabrics each containing oriented heat-shrinkable synthetic filaments and a much stiffer but resilient and substantially non-shrinkable intermediate fabric formed largely of coarse synthetic yarns so as to unite the intermediate fabric with the top fabric and bottom fabric along spaced rows, then heating this triple-ply fabric sufficiently to permanently shrink the top and bottom fabrics a substantial'amount relatively to the intermediate fabric in a direction to draw said rows towards each other to thereby corrugate the intermediate fabric with the corrugated loops secured alternately to the top and bottom fabric and adapted to support a substantial load without causing the corrugations to flatten out.
5. The method of making a triple-ply corrugated fabric which comprises, weaving simultaneously heat shrinkable top and bottom fabrics each containing oriented heat-shrinkable synthetic filaments and a much stiller but resilient and substantially non-shrinkable intermediate fabric formed largely of coarse synthetic yarns so as to unite the intermediate fabric with the top fabric and bottom fabric along spaced rows, then heating this triple-ply fabric sufficiently to permanently shrink the top and bottom fabrics a substantial amount relatively to the intermediate fabric in a direction to draw said rows towards each other to thereby corrugate the intermediate fabric with the corrugated loops SB- cured alternately to the top and bottom fabric so that these corrugations will not be flattened out by a pressure of one-half pound per square inch on the corrugated fabric.
BOUTWELL H. FOSTER.
REFERENCES CITE? The following references are of record in the file of this patent:
UNITEDSTATES PATENTS OTHER assnanncss Vinyon, by Frederic Bonnet, Industrial and Engineering Chemistry, December 1940, pages 1564-1567.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US48196A US2607104A (en) | 1948-09-08 | 1948-09-08 | Corrugated fabric and method of making the same |
GB15497/49A GB661074A (en) | 1948-09-08 | 1949-06-10 | Corrugated fabric and method of making same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US48196A US2607104A (en) | 1948-09-08 | 1948-09-08 | Corrugated fabric and method of making the same |
Publications (1)
Publication Number | Publication Date |
---|---|
US2607104A true US2607104A (en) | 1952-08-19 |
Family
ID=21953222
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US48196A Expired - Lifetime US2607104A (en) | 1948-09-08 | 1948-09-08 | Corrugated fabric and method of making the same |
Country Status (2)
Country | Link |
---|---|
US (1) | US2607104A (en) |
GB (1) | GB661074A (en) |
Cited By (52)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2737227A (en) * | 1952-05-20 | 1956-03-06 | Donald B Brummel | Moldable laminate material and method and apparatus for making same |
US2757434A (en) * | 1955-03-31 | 1956-08-07 | Chicopee Mfg Corp | Process for production of puffed fabrics |
US2757437A (en) * | 1955-03-31 | 1956-08-07 | Chicopee Mfg Corp | Puffed fabrics |
US2768420A (en) * | 1955-10-25 | 1956-10-30 | Russell Mfg Co | Protective covering |
US2768419A (en) * | 1954-04-19 | 1956-10-30 | Russell Mfg Co | Woven ladder tape and method of and apparatus for making the same |
US2771661A (en) * | 1953-10-15 | 1956-11-27 | Us Rubber Co | Rainproof fabric |
US2791821A (en) * | 1953-07-31 | 1957-05-14 | Shapiro & Sons Curtain Corp | Textile fabrics and method of making same |
