US2606215A - Encased and hermetically sealed photocell - Google Patents

Encased and hermetically sealed photocell Download PDF

Info

Publication number
US2606215A
US2606215A US61987A US6198748A US2606215A US 2606215 A US2606215 A US 2606215A US 61987 A US61987 A US 61987A US 6198748 A US6198748 A US 6198748A US 2606215 A US2606215 A US 2606215A
Authority
US
United States
Prior art keywords
photocell
encased
glass
casing
sealed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US61987A
Inventor
Anthony H Lamb
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Weston Electric Instrument Corp
Original Assignee
Weston Electric Instrument Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Weston Electric Instrument Corp filed Critical Weston Electric Instrument Corp
Priority to US61987A priority Critical patent/US2606215A/en
Application granted granted Critical
Publication of US2606215A publication Critical patent/US2606215A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • This invention relates to encased and hermetically sealed photocells, and mor particularly to photocells of the solid disk or. barrier layer type which are hermetically sealed within two-part casings. of which at least the front section is aglass plate. 7
  • Solid disk phctocells of the current-generating. type are subject to damage from atmospheric moisture. and gases, and this is true of both the selenium and the copper oxide photocells.
  • Various arrangements have been proposed for sealing such photocells within cases. of, or masses of, a transparent organic plastic, and some of the prior proposals have been quite satisfactory within. the limits set. by the characteristics of the transparent plastic material and/or the particular construction of the photocell and its associated terminal assembly.
  • Objects of the present invention are to provide disk type photocells in sealed casings consisting of or including glass over the photocell for admitting light thereto.
  • Objects are to provide encased photocells in which the glass overlying the photocells maybe colored for a filter action and/or may be so shaped as to limit the angular spread of light rays reaching the photocells.
  • objects of the invention are to provide encased photocells in which the casing takes the form of glass plates soldered to each other at low temperatures which do not affect the operating characteristics of the photo'- cells.
  • Figs. 1 and 2 are, respectively, central sections through different forms of glass-encased photocells embodying the invention
  • Fig. 3 is a fragmentary side elevation of the Fig. 2 encased photocell, looking towards one of the lead-wires or terminal connections;
  • Fig. 4 is a plan view, on a smaller scale; of a photocell and its terminal connections:v
  • Fig. 5 is a fragmentary sectional view showing an. embodiment of the invention for receiving plug-in terminalconnections
  • Fig. 6 is a fragmentary sectional view of afiirther embodiment of the invention.
  • Fig.. 'l is a. fragmentary sectional view, on a 2 smaller scale, of a further embodiment of the invention mounted in an instrument casing;
  • Fig. 8 is a side elevation, partly in section, of a photocell casing including a glass cover plate soldered to a metallic rear casing member.
  • the reference'numeral l identifies a barrier layer type photocell which is encased and hermetically sealed between a cover glass 2 and bottom glass 3.
  • the barrier layer photocell comprises a metal plate or back electrode, a layer of light sensitive material. such as selenium on the back electrode, and a translucent front electrode deposited upon the light sensitive layer in conventional manner.
  • the glass plates 2, 3 are of suiiici'ent' thickness to afford adequate strength for protection of the assembly against mechanical shock and damage during normal handling of the assembly.
  • the glass plates have shallow inturned rims which provide a shallow space or chamber for the reception of the photocell I when the rims are hermetically sealed to each other.
  • the rims may be directly fused to each other without raising the photocell to destructive temperatures when the casing plates are of so-called oven-glass.
  • Ordinary glass and conventional glass working techniques can not be employed but the central portions of glass plates 2, 3' of oven glass can be sharply chilled by an air blast to protect the photocell during the fusion and hermetic sealing of the rims to each other.
  • the terminal or lead-in Wires 4, 4 of the photocell are arranged between the rims before they are fused and united, thereby sealing the lead-in wires in the glass wall of the casing.
  • the photocell may be of any desired shape and size but preferably is a circular disk, as shown in Fig. 4, with a pick-up electrode 5 in the form of one or more small spots of a low melting point alloy sprayed upon the outer electrode layer of the photocell.
