US2598233A - Sequence valve for hydraulic power systems - Google Patents

Sequence valve for hydraulic power systems Download PDF

Info

Publication number
US2598233A
US2598233A US62471A US6247148A US2598233A US 2598233 A US2598233 A US 2598233A US 62471 A US62471 A US 62471A US 6247148 A US6247148 A US 6247148A US 2598233 A US2598233 A US 2598233A
Authority
US
United States
Prior art keywords
port
piston
cylinder
ports
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US62471A
Inventor
Clinton E Deardorff
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bendix Aviation Corp
Original Assignee
Bendix Aviation Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bendix Aviation Corp filed Critical Bendix Aviation Corp
Priority to US62471A priority Critical patent/US2598233A/en
Application granted granted Critical
Publication of US2598233A publication Critical patent/US2598233A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • F15B13/06Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with two or more servomotors
    • F15B13/07Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with two or more servomotors in distinct sequence
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/2496Self-proportioning or correlating systems
    • Y10T137/2544Supply and exhaust type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8593Systems
    • Y10T137/86928Sequentially progressive opening or closing of plural valves

Description

c. DEARDORFF 2,598,233
SEQUENCE VALVE FOR HYDRAULIC POWER SYSTEMS May 27, 1952 Filed Nov. 29, 1948 20 Z4 Z4 6 f .6
B I ii' 4 INVENTOR c; E. DEARDORFF ATTORNEY Patented May 27, 1952 UNITED STATES I Fl SEQUENCE VALVE FOR HYDRAULIC POWER SYSTEMS Application November 29, 1948 Serial No. 62,471
(Cl. c 52) Claims. 1
Thi invention relates to hydraulic systems containing a plurality of fluid motors or jacks to be operated sequentially from a single source of pressure fluid, and the general object is to provide a simple and practicable hydraulic circuit and valve for causing the desired sequential operation to automatically take place.
A more specific object is to provide a sequence valve that is mechanically separate from the motors or jacks that it controls and is connected thereto only by fluid lines.
Other more specific objects and features of the invention will appear from the description to follow:
Briefly, in a system in accordance with the present invention, a pair of hydraulic jacks to be operated sequentially have their input ports connected simultaneously directly to the actuating source of fluid pressure but have their output ports connected to exhaust through a special sequence valve. Thev construction of this valve is such that, in response to flow from one of the jacks to exhaust, it blocks flow from the other jack to exhaust, thereby preventing the second jack from being actuated simultaneously with the first. However, when the first jack has completed its movement, and the flow of exhaust fluid therefrom ceases, the sequence valve is springactuated into another position in which it connects the exhaust port of the second jack to the exhaust line, thereby permitting the second jack to be actuated. Since the sequence valve is controlled entirely by the flow of fluid from the jacks to the exhaust line it need not be directly mechanically associated with the jacks but can be located at any convenient point in the hydraulic system.
The single figure of the drawin is a schematic diagram of a simple hydraulic system incorporating the invention.
In the drawing there are shown two hydraulic motors in the form of jacks l and 2 respectively, a fluid reservoir 3, a pump a 4-way valve 5, a check valve 6, and a sequence valve 1 in accordance with the invention. The jack l comprises a cylinder la and a piston lb, and the jack 2 comprises a cylinder 2a having a piston 2b. The cylinder la has two ports 8 and 9' respectively, and the cylinder 2a has two ports Iii and ll respectively. The port 8 functions as the inlet port of cylinder la, and the port 9 functions as the outlet thereof when the piston lb is being moved downwardly, and vice versa when movement is in the opposite direction. Similarly, the port It is the inlet port and port II is the outlet port of cylinder 2a when the piston 21) is moving to the right, and vice versa when the movement of the piston is to the left.
In the position of the e-way valve 5 shown in the drawing, the output of the pump 4 is connected through lines l 3 and M directly to the ports 8 and lil respectively of the cylinders Ia and 2a. The port 9 of cylinder la is permanently connected by a line l5 to a first port l6 of the sequence valve 7, and the port ll of the cylinder 2a is permanently connected by a line I! to a third port l9 of the sequence valve l. A second port I 8 of the valve 7 is shown connected through a line 28, the 4-way valve 5, and a line 2| to the reservoir 3.
The valve 7 comprises a casing 22 containing the ports l5, l3 and I9 and defining a cylindrical bore 23 with which these ports communicate. Thus the first port it communicates with the left end of the :bore 23, the second port It communicates with the side of the bore 23 at a point displaced from the left end of the bore, and the third port I9 communicates with the bore at a point spaced still further from the left end. The bore 23 contains a freely slideable piston 24 which is urged into the left end of the bore 23 by a light (weak) helical compression spring 25. To enable the use of a spring having a low loading rate, the piston 24 is formed with a passage 24a therein extending from the right end of the piston almost to the left end, and the spring 25 is partially contained within the bore 24a and is compressed between the inner (left) end of the bore and a closure assembly 28 that seals the right end of the cylinder bore 23. This closure assembly 28 is shown as consisting of a plate 23a, a disc 28b, and a sealin ring 280, which are retained by a split ring 28d in a groove 28c provided therefor in a counterbore so at the right end of the cylinder bore 23.