US2801456A (en) * | 1954-09-07 | 1957-08-06 | Russell Mfg Co | Woven ladder tape and method of and apparatus for making the same |
US2921360A (en) * | 1954-06-18 | 1960-01-19 | Us Rubber Co | Pile fabric and method of making same |
US2973295A (en) * | 1957-05-08 | 1961-02-28 | Crown Zellerbach Corp | Process of incorporating foamable materials in corrugated paperboard and the article derived therefrom |
US2977664A (en) * | 1956-10-04 | 1961-04-04 | Collins & Aikman Corp | Coated three dimensional fabric and method of making same |
US2983636A (en) * | 1957-01-16 | 1961-05-09 | Russell Mfg Co | Laminated non-woven belt |
US3008213A (en) * | 1957-01-22 | 1961-11-14 | Us Rubber Co | Method of making an inflatable fabric |
US3015149A (en) * | 1958-04-23 | 1962-01-02 | Us Rubber Co | Combined carpet and spacer fabric |
US3043300A (en) * | 1958-02-27 | 1962-07-10 | Clark Co Inc David | Heat-resistant garment |
US3071165A (en) * | 1957-08-14 | 1963-01-01 | Us Rubber Co | Shrinkable fabric |
US3090406A (en) * | 1961-02-23 | 1963-05-21 | Raymond Dev Ind Inc | Woven panel and method of making same |
US3123838A (en) * | 1964-03-10 | Ventilated seat cushion | ||
DE1188923B (en) * | 1963-07-10 | 1965-03-11 | Heinrich Sieger G M B H | Reinforced corrugated cardboard |
US3188813A (en) * | 1961-03-23 | 1965-06-15 | Us Rubber Co | Article and process for wave damping |
US3231042A (en) * | 1961-06-28 | 1966-01-25 | Mohasco Ind Inc | Foldable sound insulating material and partition |
US3236238A (en) * | 1963-01-30 | 1966-02-22 | Johnson & Johnson | Sanitary napkin and method of making |
DE1220141B (en) * | 1954-07-09 | 1966-06-30 | Du Pont | Process for the production of non-woven felt-like material from synthetic threads and / or fibers |
US3262451A (en) * | 1962-09-13 | 1966-07-26 | Johnson & Johnson | Nonplanar absorbent fibrous pads |
DE1247258B (en) * | 1960-06-27 | 1967-08-17 | Bodin Girin & Cie | Fabric sheet for sound insulation and process for their manufacture |
US3347381A (en) * | 1966-08-26 | 1967-10-17 | Mead Corp | Waste treatment |
US3389195A (en) * | 1963-04-04 | 1968-06-18 | Gianakos Stylianos | Process for molded structures having foam cores |
US3481427A (en) * | 1968-11-29 | 1969-12-02 | Mc Donnell Douglas Corp | Acoustical panel structure |
US3544417A (en) * | 1969-04-28 | 1970-12-01 | Unicor Inc | Cellular foam core assembly |
US3966522A (en) * | 1974-05-23 | 1976-06-29 | Hitco | Method of making woven acoustical panel |
US4294875A (en) * | 1978-08-31 | 1981-10-13 | Schramm Arthur G | Insulation panel |
US4495884A (en) * | 1983-05-06 | 1985-01-29 | Williams Lumber Yard | Boat construction and method |
EP0172415A1 (en) * | 1984-08-25 | 1986-02-26 | Akzo GmbH | Bullet-resistant clothing |
EP0200376A1 (en) * | 1985-04-02 | 1986-11-05 | Netlon Limited | High-profile structures, e.g. for soil retention or drainage |
EP0449033A2 (en) * | 1990-03-26 | 1991-10-02 | Metalleido S.R.L. | Process for the manufacture of sandwich structures |
US5196065A (en) * | 1991-10-21 | 1993-03-23 | Jozwiak William J | Garden spray shield apparatus |
US6797364B2 (en) * | 2000-03-16 | 2004-09-28 | Hitachi, Ltd. | Composite panel |
US20050086721A1 (en) * | 2002-02-08 | 2005-04-28 | Lambertz Bodo W. | Thermoregulating item of clothing and method for removing humidity from areas of the skin |