  • A- line lead wire 6 is soldered or welded to the pick-up spot or spots and to the inner end of the lead-in wire 4'.
  • the advantage of small pick-up spots over the conventional annular collector rings isthat the active light sensitive area of a photocell is'thereby increased by as much as about 25%.
  • the pick-up spot 5 may be very minute, for example of the order of 0.05 diameter, and the lead wire 6 is a fine fila-- mentary conductor which shades.
  • the lead-in wire 4 is soldered or welded to the back electrode of the photocell
  • the photocell is spaced from the back cover and pressed into contact with the inner surface of the cover glass 2 by any appropriate means such as a spring, a resilient washer or, as illustrated, by lugs or projections at the inner surface of the back cover glass 3.
  • the outer electrode surface of the photocell is thereby positioned substantially parallel to, and in contact with or in close proximity to, the inner surface of the cover glass 2.
  • the casing may be formed by glass plates 2a, 3a having rims -with mating surfaces which are metallized and united by solder 8, the solder having a melting point below the critical temperature which will damage the photocell. tend through and are sealed in glass insulating sleeves 9 having a metallized outer surface 8, and the rims of the glass plates 2a, So have complementary semi-cylindrical grooves Hi, see Fig. 3, for receiving the insulating sleeves.
  • the metallized surfaces of the sleeves unite with the adjacent metallized surfaces of the glass plates to completethe hermetic sealing of the photocell casing.
  • glass sleeves i2 which are externally metallized and soldered between the glass casing plates 2a, 3a may be tubular and provided with internal metal'coatings Hi to which lead wires M from the encased photocell, not shown,,are connected by solder l5 which seals off the inner ends of the bores of the tubular glass sleeves l2.
  • 2 forms a socket for receiving a pin type connector l6 of an external circuit lead IT.
  • the terminal pin-and-socket connection may be reversed, as shown in Fig. 6, to locate the pin elements on the sealed photocell assembly.
  • Tubular pins IS with small openings in their outer rounded ends are sealed within glass bushings I?” by solder 20, the bushings passing through openings in the rear casing plate 3 and being sealed by solder 2
  • the photocell terminal wires 22, 23 are drawn through the tubular pins I8 and electrically connected thereto bysolder24 which seals the ends of the pins I8.
  • the projecting ends of the terminal wires 22, 23 arethen cut off. As shown in Fig.
  • the terminal connector 23 extends through a small central aperture in the photocell and may be a stranded conductor with the individual conductors bent over and welded or soldered to different points along a small annular pick-up electrode 25, as describedand claimed in my prior Patent No. 2,403,863, granted July 6, 1946'.
  • a resilient washer 1' may be arranged beneath the photocell I' to maintain the latter in contact with the cover glass when the housing is assembled and sealed.
  • a plug-in encased photocell may be mounted in or assembled as a unit of a photoelectric measuring instrument, as shown in Fig. 7, by introducing the encased photocell into a recess in an insulating casing member 26 of the instrument to insert terminal pins
  • Terminal lugs 28 are secured to the sockets 21 for establishing the desired circuit connections between the photocell and the measuring instrument, not shown.
  • a metal plate 29 of the instrument casing extends over a radial shoulder of the outer glass plate 2 to retain the photocell casing in the recess of the base 26.
  • the cover glass 2 has an outer lenticular surface 30, and a mechanical bailie 3
  • the cover glass of the photocell casing may be tinted to serve as a filter for the photocell and, for measurement of incident light intensity, the bafile 3
  • the back plate 3b of the photocell housing may be of metal, as shown in Fig. 8, with a flanged rim to which the metallized rim of the cover glass 2a is soldered.
  • the details of the photocell and its connections are not illustrated in Fig. 8 since, except for the substitutionof the metal back plate, the assembly may be substantially as illustrated in Figs. 2 and .3.
  • the space within the casing may be exhausted, or may be filled with dry air or with a dry inert gas.
  • the hollow pin terminals l8 of the encased photocell of Fig. 6 afford a convenient means for introducing a moisture-free gas or air into the casing after the rims of are soldered to each other.
  • the dry gas or air is forced into one hollow terminal I8 to displace casing.
  • the ends of the leads 22, 23 are then soldered to the the air already present within the terminals