The piston 24 has a pair of land portions 2% and 250 which are closely fitted to the cylinder bore 23. A small bleed passage 3 3 is provided in the end of the piston 24, and the right end of the cylinder 23 is permanently connected to the second (exhaust) port It by a passage 35.
Let it be assumed that the jack pistons lb and 2b and the valve piston 24 are in the position shown in the drawing, and that the 4-way valve 5 has just been rotated into the position shown, thereby applying pressure fluid from the pump 4 through the lines l3 and M to the ports 8 and ll] of the jacks l and 2. Pressure is therefore developed against the upper side of the piston lb tending to move it downward, and against the left end of the piston 2b, tending to move it to the right. Both pistons begin to move, discharging fluid from the other ports 9 and H respectively of the two jacks. Fluid from the port 9 of jack l flows through the line l5 and into the first port [6 of the sequence valve 1 and overcomes the force of the spring 25 and moves the piston 24 to the right until the left edge of the land 24b clears the second port l8 and permits fluid to flow from the first port It to the second port l8 and thence through the line 29, valve 5, and line 2| back to the reservoir 3. A path is therefore provided for the discharge of the fluid from jack 1 through the port 9, and the piston lb moves downward.
However, the piston 21) cannot continue to move because when the valve piston 24 moved to the right sufficiently to display the land 24b from. its blocking position between the first and second ports l6 and I8 respectively it moved into blocking relation in the bore between the second port It and the third port l9, thereby blocking discharge of fluid from the port ll of cylinder 2, so that, after a slight initial movement, piston 2b remains stationary while piston lb is moving to the end of its stroke, at which time it is necessarily stopped, and discharge of fluid out of the port 9 and into the first port ll; of the sequence valve ceases.
Thereupon, the piston 25 is restored into its leftmost position by the spring 25, the residual fluid in the left end of the cylinder bore 23 leaking through the bleed hole 34 to permit such movement. Restoration of the piston 24 into its normal leftmost position moves the land 24b out of the path between the second port l8 and the third port [8, so that a path is provided for fluid flow from the cylinder port ll through the line H, the third port l9, bore 23, and second port l8 of the sequence valve l to the exhaust line 22!, whereby the piston 2b of the jack 2 can now complete its movement to the right.
The time lag between completion of movement of piston lb and beginning of movement of the piston 2b can be varied by varying the size of the bleed hole 34, and also by varying the strength of the spring 25. It is to be understood, however, that the force of the spring 25 is ordinarily small compared to the resistance to movement of the jack pistons lb and 2b caused by the loads connected to those pistons.
To restore the jack piston lb into uppermost position, and the jack piston 2b into leftmost position, the 4-way valve 5 is actuated to connect the port Hi to the line 25, and connect the line 2| to the line Id. The cylinder ports 8 and ll) of the jacks l and 2 respectively are thereby directly connected to the exhaust line 2l so that there is no resistance to the discharge of exhaust fluid from either of the jacks during reverse movement. Pressure fluid is also supplied without restriction simultaneously to the other ports 9 and I9 respectively of the two jacks so that the pistons lb and 2b can move simultaneously in reverse direction. The path of pressure fluid flow from the line 26 to the port 9 of jack l is through the check valve e which permits flow in this direction, while blocking reverse flow. The path of pressure fluid flow to port ll of jack 2 is from the line 2% through the second port l8 of the sequence valve 1 into the cylinder bore 23 between the two piston lands 24b and 2&0, and out through the third port I 9 and through the line ii.
The piston 24 remains in its leftmost position during reverse movement because high pressure fluid is applied to both ends thereof; thus the 4 high pressure fluid is applied through the line l5 and the port Hi to the left end of the piston, and through the second port l8 and the passage 35 to the right end of the piston.
It will be observed therefore that the system described provides for sequential movement of the pistons lb and 2b in one direction in response to actuation of the 4-way valve 5 into the position shown in the drawing, and simultaneous movement of the pistons lb and 2b in the reverse direction when the 4-way valve 5 is reversed.