US20070144957A1 (en) * | 2004-03-22 | 2007-06-28 | Tamfelt Oyj Abp | Solid-liquid filtration cloth and filtering device |
US20070197988A1 (en) * | 2006-02-23 | 2007-08-23 | Select Medical Products, Inc. | CPM pad with fiber filling |
US20110100747A1 (en) * | 2006-05-24 | 2011-05-05 | Airbus Operations Gmbh | Sandwich element for the sound-absorbing inner cladding of means of transport, especially for the sound-absorbing inner cladding of aircraft |
CN101448699B (en) * | 2006-05-24 | 2013-04-17 | 空中客车德国运营有限责任公司 | Sandwich component for inner sound-absorbing layer for providing transport tool |
US20140087145A1 (en) * | 2012-09-27 | 2014-03-27 | Eastman Chemical Company | Self-corrugating laminates and methods of making them |
WO2014176084A1 (en) | 2013-04-26 | 2014-10-30 | Eastman Chemical Company | Self-corrugating laminates useful in the manufacture of thermoelectric devices and corrugated structures therefrom |
US20150064412A1 (en) * | 2013-08-28 | 2015-03-05 | Mackent Fabrics Co., Ltd. | Fabric structure |
US20150366281A1 (en) * | 2013-01-30 | 2015-12-24 | Miller D. Stephen | Resilient prominence fabric and articles made therefrom |
CN105856666A (en) * | 2016-03-31 | 2016-08-17 | 西安航天动力研究所 | Porous rubber filled corrugated sheet composite material and preparation method thereof |
WO2018130751A2 (en) | 2017-05-04 | 2018-07-19 | Dewellton Oy | A 3-fabric layer insulation material and a method and an arrangement for producing the same |
US10439124B2 (en) * | 2015-12-25 | 2019-10-08 | Fujifilm Corporation | Thermoelectric conversion module, heat conductive laminate, and method of producing thermoelectric conversion module |
US20190365000A1 (en) * | 2018-05-31 | 2019-12-05 | Nike, Inc. | Garment with adaptive ventilation |
US11457682B2 (en) | 2015-04-30 | 2022-10-04 | The North Face Apparel Corp. | Baffle constructs for insulative fill materials |
US20240315363A1 (en) * | 2023-03-23 | 2024-09-26 | Jacob Tyler | Flame Resistant Utility Suit |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2714901B2 (en) * | 1977-04-02 | 1980-09-18 | Hoechst Ag, 6000 Frankfurt | Heat exchanger element |
WO2007140950A1 (en) * | 2006-06-02 | 2007-12-13 | Ten Cate Thiobac B.V. | Systems and methods for providing an improved artificial grass system |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB268166A (en) * | 1926-05-13 | 1927-03-31 | Paul Joseph Laurent | Improvements in woven fabrics |
US2072152A (en) * | 1934-11-27 | 1937-03-02 | Kenneth B Blake | Heat insulating material |
US2184751A (en) * | 1938-10-06 | 1939-12-26 | Charles Kurlan Inc | Elastic fabric |
US2213125A (en) * | 1935-09-19 | 1940-08-27 | Ig Farbenindustrie Ag | Manufacture of materials resembling crepe |
US2231888A (en) * | 1936-06-15 | 1941-02-18 | Howard H Couch | Propeller and method of making same |
US2277782A (en) * | 1939-05-03 | 1942-03-31 | Carbide & Carbon Chem Corp | Crimping materials containing synthetic textile fibers |
US2312089A (en) * | 1942-06-13 | 1943-02-23 | Alfred A Gobeille | Fabric |
US2379881A (en) * | 1942-05-27 | 1945-07-10 | Warren Featherbone Co | Stiffening material |
US2391950A (en) * | 1944-07-08 | 1946-01-01 | Celanese Corp | Method of producing textile fabric |
US2401830A (en) * | 1945-04-28 | 1946-06-11 | Abraham A Kahil | Fabric and method of making the same |
-
1948
- 1948-09-08 US US48196A patent/US2607104A/en not_active Expired - Lifetime
-
1949
- 1949-06-10 GB GB15497/49A patent/GB661074A/en not_active Expired
