US2526775A - Method and apparatus for manufacturing fibrous products - Google Patents
Method and apparatus for manufacturing fibrous products Download PDFInfo
- Publication number
- US2526775A US2526775A US475848A US47584843A US2526775A US 2526775 A US2526775 A US 2526775A US 475848 A US475848 A US 475848A US 47584843 A US47584843 A US 47584843A US 2526775 A US2526775 A US 2526775A
- Authority
- US
- United States
- Prior art keywords
- filaments
- strand
- streams
- attenuating
- blower
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title claims description 12
- 238000004519 manufacturing process Methods 0.000 title description 11
- 239000006060 molten glass Substances 0.000 claims description 16
- 238000007599 discharging Methods 0.000 claims description 4
- 239000000835 fiber Substances 0.000 description 17
- 239000012530 fluid Substances 0.000 description 17
- 238000004804 winding Methods 0.000 description 13
- 239000011521 glass Substances 0.000 description 12
- 230000002238 attenuated effect Effects 0.000 description 9
- 239000000463 material Substances 0.000 description 9
- 238000010276 construction Methods 0.000 description 5
- 238000001816 cooling Methods 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000002452 interceptive effect Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000000314 lubricant Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- OEPOKWHJYJXUGD-UHFFFAOYSA-N 2-(3-phenylmethoxyphenyl)-1,3-thiazole-4-carbaldehyde Chemical compound O=CC1=CSC(C=2C=C(OCC=3C=CC=CC=3)C=CC=2)=N1 OEPOKWHJYJXUGD-UHFFFAOYSA-N 0.000 description 1
- 229920002955 Art silk Polymers 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229920002301 cellulose acetate Polymers 0.000 description 1
- 238000012777 commercial manufacturing Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 230000009969 flowable effect Effects 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- 235000010446 mineral oil Nutrition 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000012768 molten material Substances 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
Images
Classifications
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01D—MECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
- D01D5/00—Formation of filaments, threads, or the like
- D01D5/08—Melt spinning methods
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B37/00—Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
- C03B37/01—Manufacture of glass fibres or filaments
- C03B37/02—Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B37/00—Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
- C03B37/01—Manufacture of glass fibres or filaments
- C03B37/02—Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
- C03B37/0203—Cooling non-optical fibres drawn or extruded from bushings, nozzles or orifices
- C03B37/0213—Cooling non-optical fibres drawn or extruded from bushings, nozzles or orifices by forced gas cooling, i.e. blowing or suction
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S264/00—Plastic and nonmetallic article shaping or treating: processes
- Y10S264/28—Stretching filaments in gas or steam
Definitions
- This invention relates generally to a method and apparatus for forming fibrous products. More particularly the invention contemplates an improved method and apparatus incorporating the use of an attenuating gaseous blast for forming and attenuating fibers from a hardenable liquid capable of solidifyin or hardening,
- this is .accomplished by grouping a plurality of streams of material into a strand or bundle and applying a gaseous attenuating medium to the strand
- the efficiency of attenuation is thus vastly increased over the prior method of applying the gaseous agent to the individual streams.
- the blast of gas is much more compact, all of the filaments in the strand have equal forces applied thereto .by the blast With a resulting increase in the uniformity of the finished filaments.
- Winding drum as the mechanical attenuating means has a further objection when employed in the manufacture of a strand of The attenuating continuous glass filaments. force places the strand under considerable tension during the winding operation and, as a result, the package obtained is wound so tightly that Idilficulty is oftentimes experienced in unwinding the-package. "The inner portion of the 1 package-may be put under such high compressive forces by the outer layers :of strands that the filaments in these. inner portions may be crushed.
- the fibers may be drawn at "a rate commensurate with the velocity of the fluid discharged by the blower and the speed of attenuation may be accurately varied within wide limits by merely adjusting the pressure of the fluid discharged from the blower.
- the rate of attenuation of all the filaments will be uniform at the particular speed selected.
- the equipment which renders the above possible is simple, inexpensive and may be operated over long periods of time'without servicing.