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Light Receiving Elements (AREA)

Description

Aug. 5, 1952 A. H. AM ENCASED AND HERMETICALLY 'SEALED PHOTOCELL Filed Nov. 26, 1948 Patented Aug. 5, 1952 UNITED STATES PATENT OFFICE ENCASED AND.- HERME'I'ICALLY SEALED PHOTOCELL 4. Claims. (01. 136-89) This invention relates to encased and hermetically sealed photocells, and mor particularly to photocells of the solid disk or. barrier layer type which are hermetically sealed within two-part casings. of which at least the front section is aglass plate. 7
Solid disk phctocells of the current-generating. type are subject to damage from atmospheric moisture. and gases, and this is true of both the selenium and the copper oxide photocells. Various arrangements have been proposed for sealing such photocells within cases. of, or masses of, a transparent organic plastic, and some of the prior proposals have been quite satisfactory within. the limits set. by the characteristics of the transparent plastic material and/or the particular construction of the photocell and its associated terminal assembly.
Objects of the present invention are to provide disk type photocells in sealed casings consisting of or including glass over the photocell for admitting light thereto. Objects are to provide encased photocells in which the glass overlying the photocells maybe colored for a filter action and/or may be so shaped as to limit the angular spread of light rays reaching the photocells. More specifically, objects of the invention are to provide encased photocells in which the casing takes the form of glass plates soldered to each other at low temperatures which do not affect the operating characteristics of the photo'- cells.
These and other objects and advantages of the invention will be apparent from the following specification when taken with the accompanying drawings in which:
Figs. 1 and 2 are, respectively, central sections through different forms of glass-encased photocells embodying the invention;
Fig. 3 is a fragmentary side elevation of the Fig... 2 encased photocell, looking towards one of the lead-wires or terminal connections;
Fig. 4 is a plan view, on a smaller scale; of a photocell and its terminal connections:v
Fig. 5 is a fragmentary sectional view showing an. embodiment of the invention for receiving plug-in terminalconnections;
Fig. 6 is a fragmentary sectional view of afiirther embodiment of the invention;
Fig.. 'l is a. fragmentary sectional view, on a 2 smaller scale, of a further embodiment of the invention mounted in an instrument casing; and
Fig. 8 is a side elevation, partly in section, of a photocell casing including a glass cover plate soldered to a metallic rear casing member.
In the drawings, the reference'numeral l identifies a barrier layer type photocell which is encased and hermetically sealed between a cover glass 2 and bottom glass 3. The barrier layer photocell comprises a metal plate or back electrode, a layer of light sensitive material. such as selenium on the back electrode, and a translucent front electrode deposited upon the light sensitive layer in conventional manner. The glass plates 2, 3 are of suiiici'ent' thickness to afford adequate strength for protection of the assembly against mechanical shock and damage during normal handling of the assembly. The glass plates have shallow inturned rims which provide a shallow space or chamber for the reception of the photocell I when the rims are hermetically sealed to each other. The rims may be directly fused to each other without raising the photocell to destructive temperatures when the casing plates are of so-called oven-glass. Ordinary glass and conventional glass working techniques can not be employed but the central portions of glass plates 2, 3' of oven glass can be sharply chilled by an air blast to protect the photocell during the fusion and hermetic sealing of the rims to each other.
The terminal or lead-in Wires 4, 4 of the photocell are arranged between the rims before they are fused and united, thereby sealing the lead-in wires in the glass wall of the casing.