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB268166A (en) * | 1926-05-13 | 1927-03-31 | Paul Joseph Laurent | Improvements in woven fabrics |
US2072152A (en) * | 1934-11-27 | 1937-03-02 | Kenneth B Blake | Heat insulating material |
US2213125A (en) * | 1935-09-19 | 1940-08-27 | Ig Farbenindustrie Ag | Manufacture of materials resembling crepe |
US2231888A (en) * | 1936-06-15 | 1941-02-18 | Howard H Couch | Propeller and method of making same |
US2184751A (en) * | 1938-10-06 | 1939-12-26 | Charles Kurlan Inc | Elastic fabric |
US2277782A (en) * | 1939-05-03 | 1942-03-31 | Carbide & Carbon Chem Corp | Crimping materials containing synthetic textile fibers |
US2379881A (en) * | 1942-05-27 | 1945-07-10 | Warren Featherbone Co | Stiffening material |
US2312089A (en) * | 1942-06-13 | 1943-02-23 | Alfred A Gobeille | Fabric |
US2391950A (en) * | 1944-07-08 | 1946-01-01 | Celanese Corp | Method of producing textile fabric |
US2401830A (en) * | 1945-04-28 | 1946-06-11 | Abraham A Kahil | Fabric and method of making the same |
Cited By (64)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3123838A (en) * | 1964-03-10 | Ventilated seat cushion | ||
US2737227A (en) * | 1952-05-20 | 1956-03-06 | Donald B Brummel | Moldable laminate material and method and apparatus for making same |
US2791821A (en) * | 1953-07-31 | 1957-05-14 | Shapiro & Sons Curtain Corp | Textile fabrics and method of making same |
US2771661A (en) * | 1953-10-15 | 1956-11-27 | Us Rubber Co | Rainproof fabric |
US2768419A (en) * | 1954-04-19 | 1956-10-30 | Russell Mfg Co | Woven ladder tape and method of and apparatus for making the same |
US2921360A (en) * | 1954-06-18 | 1960-01-19 | Us Rubber Co | Pile fabric and method of making same |
DE1220141B (en) * | 1954-07-09 | 1966-06-30 | Du Pont | Process for the production of non-woven felt-like material from synthetic threads and / or fibers |
US2801456A (en) * | 1954-09-07 | 1957-08-06 | Russell Mfg Co | Woven ladder tape and method of and apparatus for making the same |
US2757437A (en) * | 1955-03-31 | 1956-08-07 | Chicopee Mfg Corp | Puffed fabrics |
US2757434A (en) * | 1955-03-31 | 1956-08-07 | Chicopee Mfg Corp | Process for production of puffed fabrics |
US2768420A (en) * | 1955-10-25 | 1956-10-30 | Russell Mfg Co | Protective covering |
US2977664A (en) * | 1956-10-04 | 1961-04-04 | Collins & Aikman Corp | Coated three dimensional fabric and method of making same |
US2983636A (en) * | 1957-01-16 | 1961-05-09 | Russell Mfg Co | Laminated non-woven belt |
US3008213A (en) * | 1957-01-22 | 1961-11-14 | Us Rubber Co | Method of making an inflatable fabric |
US2973295A (en) * | 1957-05-08 | 1961-02-28 | Crown Zellerbach Corp | Process of incorporating foamable materials in corrugated paperboard and the article derived therefrom |
US3071165A (en) * | 1957-08-14 | 1963-01-01 | Us Rubber Co | Shrinkable fabric |
US3043300A (en) * | 1958-02-27 | 1962-07-10 | Clark Co Inc David | Heat-resistant garment |
US3015149A (en) * | 1958-04-23 | 1962-01-02 | Us Rubber Co | Combined carpet and spacer fabric |
DE1247258B (en) * | 1960-06-27 | 1967-08-17 | Bodin Girin & Cie | Fabric sheet for sound insulation and process for their manufacture |
US3090406A (en) * | 1961-02-23 | 1963-05-21 | Raymond Dev Ind Inc | Woven panel and method of making same |
US3188813A (en) * | 1961-03-23 | 1965-06-15 | Us Rubber Co | Article and process for wave damping |
