US2547061A - Multiple gap velocity modulation tube - Google Patents
Multiple gap velocity modulation tube Download PDFInfo
- Publication number
- US2547061A US2547061A US772623A US77262347A US2547061A US 2547061 A US2547061 A US 2547061A US 772623 A US772623 A US 772623A US 77262347 A US77262347 A US 77262347A US 2547061 A US2547061 A US 2547061A
- Authority
- US
- United States
- Prior art keywords
- resonator
- gap
- velocity
- gaps
- beam path
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000010894 electron beam technology Methods 0.000 description 12
- 230000000694 effects Effects 0.000 description 4
- 230000001419 dependent effect Effects 0.000 description 2
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 230000005672 electromagnetic field Effects 0.000 description 1
- PHTXVQQRWJXYPP-UHFFFAOYSA-N ethyltrifluoromethylaminoindane Chemical compound C1=C(C(F)(F)F)C=C2CC(NCC)CC2=C1 PHTXVQQRWJXYPP-UHFFFAOYSA-N 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 230000010349 pulsation Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J25/00—Transit-time tubes, e.g. klystrons, travelling-wave tubes, magnetrons
- H01J25/02—Tubes with electron stream modulated in velocity or density in a modulator zone and thereafter giving up energy in an inducing zone, the zones being associated with one or more resonators
- H01J25/10—Klystrons, i.e. tubes having two or more resonators, without reflection of the electron stream, and in which the stream is modulated mainly by velocity in the zone of the input resonator
- H01J25/12—Klystrons, i.e. tubes having two or more resonators, without reflection of the electron stream, and in which the stream is modulated mainly by velocity in the zone of the input resonator with pencil-like electron stream in the axis of the resonators
Definitions
- Electrode E1 has a shape and a potential suitable for effecting a desired spreading or the electron beam.
- the power furnished to the beam is U2 'ILVE TMZUZ R which is n1 times -greater than when multiple gaps are used.
- the power given up by the beam to the cavity is mm2 times greater than if the beam was braked only once by the high frequency -eld.
- the gain, when used as an amplifier, is accordingly multiplied by nmz.
- This device may also be used in a frequency multiplier tube.
- the output voltage U2, ci a resonator excited by an electron stream velocity modulated by an input resonator and bunched in a drift space varies with the distance along th-e path of the stream at which the output resonator is excited by the stream. This variation is in accordance with the Bessel function or" the fundamental component of the modulated current.
- s is the distance from the modulation space or gap to the catching space at which the output voltage U2 is excited in the output resonator
- vo is the mean velocity of the electron in the drift space of distance s
- U1 is the modulation voltage
- U0 is the potential of the electrode E1 about the drift space.
- the gaps are grouped in such a way as to correspond to points situated in the vicinity of the maximum of the Bessel function.
- a velocity modulation electron discharge device comprising a source of an electron beam and a collector electrode deiining a beam path, a cavity resonator disposed about said beam path adjacent said source for velocity modulating electrons in the beam, said modulating resonator including a wave guide of rectangular section and masses of parallelepiped shape located along the beam path inside said guide and supported alternately on opposite sides of said guide, said masses being provided with apertures for passage of the beam therethrough, said masses defining therebetween a plurality of gaps along the beam path for permitting an eiectromagnetic field developed in said resonator to velocity modulate the electrons in the beam successively at each said gap, and a cavity resonator disposed about said beam path adjacent :aid collector electrode for extracting ultra high frequency energy from the velocity-modulated electron beam, said extracting resonator being provided with gap for permitting the electron beam to supply energy to an electromagnetic field developed in said extracting resonator.
- energy extracting cavity resonator comprises a wave guide of rectangular section and masses of parallelepiped shape located along the beam path inside said guide and supported alternately on opposite sides of said guide, said masses being provided with apertures for passage of the electron beam therethrough, said masses defining therebetween a plurality of gaps along said beam path for permitting an electromagnetic rleld developed in said resonator to eX- tract energy from the electrons in the beam successively at each said gap.
- a velocity modulation electron discharge device comprising a source of an electron beam and a collector electrode defining a beam path, a cavity resonator disposed about said beam path adjacent said source for velocity modulating electrons in the beam, and a cavity resonator disposed about said beam path adjacent said collector electrode for extracting ultra high frequency energy from the velocity-modulated electron beam, said extracting resonator including a wave guide of rectangular section and masses of parallelepiped shape located along the beam path inside said guide and supported alternately on opposite sides of said guide, said masses being provided with apertures for passage of the beam therethrough, said masses defining a plurality of gaps along the beam path for permitting the velocity-modulated electron beam to supply energy to an electromagnetic eld developed in said resonator successively at each said gap.