The photocell may be of any desired shape and size but preferably is a circular disk, as shown in Fig. 4, with a pick-up electrode 5 in the form of one or more small spots of a low melting point alloy sprayed upon the outer electrode layer of the photocell. A- line lead wire 6 is soldered or welded to the pick-up spot or spots and to the inner end of the lead-in wire 4'. The advantage of small pick-up spots over the conventional annular collector rings isthat the active light sensitive area of a photocell is'thereby increased by as much as about 25%. The pick-up spot 5 may be very minute, for example of the order of 0.05 diameter, and the lead wire 6 is a fine fila-- mentary conductor which shades. only a neglfgfble portion of the photocell surface. The lead-in wire 4 is soldered or welded to the back electrode of the photocell The photocell is spaced from the back cover and pressed into contact with the inner surface of the cover glass 2 by any appropriate means such as a spring, a resilient washer or, as illustrated, by lugs or projections at the inner surface of the back cover glass 3. The outer electrode surface of the photocell is thereby positioned substantially parallel to, and in contact with or in close proximity to, the inner surface of the cover glass 2.
As shown in Figs. 2 and 3, the casing may be formed by glass plates 2a, 3a having rims -with mating surfaces which are metallized and united by solder 8, the solder having a melting point below the critical temperature which will damage the photocell. tend through and are sealed in glass insulating sleeves 9 having a metallized outer surface 8, and the rims of the glass plates 2a, So have complementary semi-cylindrical grooves Hi, see Fig. 3, for receiving the insulating sleeves. The metallized surfaces of the sleeves unite with the adjacent metallized surfaces of the glass plates to completethe hermetic sealing of the photocell casing.
As shown in Fig. 5, glass sleeves i2 which are externally metallized and soldered between the glass casing plates 2a, 3a may be tubular and provided with internal metal'coatings Hi to which lead wires M from the encased photocell, not shown,,are connected by solder l5 which seals off the inner ends of the bores of the tubular glass sleeves l2. The metallized surface |3 of sleeve |2 forms a socket for receiving a pin type connector l6 of an external circuit lead IT.
The terminal pin-and-socket connection may be reversed, as shown in Fig. 6, to locate the pin elements on the sealed photocell assembly. Tubular pins IS with small openings in their outer rounded ends are sealed within glass bushings I?! by solder 20, the bushings passing through openings in the rear casing plate 3 and being sealed by solder 2| to locally metallized surfaces at the interior of the casing plate 3. The photocell terminal wires 22, 23 are drawn through the tubular pins I8 and electrically connected thereto bysolder24 which seals the ends of the pins I8. The projecting ends of the terminal wires 22, 23 arethen cut off. As shown in Fig. 6, the terminal connector 23 extends through a small central aperture in the photocell and may be a stranded conductor with the individual conductors bent over and welded or soldered to different points along a small annular pick-up electrode 25, as describedand claimed in my prior Patent No. 2,403,863, granted July 6, 1946'. A resilient washer 1' may be arranged beneath the photocell I' to maintain the latter in contact with the cover glass when the housing is assembled and sealed.
The location of the photocell terminals on the rear casing member is particularly advantageous, whether the terminals be conductors, pin sockets or pins, since this construction facilitates the assembly of an encased photocell in photoelectric measuring instruments, for example light meters and. exposure meters. A plug-in encased photocell may be mounted in or assembled as a unit of a photoelectric measuring instrument, as shown in Fig. 7, by introducing the encased photocell into a recess in an insulating casing member 26 of the instrument to insert terminal pins |8 in sockets 2.1 molded in the member 26.