US3231042A (en) * | 1961-06-28 | 1966-01-25 | Mohasco Ind Inc | Foldable sound insulating material and partition |
US3262451A (en) * | 1962-09-13 | 1966-07-26 | Johnson & Johnson | Nonplanar absorbent fibrous pads |
US3236238A (en) * | 1963-01-30 | 1966-02-22 | Johnson & Johnson | Sanitary napkin and method of making |
US3389195A (en) * | 1963-04-04 | 1968-06-18 | Gianakos Stylianos | Process for molded structures having foam cores |
DE1188923B (en) * | 1963-07-10 | 1965-03-11 | Heinrich Sieger G M B H | Reinforced corrugated cardboard |
US3347381A (en) * | 1966-08-26 | 1967-10-17 | Mead Corp | Waste treatment |
US3481427A (en) * | 1968-11-29 | 1969-12-02 | Mc Donnell Douglas Corp | Acoustical panel structure |
US3544417A (en) * | 1969-04-28 | 1970-12-01 | Unicor Inc | Cellular foam core assembly |
US3966522A (en) * | 1974-05-23 | 1976-06-29 | Hitco | Method of making woven acoustical panel |
US4294875A (en) * | 1978-08-31 | 1981-10-13 | Schramm Arthur G | Insulation panel |
US4495884A (en) * | 1983-05-06 | 1985-01-29 | Williams Lumber Yard | Boat construction and method |
EP0172415A1 (en) * | 1984-08-25 | 1986-02-26 | Akzo GmbH | Bullet-resistant clothing |
EP0200376A1 (en) * | 1985-04-02 | 1986-11-05 | Netlon Limited | High-profile structures, e.g. for soil retention or drainage |
US4762581A (en) * | 1985-04-02 | 1988-08-09 | Netlon Limited | Method of making high-profile structures |
EP0449033A2 (en) * | 1990-03-26 | 1991-10-02 | Metalleido S.R.L. | Process for the manufacture of sandwich structures |
EP0449033A3 (en) * | 1990-03-26 | 1992-05-06 | Metalleido S.R.L. | Process for the manufacture of sandwich structures |
US5196065A (en) * | 1991-10-21 | 1993-03-23 | Jozwiak William J | Garden spray shield apparatus |
US6797364B2 (en) * | 2000-03-16 | 2004-09-28 | Hitachi, Ltd. | Composite panel |
US20050086721A1 (en) * | 2002-02-08 | 2005-04-28 | Lambertz Bodo W. | Thermoregulating item of clothing and method for removing humidity from areas of the skin |
JP2005517095A (en) * | 2002-02-08 | 2005-06-09 | ブランド ファクトリー スイス ゲゼルシャフト ミット ベシュレンクテル ハフツング | Methods for dehumidifying climate-controlled clothing and skin areas |
US20070144957A1 (en) * | 2004-03-22 | 2007-06-28 | Tamfelt Oyj Abp | Solid-liquid filtration cloth and filtering device |
US7931153B2 (en) * | 2004-03-22 | 2011-04-26 | Tamfelt Filtration Oy | Solid-liquid filtration cloth and filtering device |
US20070197988A1 (en) * | 2006-02-23 | 2007-08-23 | Select Medical Products, Inc. | CPM pad with fiber filling |
US20110100747A1 (en) * | 2006-05-24 | 2011-05-05 | Airbus Operations Gmbh | Sandwich element for the sound-absorbing inner cladding of means of transport, especially for the sound-absorbing inner cladding of aircraft |
CN101448699B (en) * | 2006-05-24 | 2013-04-17 | 空中客车德国运营有限责任公司 | Sandwich component for inner sound-absorbing layer for providing transport tool |
WO2014052358A1 (en) | 2012-09-27 | 2014-04-03 | Eastman Chemical Company | Self-corrugating laminates and methods of making them |
US20140087145A1 (en) * | 2012-09-27 | 2014-03-27 | Eastman Chemical Company | Self-corrugating laminates and methods of making them |
US20150366281A1 (en) * | 2013-01-30 | 2015-12-24 | Miller D. Stephen | Resilient prominence fabric and articles made therefrom |
US9668530B2 (en) * | 2013-01-30 | 2017-06-06 | Stephen D. Miller | Resilient prominence fabric and articles made therefrom |