It is to be understood that in order to clearly show the construction of the sequence valve 1, the latter is shown disproportionately large in comparison with the motor or jack cylinders l and 2. In actual practice, the bore 23 in the sequence valve 1 will be very small compared to the bores of the jacks l and 2 so that only a very slight movement of the jack piston lb is sufficient to shift the sequence valve piston 24 from left to right position and thereby lock the piston 2b of the jack 2 against movement. Tests have indicated that both pistons lb and 2b start to move in response to application of the full flow of pressure fluid from the pump 4 to line it, even though the static load on piston lb is substantially heavier than that on piston 2b. The reason for this appears to be that the rapid acceleration of either piston and its load develops a dynamic reactive force therein which is a function of the inertia of the piston and its load and the rate at which it is being accelerated. In other words, much greater pressure in line I4 is required to rapidly accelerate the piston 2b from rest to its normal speed than is required to maintain it in motion at that speed. Hence the initial pressure in line [4 while piston 2b is accelerating can be greater than that necessary to start the piston lb even though its static load is greater than that of piston 2b. Of course the rate of acceleration of piston lb is less than that of piston 2b if the latter has a lighter load, but unless the load on piston lb is very much greater than that on piston 2b, piston lb will move the short distance necessary to shift the sequence valve piston, before piston 2b reaches full speed and the pressure drops to the lower value sufficient to maintain piston 2b in motion.
Although for the purpose of explaining the invention, a particular embodiment thereof has been shown and described, obvious modifications will occur to a person skilled in the art, and I do not desire to be limited to the exact details shown and described.
I claim:
1. A valve of the type described comprising, a cylinder having first, second and third longitudinally spaced ports; a piston in said cylinder and spring means urging it in one direction from said third port toward said first port, said piston having a land portion sealing with and blocking said cylinder between said first and second ports when said piston is at the limit of its travel in said one direction, said piston being movable in the other direction in response to fluid flow into said first port into position in which said land clears said cylinder between said first and second ports and blocks said cylinder between said second and third ports, and passage means permanently connecting said second port with the end of said cylinder remote from said first port.
2. A hydraulic system comprising first and second motors, each having a pair of ports; means for supplying pressure fluid simultaneously to one of the ports of both motors; avalve casing having first, second and third ports, the first port being connected to the other port oi said first motor, said second port being connected to exhaust, and thethird port being connected to the other port of said second motor, valve means within said casing responsive to fluid flow into said first port for communicating said first port with said second port and blocking communication between said third and second ports, said valve means including a spring responsive to cessation of fluid flow into said first port for shifting said valve to communicate said third port with said second port. v
3. A system according to claim 2 in which said motors are reversible, and said means for sup plying pressure fluid includes a pump, a 4-way valve for selectively connecting the pump output to said one port of said motors and the pump inlet to said second port of said valve casing in one position, and connecting the pump outlet to said second port and the pump inlet to said one port of the motors in the other position; and a line including a check valve interconnecting said first and second ports for bypassing fluid direct from said pump to the other port of said first motor when said 4-wa valve is in its said other position.
4. A system according to claim 3 including passage means permanently connecting said sec-- and port with the said other end of said cylinder.
5. A hydraulic system comprising first and second hydraulic motors each having a pair of 6 ports; means ior supplying pressure fluid simultaneously to one of the ports of both motors; a sequence valve having a first port connected to the other port of said first motor, a second, exhaust, port, and a third port connected to the other port of said second motor, said sequence valve comprising a cylinder with which said first. second and third ports communicateat longitudinally spaced points; a piston in said cylinder, and spring means urging it in one direction away from said third port and toward said first port, said piston having a land portion sealing with and blocking said cylinder between said first and second ports when said piston is movedby said spring means to its limit of travel, said piston being movable against said springforce in re-' sponse to fluid flow into said first port into position clearing said cylinder between said first and second ports and blocking said cylinder between said second and third ports;
CLINTON E. DEARDORFF.
REFERENCES CITED The following references are of record in the
US62471A 1948-11-29 1948-11-29 Sequence valve for hydraulic power systems Expired - Lifetime US2598233A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US62471A US2598233A (en) 1948-11-29 1948-11-29 Sequence valve for hydraulic power systems