- a velocity modulation electron discharge device comprising an electron beam source and a collector electrode defining a beam path, a cavity resonator disposed about said beam path adjacent said beam source for velocity modulating electrons in said beam, and a cavity resonator disposed about said beam path adjacent said collector electrode for extracting energy from the velocity modulated electron beam, each of said cavity resonators having means for communication with said electron path, one of said resonators including a Wave-guide section with masses spaced apart along the beam path inside ⁇ said guide and supported alternately on opposite sides of said guide, said masses having apertures for passage of the beam therethrough.
Landscapes
- Microwave Tubes (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR922150T | 1945-12-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
US2547061A true US2547061A (en) | 1951-04-03 |
Family
ID=9437814
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US772623A Expired - Lifetime US2547061A (en) | 1945-12-17 | 1947-09-08 | Multiple gap velocity modulation tube |
Country Status (3)
Country | Link |
---|---|
US (1) | US2547061A (is") |
BE (1) | BE481272A (is") |
FR (1) | FR922150A (is") |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2754448A (en) * | 1950-06-21 | 1956-07-10 | Hartford Nat Bank & Trust Co | Velocity modulation tube of the kind comprising a drift space |
US2758245A (en) * | 1950-12-14 | 1956-08-07 | Varian Associates | Beam type electronic tube |
US2857549A (en) * | 1952-08-01 | 1958-10-21 | Int Standard Electric Corp | Electron velocity modulation tubes |
US2918599A (en) * | 1953-02-27 | 1959-12-22 | Int Standard Electric Corp | Electron velocity modulation tubes |
US2974252A (en) * | 1957-11-25 | 1961-03-07 | Bell Telephone Labor Inc | Low noise amplifier |
US3012170A (en) * | 1958-08-29 | 1961-12-05 | Eitel Mccullough Inc | Charged particle beam modulating means and method |
US3043986A (en) * | 1956-03-16 | 1962-07-10 | Commissariat Energie Atomique | Particle accelerators |
US3067359A (en) * | 1958-05-05 | 1962-12-04 | Commissariat Energie Atomique | Structure for linear ion accelerators |
US3076117A (en) * | 1959-04-27 | 1963-01-29 | Gen Electric | Parametric energy converter |
US3107313A (en) * | 1959-10-30 | 1963-10-15 | Johann R Hechtel | Velocity modulated electron tube with cathode means providing plural electron streams |
US3274430A (en) * | 1963-08-01 | 1966-09-20 | Massachusetts Inst Technology | Biased-gap klystron |
US3392300A (en) * | 1964-11-12 | 1968-07-09 | Thomson Houston Comp Francaise | Hollow-beam electron gun with a control electrode |
DE1290634B (de) * | 1961-03-07 | 1969-03-13 | Siemens Ag | Elektronenstrahlroehre mit Geschwindigkeitsmodulation |
US4284923A (en) * | 1978-11-23 | 1981-08-18 | Commissariat A L'energie Atomique | Ion beam buncher--debuncher |
US4594530A (en) * | 1983-05-20 | 1986-06-10 | Cgr Mev | Accelerating self-focusing cavity for charged particles |
US5038077A (en) * | 1989-01-31 | 1991-08-06 | The United States Of American As Represented By The Secretary Of The Navy | Gyroklystron device having multi-slot bunching cavities |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2190515A (en) * | 1938-07-15 | 1940-02-13 | Gen Electric | Ultra short wave device |
US2284751A (en) * | 1939-08-31 | 1942-06-02 | Rca Corp | Resonant cavity device |
US2401945A (en) * | 1941-03-27 | 1946-06-11 | Rca Corp | Frequency multiplier |
US2405175A (en) * | 1941-04-04 | 1946-08-06 | Bell Telephone Labor Inc | Ultra high frequency oscillator |
US2422695A (en) * | 1943-05-07 | 1947-06-24 | Bell Telephone Labor Inc | Suppression of parasitic oscillations in high-frequency devices |
-
0
- BE BE481272D patent/BE481272A/xx unknown
-
1945
- 1945-12-17 FR FR922150D patent/FR922150A/fr not_active Expired
-
1947
- 1947-09-08 US US772623A patent/US2547061A/en not_active Expired - Lifetime
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2190515A (en) * | 1938-07-15 | 1940-02-13 | Gen Electric | Ultra short wave device |