The lead-in wires l, 4 ex- I Omitted;
Terminal lugs 28 are secured to the sockets 21 for establishing the desired circuit connections between the photocell and the measuring instrument, not shown. A metal plate 29 of the instrument casing extends over a radial shoulder of the outer glass plate 2 to retain the photocell casing in the recess of the base 26. As shown, the cover glass 2 has an outer lenticular surface 30, and a mechanical bailie 3| is molded into the plate 2' to cooperate with the lens surface 30 to limit the angular spread of the light rays which can reach the photocell.
, The cover glass of the photocell casing may be tinted to serve as a filter for the photocell and, for measurement of incident light intensity, the bafile 3| and the outer lenticular surface may be It will be apparent that the back plate 3b of the photocell housing may be of metal, as shown in Fig. 8, with a flanged rim to which the metallized rim of the cover glass 2a is soldered. The details of the photocell and its connections are not illustrated in Fig. 8 since, except for the substitutionof the metal back plate, the assembly may be substantially as illustrated in Figs. 2 and .3.
The space within the casing may be exhausted, or may be filled with dry air or with a dry inert gas. The hollow pin terminals l8 of the encased photocell of Fig. 6 afford a convenient means for introducing a moisture-free gas or air into the casing after the rims of are soldered to each other. The dry gas or air is forced into one hollow terminal I8 to displace casing. The ends of the leads 22, 23 are then soldered to the the air already present within the terminals |8 to complete the sealing of the casing. Although it is presently preferred to form the sealed photocell housing from two complementary the invention as set forth in the following claims.
I claim:
1. An encased and hermetically sealed photocell as sealed in claim 2, wherein the rear member is dished and of metal.
2. An encased and hermetically sealed photo cell of the barnier layer casing member of glass with a metallized rim, a back casing member soldered to the metallized rim of said front glass casing member, a selenium barrier layer photocell between said casing members, insulating sleeves extending between'and having outer metallized surfaces solder sealed to the respective casing members, and terminal wires for said photocell extending into and sealed in said insulating sleeves.
3. An encased and hermetically sealed photocell as recited in claim 2, wherein said terminal wires extend through and are sealed in said insulating sleeves. v
4. An encased and hermetically sealed photocell as recited in claim 2, wherein said insulating sleeves are tubular and have metallic coatings on and said terminal wires extend into the inner ends-of said tubular sockets and are electrically the glass plates 2' and 3 casing type comprising a front connected to said metallic coatings by solder which seals the bores of said tubular insulating sleeves.
ANTHONY H. LAMB.
REFERENCES CITED The following references are of record in the file of this patent:
UNITED STATES PATENTS Number Name Date 1,697,451 Baird Jan. 1, 1929 2,067,843 Tonnies Jan. 12, 1937 2,097,073 Long Oct. 26, 1937 Number Number 10 777,941
Name Date Treacy Dec. 20, 1938 Ziengenbein Dec. 27, 1938 Touceda et a1 Nov. 26, 1940 Wrobel Feb. 25, 1947 Bierwirth June 8, 1948 FOREIGN PATENTS Country Date France Mar. 5, 1935 OTHER REFERENCES Welo, Journal Optical Society of America, volume 8 (1924) page 453.
US61987A 1948-11-26 1948-11-26 Encased and hermetically sealed photocell Expired - Lifetime US2606215A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US61987A US2606215A (en) 1948-11-26 1948-11-26 Encased and hermetically sealed photocell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US61987A US2606215A (en) 1948-11-26 1948-11-26 Encased and hermetically sealed photocell

