US2537220A - Heat exchanger - Google Patents
Heat exchanger Download PDFInfo
- Publication number
- US2537220A US2537220A US31524A US3152448A US2537220A US 2537220 A US2537220 A US 2537220A US 31524 A US31524 A US 31524A US 3152448 A US3152448 A US 3152448A US 2537220 A US2537220 A US 2537220A
- Authority
- US
- United States
- Prior art keywords
- passages
- disc
- discs
- heat exchanger
- fluid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000012530 fluid Substances 0.000 description 16
- 238000005192 partition Methods 0.000 description 10
- 239000007789 gas Substances 0.000 description 6
- 239000011159 matrix material Substances 0.000 description 6
- 230000005540 biological transmission Effects 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 210000003949 semicircular duct Anatomy 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D19/00—Regenerative heat-exchange apparatus in which the intermediate heat-transfer medium or body is moved successively into contact with each heat-exchange medium
- F28D19/04—Regenerative heat-exchange apparatus in which the intermediate heat-transfer medium or body is moved successively into contact with each heat-exchange medium using rigid bodies, e.g. mounted on a movable carrier
- F28D19/041—Regenerative heat-exchange apparatus in which the intermediate heat-transfer medium or body is moved successively into contact with each heat-exchange medium using rigid bodies, e.g. mounted on a movable carrier with axial flow through the intermediate heat-transfer medium
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S165/00—Heat exchange
- Y10S165/009—Heat exchange having a solid heat storage mass for absorbing heat from one fluid and releasing it to another, i.e. regenerator
- Y10S165/013—Movable heat storage mass with enclosure
- Y10S165/016—Rotary storage mass
- Y10S165/027—Rotary storage mass with particular rotary bearing or drive means
- Y10S165/028—Ring gear surrounding cylindrical storage mass
Definitions
- This-invention relates to improvements in heat exchangers of the regenerative kind, 1. e. of the kind wherein a heat absorbing and transmitting matrix is moved successively into a region of hotter fluid and into a L gion of colder fluid, so as to absorb heat from the former and impart heat to the latter; v I
- the matrix is generally sub-divided to form passages or cells and each of these as it is transferred from the hotter fluid to the colder fluid carries its fluid charge with it.
- the two fluids are at substantially different pressures as for example in the case of a gas turbine heat exchanger, wherein the colder fluid is air delivered by the compressor at higher pressure, while the hotter fluid is exhaust gas at a considerably lower pressure, there is a. pressure loss as the passages or cells are transferred from one region to the other, and this reduces the efl'lciency of the apparatus.
- the invention is based on the principle that to prevent this loss, means may be provided whereby a cell which has just left the high pressure reion is put into communication with a cell which is just about to enter the said region at a moment when both cells are out 01f from the high pressure and low pressure regions. This equalizes the pressure in the two cells to a value intermediate the two pressures and considerably decreases the above-mentioned pressure loss.
- a heat exchanger according to the present invention comprises two oppositely rotatable coaxial disc-like matrix members having a plurality of axially directed passages and a fluid tight partition extending between the discs and adapted to divide the space between the discs into two parts, the said partition being provided with a number of axially directed passages, so that as the disc-like members rotate, each passage in the matrix passes and enters into communication with one or more passages in the partition.
- the disc-like members are preferably of similar dimensions and the two parts are adapted to serve as a high pressure region and a low pressure region.
- Figure 1 is a transverse section in diagrammatic form
- Figure 2 is a section on the line IIII of Figure 1.
- the apparatus comprises two disc-like matrix members I, 2, for example of ceramic material, arranged co-axially on shafts 3, 4 respectively, and adapted to rotate in opposite directions.
- Each disc has a number of axially directed passages I a, 2a respectively.
- the discs I, 2 rotate against the ends of cylindrical ducts 8, 9 respectively, which are each provided with fluid tight partitions I 0, II respectively, so as to divide each of the ducts 8, 9, into two semi-circular ducts respectively 8a, 8b, 9a, 9b.
- the discs I and 2 are driven in opposite directions, for example, by electric motors I3 and I4 through gearing I5, I6 and I1, I8 respectively.
- Hotter fluid at a relatively lower pressure such as the exhaust gases of a gas turbine engine flows along ducts 8a, 9a, through those passages Ia, 2a, which are in alignment with said. ducts, into chamber I5 and are then led away through duct 5a, for example to atmosphere.
- Colder fluid at a relatively higher pressure such as the air delivery from a compressor of a gas turbine engine is led through duct Ta to chamber I and thence through those passages Ia, 2a, which are in communication with chamber 5 to ducts 8b, 9b, respectively, and thence through auxiliary ducting (not shown) to any desired locality such as the combustion system of a gas turbine engine.
- auxiliary ducting not shown
- each passage 5a is divided longitudinally into two or more parts as for example by a block l2 as shown in Figure 2 in order to prevent a passage 2a which is just leaving the low pressure chamber 6 from making communication with another passage 2a which i just about to enter this chamber, and similarly to prevent communication between two such passages la.
- the efiect of the above described arrangement is to enable relatively smaller discs to be used, the heat exchanger operating more uniformly and having a higher heat transmission co-efiicient than would otherwise be possible. Furthermore, if it is desired to divide the area of the discs I, 2, into unequal portions in order further to minimise the pressure loss, this can easily be arranged without the necessity of introducing any complicated structure.