US2284751A (en) * | 1939-08-31 | 1942-06-02 | Rca Corp | Resonant cavity device |
US2401945A (en) * | 1941-03-27 | 1946-06-11 | Rca Corp | Frequency multiplier |
US2405175A (en) * | 1941-04-04 | 1946-08-06 | Bell Telephone Labor Inc | Ultra high frequency oscillator |
US2422695A (en) * | 1943-05-07 | 1947-06-24 | Bell Telephone Labor Inc | Suppression of parasitic oscillations in high-frequency devices |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2754448A (en) * | 1950-06-21 | 1956-07-10 | Hartford Nat Bank & Trust Co | Velocity modulation tube of the kind comprising a drift space |
US2758245A (en) * | 1950-12-14 | 1956-08-07 | Varian Associates | Beam type electronic tube |
US2857549A (en) * | 1952-08-01 | 1958-10-21 | Int Standard Electric Corp | Electron velocity modulation tubes |
US2918599A (en) * | 1953-02-27 | 1959-12-22 | Int Standard Electric Corp | Electron velocity modulation tubes |
US3043986A (en) * | 1956-03-16 | 1962-07-10 | Commissariat Energie Atomique | Particle accelerators |
US2974252A (en) * | 1957-11-25 | 1961-03-07 | Bell Telephone Labor Inc | Low noise amplifier |
US3067359A (en) * | 1958-05-05 | 1962-12-04 | Commissariat Energie Atomique | Structure for linear ion accelerators |
US3012170A (en) * | 1958-08-29 | 1961-12-05 | Eitel Mccullough Inc | Charged particle beam modulating means and method |
US3076117A (en) * | 1959-04-27 | 1963-01-29 | Gen Electric | Parametric energy converter |
US3107313A (en) * | 1959-10-30 | 1963-10-15 | Johann R Hechtel | Velocity modulated electron tube with cathode means providing plural electron streams |
DE1290634B (de) * | 1961-03-07 | 1969-03-13 | Siemens Ag | Elektronenstrahlroehre mit Geschwindigkeitsmodulation |
US3274430A (en) * | 1963-08-01 | 1966-09-20 | Massachusetts Inst Technology | Biased-gap klystron |
US3392300A (en) * | 1964-11-12 | 1968-07-09 | Thomson Houston Comp Francaise | Hollow-beam electron gun with a control electrode |
US4284923A (en) * | 1978-11-23 | 1981-08-18 | Commissariat A L'energie Atomique | Ion beam buncher--debuncher |
US4594530A (en) * | 1983-05-20 | 1986-06-10 | Cgr Mev | Accelerating self-focusing cavity for charged particles |
US5038077A (en) * | 1989-01-31 | 1991-08-06 | The United States Of American As Represented By The Secretary Of The Navy | Gyroklystron device having multi-slot bunching cavities |
Also Published As
Publication number | Publication date |
---|---|
BE481272A (is") | |
FR922150A (fr) | 1947-05-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US2547061A (en) | Multiple gap velocity modulation tube | |
US2672572A (en) | Traveling wave tube | |
US2541843A (en) | Electronic tube of the traveling wave type | |
US2222901A (en) | Ultra-short-wave device | |
US2595698A (en) | Electron discharge device and associated circuit | |
US2622158A (en) | Microwave amplifier | |
US2405611A (en) | Electron beam amplifier | |
US2891191A (en) | Backward wave tube | |
US2455269A (en) | Velocity variation apparatus | |
GB592493A (en) | Improvements in ultra high frequency discharge devices | |
US2974252A (en) | Low noise amplifier | |
US2605444A (en) | Multichannel frequency selector and amplifier | |
US2329780A (en) | Electron discharge device | |
US2487656A (en) | Electron discharge device of the beam deflection type | |
US3227959A (en) | Crossed fields electron beam parametric amplifier | |
US2920229A (en) | Traveling wave velocity modulation devices | |
US2855537A (en) | Electron beam focusing | |
US2307693A (en) | Frequency multiplier | |
US3158779A (en) | Traveling-wave electronic microwave interaction guide devices | |
US3252104A (en) | D.c. quadrupole structure for parametric amplifier | |
GB1155673A (en) | Crossed-Field Reentrant Stream Tandem Slow-Wave Circuit Tube | |
US2999182A (en) | Amplitude limiters for high frequency radio signals | |
US2222898A (en) | High-frequency apparatus | |
GB994507A (en) | Improvements in or relating to electron beam tubes | |
US2972081A (en) | Low noise amplifier |