WO2014176084A1 (en) | 2013-04-26 | 2014-10-30 | Eastman Chemical Company | Self-corrugating laminates useful in the manufacture of thermoelectric devices and corrugated structures therefrom |
US9064994B2 (en) | 2013-04-26 | 2015-06-23 | Eastman Chemical Company | Self-corrugating laminates useful in the manufacture of thermoelectric devices and corrugated structures therefrom |
US20150064412A1 (en) * | 2013-08-28 | 2015-03-05 | Mackent Fabrics Co., Ltd. | Fabric structure |
US11457682B2 (en) | 2015-04-30 | 2022-10-04 | The North Face Apparel Corp. | Baffle constructs for insulative fill materials |
US10439124B2 (en) * | 2015-12-25 | 2019-10-08 | Fujifilm Corporation | Thermoelectric conversion module, heat conductive laminate, and method of producing thermoelectric conversion module |
CN105856666A (en) * | 2016-03-31 | 2016-08-17 | 西安航天动力研究所 | Porous rubber filled corrugated sheet composite material and preparation method thereof |
WO2018130751A3 (en) * | 2017-05-04 | 2018-08-23 | Dewellton Oy | A 3-fabric layer insulation material and a method and an arrangement for producing the same |
JP2020520420A (en) * | 2017-05-04 | 2020-07-09 | オリゴプロ オサケ ユキチュア | Three fabric layer insulation and method and apparatus for making the same |
US11267222B2 (en) | 2017-05-04 | 2022-03-08 | Origopro Oy | 3-fabric layer insulation material and a method and an arrangement for producing the same |
WO2018130751A2 (en) | 2017-05-04 | 2018-07-19 | Dewellton Oy | A 3-fabric layer insulation material and a method and an arrangement for producing the same |
US11850838B2 (en) | 2017-05-04 | 2023-12-26 | Origopro Oy | 3-fabric layer insulation material and a method and an arrangement for producing the same |
US20190365000A1 (en) * | 2018-05-31 | 2019-12-05 | Nike, Inc. | Garment with adaptive ventilation |
US11889877B2 (en) * | 2018-05-31 | 2024-02-06 | Nike, Inc. | Garment with adaptive ventilation |
US20240315363A1 (en) * | 2023-03-23 | 2024-09-26 | Jacob Tyler | Flame Resistant Utility Suit |
Also Published As
Publication number | Publication date |
---|---|
GB661074A (en) | 1951-11-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US2607104A (en) | Corrugated fabric and method of making the same | |
US3008214A (en) | Flexible inflatable fabric and method of making the same | |
US2539301A (en) | Woven glass fabric and method of making same | |
US3359610A (en) | Woven fabrics | |
KR101919676B1 (en) | Baffle constructs for insulative fill materials | |
US3008213A (en) | Method of making an inflatable fabric | |
US2575753A (en) | Method of producing chenillelike yarn | |
USRE24007E (en) | Corrugated fabric and method of making the same | |
US4015641A (en) | Cushioned narrow woven tubular fabric | |
US3290702A (en) | Fitted sheet | |
US2574029A (en) | Method of making all-textile elastic fabrics | |
CN210438890U (en) | Flannel jean fabric | |
US2635648A (en) | Honeycomb fabric | |
US3481821A (en) | Waterproof fabric and method for forming the same | |
US3084459A (en) | Shoe cover | |
US3240656A (en) | Woven fabrics | |
US2719542A (en) | Multiple ply fabric | |
US1829299A (en) | Woven fabric | |
US2495847A (en) | Honeycomb elastic fabric | |
US2803268A (en) | Two-ply fabric | |
US2357164A (en) | Blanket | |
US2144667A (en) | Fabric | |
US2621684A (en) | Filling backed water resistant, air permeable textile weave | |
US2931398A (en) | Woven fabric | |
US2518110A (en) | Elastic fabric |