- a heat exchanger comprising a casing, two oppositely rotatable and axially separated coaxial disc like matrix members forming opposite end walls for said casing and each having a plurality of axially directed passages, a fluidtight partition extending between the discs and adapted to divide the casing between said discs into two chambers, said casing having a duct constituting an inlet into one of said chambers and a second duct constituting an outlet from the other of said chambers, further ducting adapted in combination with said discs to lead one fluid through some of the passages in each disc into one of said chambers and to lead another fiuid from the other chamber through other passages in each disc, the said partition being provided with at least one axially directed channel whereby as the discs rotate a passage in one disc as it moves past said channel enters temporarily into communication with a second passage in said second disc as said second passage moves past said channel whereby the pressure in said passages are equalized.
- a heat exchanger according to claim 1 wherein the partition is provided with a number of axially directed channels and means are provided to divide each said channel longitudinally into at least two non-communicating parts.
- a heat exchanger according to claim 2 wherein said further ducting comprises for each disc a duct closed at one end by said disc and divided longitudinally by a fluid-tight partition into two parts whereby one of said parts is adapted to communicate with some of the passages in said disc, while the other part is adapted to communicate with other passages in said disc.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB23934/47A GB635851A (en) | 1947-08-29 | 1947-08-29 | Improvements in regenerative heat exchangers |
GB150748X | 1948-07-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
US2537220A true US2537220A (en) | 1951-01-09 |
Family
ID=26251018
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US31524A Expired - Lifetime US2537220A (en) | 1947-08-29 | 1948-06-07 | Heat exchanger |
Country Status (5)
Country | Link |
---|---|
US (1) | US2537220A (en, 2012) |
BE (1) | BE484116A (en, 2012) |
CH (1) | CH269307A (en, 2012) |
FR (1) | FR969433A (en, 2012) |
GB (1) | GB635851A (en, 2012) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1231732B (de) * | 1954-10-27 | 1967-01-05 | Svenska Rotor Maskiner Ab | Regenerativwaermetauscher mit zylindrischem Rotor |
US3364415A (en) * | 1965-02-01 | 1968-01-16 | Bell Telephone Labor Inc | Magnetic pulse excitation of fallou generator |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2932492A (en) * | 1955-04-21 | 1960-04-12 | Bmw Triebwerkbau Ges Mit Besch | Regenerative heat exchanger with moveable matrix |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB270759A (en) * | 1926-05-07 | 1928-07-26 | Carl Bacher | An improved heat exchange apparatus working on the regenerative principle |
-
0
- BE BE484116D patent/BE484116A/xx unknown
-
1947
- 1947-08-29 GB GB23934/47A patent/GB635851A/en not_active Expired
-
1948
- 1948-06-07 US US31524A patent/US2537220A/en not_active Expired - Lifetime
- 1948-07-20 FR FR969433D patent/FR969433A/fr not_active Expired
- 1948-08-16 CH CH269307D patent/CH269307A/de unknown
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB270759A (en) * | 1926-05-07 | 1928-07-26 | Carl Bacher | An improved heat exchange apparatus working on the regenerative principle |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1231732B (de) * | 1954-10-27 | 1967-01-05 | Svenska Rotor Maskiner Ab | Regenerativwaermetauscher mit zylindrischem Rotor |
US3364415A (en) * | 1965-02-01 | 1968-01-16 | Bell Telephone Labor Inc | Magnetic pulse excitation of fallou generator |
Also Published As
Publication number | Publication date |
---|---|
BE484116A (en, 2012) | |
GB635851A (en) | 1950-04-19 |
FR969433A (fr) | 1950-12-20 |
CH269307A (de) | 1950-06-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US2800120A (en) | Pressure exchangers | |
GB1230153A (en, 2012) | ||
US2852915A (en) | Improvements in pressure exchanger scavenging | |
US2665120A (en) | Regenerative heat exchanger | |
US3978912A (en) | Regenerative heat exchanger | |
US2537220A (en) | Heat exchanger | |
GB805195A (en) | Improvements in or relating to gas turbine power plant | |
GB689484A (en) | Improvements in or relating to heat exchangers | |
US2848871A (en) | Low pressure scavenging arrangements of pressure exchangers | |
US2795109A (en) | Combined combustion chamber, heat exchanger and flame trap for combustion turbine plants | |
US3095704A (en) | Pressure exchanger apparatus | |
US2759660A (en) | Pressure exchangers | |
US2946184A (en) | Pressure exchangers and applications thereof | |
GB1382876A (en) | Regenerative heat exchanger devices | |
US3076422A (en) | Pressure exchangers | |
US2762557A (en) | Pressure exchangers | |
GB694856A (en) | Improvements in or relating to hot-gas engines and refrigerating engines and heat pumps operating on the reversed hot gas engine principle | |
US2821367A (en) | Recovery of high pressure fluid in rotary heat exchanger | |
US2753108A (en) | Pressure exchangers | |
GB647699A (en) | Improvements in and relating to plate type heat exchangers | |
GB578686A (en) | Improvements in regenerative gas turbine plant | |
US3421575A (en) | Heat exchanger | |
US1880196A (en) | Air preheater | |
US2840351A (en) | Temperature equalizing means for regenerative air preheater structure | |
US3002357A (en) | Pressure exchangers |