Publications (1)

Publication Number Publication Date
US2606215A true US2606215A (en) 1952-08-05

Family

ID=22039499

Family Applications (1)

Application Number Title Priority Date Filing Date
US61987A Expired - Lifetime US2606215A (en) 1948-11-26 1948-11-26 Encased and hermetically sealed photocell

Country Status (1)

Country Link
US (1) US2606215A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4009054A (en) * 1974-09-25 1977-02-22 Licentia Patent-Verwaltungs-G.M.B.H. Terrestrial solar cell generator
US4224081A (en) * 1974-11-27 1980-09-23 Sharp Kabushiki Kaisha Solar cell sealed by glass laminations
US4546209A (en) * 1983-03-24 1985-10-08 U.S. Philips Corporation Electrical component comprising an electric circuit element having leads which are centered with respect to the walls of a housing
US4599538A (en) * 1982-09-30 1986-07-08 Gte Prod Corp Electroluminescent display device
US4832755A (en) * 1987-08-11 1989-05-23 The Boeing Company Glass encapsulation of solar cell arrays to minimize voltage/plasma interaction effects in a space environment

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1697451A (en) * 1927-05-07 1929-01-01 Baird Television Ltd Light-sensitive electric device
FR777941A (en) * 1933-11-22 1935-03-05 Storage method of electrical appliances
US2067843A (en) * 1933-06-06 1937-01-12 Tonnies Hans Ferdinand Photoelectric photometer
US2097073A (en) * 1934-07-02 1937-10-26 Saint Gobain Tempered glass article and method of manufacturing the same
US2140725A (en) * 1935-04-16 1938-12-20 United Res Corp Hermetic seal for light-sensitive material
US2141677A (en) * 1936-02-29 1938-12-27 Allegemiene Elek Citats Ges Lead-in seal
US2222788A (en) * 1937-09-04 1940-11-26 Enrique G Touceda Preserved photoelectrical cell
US2416604A (en) * 1945-12-08 1947-02-25 Gen Electric Photoelectric cell
US2442968A (en) * 1943-06-30 1948-06-08 Rca Corp Apparatus for simultaneously induction heating a plurality of elements

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1697451A (en) * 1927-05-07 1929-01-01 Baird Television Ltd Light-sensitive electric device
US2067843A (en) * 1933-06-06 1937-01-12 Tonnies Hans Ferdinand Photoelectric photometer
FR777941A (en) * 1933-11-22 1935-03-05 Storage method of electrical appliances
US2097073A (en) * 1934-07-02 1937-10-26 Saint Gobain Tempered glass article and method of manufacturing the same
US2140725A (en) * 1935-04-16 1938-12-20 United Res Corp Hermetic seal for light-sensitive material
US2141677A (en) * 1936-02-29 1938-12-27 Allegemiene Elek Citats Ges Lead-in seal
US2222788A (en) * 1937-09-04 1940-11-26 Enrique G Touceda Preserved photoelectrical cell
US2442968A (en) * 1943-06-30 1948-06-08 Rca Corp Apparatus for simultaneously induction heating a plurality of elements
US2416604A (en) * 1945-12-08 1947-02-25 Gen Electric Photoelectric cell

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4009054A (en) * 1974-09-25 1977-02-22 Licentia Patent-Verwaltungs-G.M.B.H. Terrestrial solar cell generator
US4224081A (en) * 1974-11-27 1980-09-23 Sharp Kabushiki Kaisha Solar cell sealed by glass laminations
US4599538A (en) * 1982-09-30 1986-07-08 Gte Prod Corp Electroluminescent display device
US4546209A (en) * 1983-03-24 1985-10-08 U.S. Philips Corporation Electrical component comprising an electric circuit element having leads which are centered with respect to the walls of a housing
US4832755A (en) * 1987-08-11 1989-05-23 The Boeing Company Glass encapsulation of solar cell arrays to minimize voltage/plasma interaction effects in a space environment

Similar Documents

Publication Publication Date Title
US5757110A (en) Electrical discharge lamp with ultraviolet filtering globe having rear end part supported insulating base
US2606215A (en) Encased and hermetically sealed photocell
EP0790640B1 (en) Electrodeless discharge lamp
HU202676B (en) Electric lamp
US2052542A (en) Electronic device
US3014196A (en) Lamp base
EP0179524A1 (en) Electrical lamp provided with a cap
US3746906A (en) Adapter base for electric lamp
US4195249A (en) Flat type of fluorescent lamp
US5128106A (en) Lamp with an oxygen detector
GB2032681A (en) A fluorescent lamp
US2438993A (en) Flashlight lamp
US2518039A (en) Flashlight for rechargeable batteries
US4804878A (en) Electric lamp, base for use therewith and method of assembling same
US3611010A (en) Series-type electric incandescent lamp with integral automatic cutout means
US6661168B1 (en) Low voltage incandescent lamp with dual envelope
JPS62157657A (en) Fluorescent lamp for display
US2363796A (en) encased electrical device x
US3160776A (en) Electric incandescent projection lamp
US4912360A (en) Lamp with two internal capsules
US4463282A (en) Flash lamp
US4396898A (en) Lampholder having thermal protector
US2481027A (en) Adapter
US2794114A (en) Chamberlain
US2285875A (en) Electric lamp assembly