- the attenuating speed is determined with respect to the speed of rotation of the spool so that the strand is under very little tension during the winding operation and a soft package results.
- a so-cal1ed"soft or relatively loose package is desirable because it enables winding considerably more material without unduly compressing the material in the package which removes the danger of forming ringers during the subsequent unwinding operation or of otherwise interfering with ready unwinding of the strand. This is important in the manufacture of strands of glass filaments on a production basis because it permits uninterrupted operation of the equipment over a longer period of time.
- Another object of the invention is to twist the strand of filaments before it is wound on the drum or spool.
- a swirling motion is imparted to the fluid under pressure issuing from the circular orifice of the blower surrounding the fibers and this swirling motion is sufficient to twist the filaments of the strand together.
- the filaments are in effect joined in a compact strand which may be readily unwound from the package.
- Figure 1 is a semi-diagrammatic sectional view disclosing apparatus constructed in accordance with this invention
- Figure 2 is a sectional view taken substantially at right angle to the plane of Figure 1;
- Figure 3 is a semi-diagrammatic sectional view illustrating a slightly modified form of apparatus.
- Figure 4 is a plan view of the attenuating blower shown in Figure 3.
- the invention concerns itself with the manufacture of fibers or continuous filaments from materials having the characteristics required to enable the same to pass through small orifices when in a liquid or flowable state and capable of being readily solidified.
- materials possess the above characteristics and a large majority of these materials may be satisfactorily used.
- these materials are artificial silk, commonly known as Nylon, vinyl acetate, cellulose acetate, resin, sugar and vinylidene chloride resin. How-ever, exhaustive experimental work and actual commercial manufacturing show that glass is particularly suitable for the formation of fine attenuated filaments and, accordingly, this material is specifically referred to hereinafter in describing the present invention.
- the invention is directed more particularly to attenuating streams of molten glass into filaments by means of gaseous blasts.
- a plurality of streams of glass are passed through a zone of gas under pressure which is controlled in a manner to gather the streams to form a closely arranged group of filaments in which the filaments are in actual contact to form a strand and to apply suificient traction or pulling force to the strand to attenuate the streams into filaments.
- the gas under pressure is given a swirling motion suflicient to twist the filaments together and form a twisted strand or yarn.
- This arrangement is especially desirable when winding a strand of the filaments on a spool because it insures grouping or placing of the filaments on the package in such close relationship in the strand that the strand may be later unwound without tangling, or without producing ringers by separating into two or more ends as it unwinds.
- the reference character ID in the several views indicates a container for a supply ll of molten glass.
- a 'bushing I2 is suitably supported at the bottom of the container in communication with the supply [I of molten glass and is provided with a plurality of relatively small outlet orifices I3.
- the container l and the bushing I! may be of the type shown in the Slayter and Thomas Patent No. 2,234,986, dated March 18, 1941.
- the above construction is merely shown herein for the purpose of illustrating the present invention and it is to be understood that various other specific constructions of containers and bushings may be successfully used.
- the arrangement is such that molten glass flows in the form of a stream from each of the orifices 13.
- attenuation of the streams of molten glass is effected by gaseous pressure means and the latter is positioned to act on the streams grouped into a strand and after the attenuated streams have solidified sufficiently to prevent fusing or sticking together.
- the fluid pressure means comprises a circular blower [4 supported in any suitable manner below the bushing I 2 and having an annular chamber l5 communicating with a source of fluid under pressure through the medium of a pipe 16.
- the blower I4 is also formed with a centrally arranged opening I'! of generally conical shape therethrough, the side walls [8 of the opening converging downwardly.
- the top wall E9 of the blower is formed with an inwardly tapering annular projection 20 concentric with the axis of the opening I!.
- the projection 20 overlaps the wall N3 of the opening I! in spaced relation to the latter wall to form an annular passage or orifice 2!.
- communicates with the annular fluid pressure chamber l5 and is substantially restricted in cross section in order to enable gas under pressure to fiow at a high velocity through the passage into the opening 11.