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US62471A US2598233A (en) 1948-11-29 1948-11-29 Sequence valve for hydraulic power systems

Publications (1)

Publication Number Publication Date
US2598233A true US2598233A (en) 1952-05-27

Family

ID=22042711

Family Applications (1)

Application Number Title Priority Date Filing Date
US62471A Expired - Lifetime US2598233A (en) 1948-11-29 1948-11-29 Sequence valve for hydraulic power systems

Country Status (1)

Country Link
US (1) US2598233A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2763385A (en) * 1952-06-18 1956-09-18 Harrison Jolly Kibler Tractor mounted hydraulic loader
US2764870A (en) * 1951-08-17 1956-10-02 Goodman Mfg Co Hydraulic motor circuit for cut-off device or the like
US2769224A (en) * 1953-03-11 1956-11-06 Joh Friedrich Ohler O H G Sawing machine
US2795933A (en) * 1953-01-12 1957-06-18 Goodman Mfg Co Hydraulic circuit for cutoff device or the like
US2958347A (en) * 1957-04-17 1960-11-01 Armstrong Blum Mfg Company Band sawing machine and controls
US2988306A (en) * 1955-10-17 1961-06-13 Honeywell Regulator Co Aircraft surface control
US4112822A (en) * 1975-06-06 1978-09-12 Kayabakogyokabushikikaisha Pressure responsive sequencing device
US4349305A (en) * 1977-11-01 1982-09-14 Dempster Systems Inc. Lifting and dumping apparatus
US4669225A (en) * 1984-09-17 1987-06-02 Oloid Ag Device for driving a body that performs a tumbling and rotating movement
US5293914A (en) * 1993-04-19 1994-03-15 Hudson Thomas H Hydraulic control circuit for a delimbing apparatus
US6443196B1 (en) * 1999-10-04 2002-09-03 Tigercat Industries Inc. Hydraulic circuits for tree-harvesting knuckle booms
US20040011427A1 (en) * 2002-07-19 2004-01-22 Liu William Pierre Hydraulic circuits for tree-harvesting knuckle booms
US20050045245A1 (en) * 2003-08-26 2005-03-03 John Kurelek Knuckle boom for reaching and pulling and hydraulic circuits therefor
WO2009089838A1 (en) * 2008-01-16 2009-07-23 Welltec A/S A sequence valve and a downhole tractor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2313056A (en) * 1940-03-09 1943-03-09 Walter H Emerson Feeding apparatus for plastic material
US2331603A (en) * 1940-12-26 1943-10-12 Falcon Jeronimo Convertible top for vehicles
US2365095A (en) * 1941-08-19 1944-12-12 Vickers Inc Power transmission
US2401258A (en) * 1942-07-21 1946-05-28 Cons Vultee Aircraft Corp Hydraulic actuating mechanism
US2425391A (en) * 1944-07-03 1947-08-12 John B Parsons Hydraulic regulator mechanism for vehicle windows or the like

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2313056A (en) * 1940-03-09 1943-03-09 Walter H Emerson Feeding apparatus for plastic material
US2331603A (en) * 1940-12-26 1943-10-12 Falcon Jeronimo Convertible top for vehicles
US2365095A (en) * 1941-08-19 1944-12-12 Vickers Inc Power transmission
US2401258A (en) * 1942-07-21 1946-05-28 Cons Vultee Aircraft Corp Hydraulic actuating mechanism
US2425391A (en) * 1944-07-03 1947-08-12 John B Parsons Hydraulic regulator mechanism for vehicle windows or the like

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2764870A (en) * 1951-08-17 1956-10-02 Goodman Mfg Co Hydraulic motor circuit for cut-off device or the like
US2763385A (en) * 1952-06-18 1956-09-18 Harrison Jolly Kibler Tractor mounted hydraulic loader
US2795933A (en) * 1953-01-12 1957-06-18 Goodman Mfg Co Hydraulic circuit for cutoff device or the like
US2769224A (en) * 1953-03-11 1956-11-06 Joh Friedrich Ohler O H G Sawing machine
US2988306A (en) * 1955-10-17 1961-06-13 Honeywell Regulator Co Aircraft surface control
US2958347A (en) * 1957-04-17 1960-11-01 Armstrong Blum Mfg Company Band sawing machine and controls
US4112822A (en) * 1975-06-06 1978-09-12 Kayabakogyokabushikikaisha Pressure responsive sequencing device
US4349305A (en) * 1977-11-01 1982-09-14 Dempster Systems Inc. Lifting and dumping apparatus
US4669225A (en) * 1984-09-17 1987-06-02 Oloid Ag Device for driving a body that performs a tumbling and rotating movement
US5293914A (en) * 1993-04-19 1994-03-15 Hudson Thomas H Hydraulic control circuit for a delimbing apparatus
US6443196B1 (en) * 1999-10-04 2002-09-03 Tigercat Industries Inc. Hydraulic circuits for tree-harvesting knuckle booms
US6681818B2 (en) * 1999-10-04 2004-01-27 Tigercat Industries Inc Hydraulic circuits for tree-harvesting knuckle booms
US20040011427A1 (en) * 2002-07-19 2004-01-22 Liu William Pierre Hydraulic circuits for tree-harvesting knuckle booms
US6763863B2 (en) * 2002-07-19 2004-07-20 Tigercat Industries Inc. Hydraulic circuits for tree-harvesting knuckle booms
US20050045245A1 (en) * 2003-08-26 2005-03-03 John Kurelek Knuckle boom for reaching and pulling and hydraulic circuits therefor
US7007728B2 (en) 2003-08-26 2006-03-07 Tigercat Industries Inc. Knuckle boom for reaching and pulling and hydraulic circuits therefor
WO2009089838A1 (en) * 2008-01-16 2009-07-23 Welltec A/S A sequence valve and a downhole tractor
US20100288489A1 (en) * 2008-01-16 2010-11-18 Jorgen Hallundbaek Sequence valve and a downhole tractor
CN101910647A (en) * 2008-01-16 2010-12-08 韦尔泰克有限公司 A sequence valve and a downhole tractor
US7946358B2 (en) 2008-01-16 2011-05-24 Jorgen Hallundbaek Sequence valve and a downhole tractor
AU2009204590B2 (en) * 2008-01-16 2012-12-13 Welltec A/S A sequence valve and a downhole tractor
CN101910647B (en) * 2008-01-16 2013-09-18 韦尔泰克有限公司 A sequence valve and a downhole tractor

Similar Documents

Publication Publication Date Title
US2598233A (en) Sequence valve for hydraulic power systems
US2778378A (en) Combination sequence and locking valve
US2689585A (en) Self-holding valve
US2467508A (en) Hydraulic system
US3631890A (en) Flow extending bypass valve
US2646025A (en) By-pass valve for hydraulic motors
US2467509A (en) Hydraulic system
US4258609A (en) Dual speed hydraulic piston assembly
GB1319482A (en) Hydraulic control system
US2916879A (en) Combination hydraulic power unit
GB859658A (en) Hydraulic control valve
US2804883A (en) Open-center follow-up control valve
US3029061A (en) Air-hydraulic control unit
US2593039A (en) Valve for sequential operation of hydraulic motors
US3060688A (en) Hydraulic systems
US2756724A (en) Safety valve lock arrangement
US2241665A (en) Power transmission
US4642019A (en) Hydraulic control system and valve therefor
US2487575A (en) Unloader valve
US3685540A (en) Fluid flow controlling device for reversible fluid motors
US2970579A (en) Hydraulic reversing control
US2407957A (en) Compound hydraulic brake compressor and the like
US2665552A (en) Load responsive pressure regulating valve
US3168010A (en) Sequence valves
US4723476A (en) Regenerative valve