- a lubricant such as mineral oil in an aqueous emulsion is applied to the filaments by suitable means, for instance, spray guns 22 directed from opposite sides onto the filaments.
- the fibers or filaments issuing from the blower I4 may be collected on a belt or other suitable conveyor to form a mat or could be packaged directly in a rotating or stationary can or could be wound directly upon a spool, depending on the particular product desired. Regardless of the disposal of the fibers or filaments issuing from the blower [4, the latter provides a highly efficient economical means for uniformly attenuating the filaments at a rate which may be readily varied within wide limits by merely altering the pressure of the fluid discharged into the blower.
- the small circular blower of the present invention requires much less gas to effect the same rate of attenuation than the previously employed blowers. With the present arrangement several hundred filaments are gathered into a strand and passed through a circular opening that may be less than one quarter of an inch in diameter in the case of glass filaments. -Previously,
- a cooling blower 23 is supported between the attenuating blower l4 and the bushing l2. This blower is for the purpose of directing a draft of cooling air against the strands of glass issuing from the bushing l2 to control the attenuation and may or may not be used depending upon the particular conditions of operation.
- blower 24 is constructed to discharge the fluid under pressure with a swirling motion so as to twist the filaments together.
- the blower 24 is provided with two intake passages 25 and 26. These passages are arranged to cause the fluid under pressure to enter the annular chamber of the blower tangentially with respect to the periphery of the chamber so as to cause a very high speed rotation of the fluid under pressure discharged from the blower.
- the blower may be identical in construction to the one previously described and, accordingly, corresponding parts are indicated by similar reference characters raised to the series I00.
- the filaments s or fibers are twisted together and form a twisted strand, designated by the reference character 21.
- This twist is false in that the strand intermediate the bushing i2 and the spool 29 is turned about its axis but the ends of the strand both at the bushing and the spool are held against movement.
- this false twist is not, of course, of a completely permanent character, it does aid greatly in maintaining the filaments in the form of an integral strand during the winding operation. This is highly desirable because it contributes materially in eliminating tangles or ringers during subsequent unwinding of the package.
- blower 24 When using the blower 24 for aiding in attenuating the filaments, it is desirable to prevent any possibility of twisting the glass streams issuing from the bushing l2 before they are full attenuated and have been solidified. This is accomplished by supporting a suitable guide 23 above he blower 24in a position-to engagethefilaments.
- the guide shownin Figure 3 also serves to gather the filaments and, if desired, may further be used to apply a suitable lubricant to the filaments.
- no means is shown in Figure-3 for artificially cooling the-glass streams issuing from the bushing l2, nevertheless, itwillbeunderstood that some means may be provided for this purpose if desired.
- a blower of the type shown by the reference character 23 in Figure 1 may beempl-oyed todirect a draftof cooling medium against the strands to chill or assist solidification of the latter.
- the method which comprises fiowing a plurality of streams of molten material of a type which solidifies when cooled, gathering the cooling streams together, and applying attenuating tension to the streams to form filaments therefrom and twist them into a strand by directing gas under pressure in a spiral direction about the strand.
- the method which comprises flowing a plurality of streams of molten glass, gathering the streams when cooled into a strand, attenuating the streams to form filaments and twisting the strand by discharging gas under pressure in a swirling motion toward the strand and in the gen eral direction of length of the filaments from an orifice surrounding the strand, winding the twisted strand at a tension less than the attenuating tension to form a package, and holding the filaments in advance of the region of application of said gas against twisting movement to prevent twisting of the streams of glass.
- a fiber forming apparatus which includes a container for molten glass having a series of orifices in said container through which the glass flows in the form of streams, an annular fiuid pressure blower surrounding the streams when gathered into a strand and having an annular outlet orifice directed toward the strand in the general direction of flow of the streams for discharging fiuid under sufiicient pressure to attenuate the streams to form filaments, said blower arranged to impart a swirling motion centered about the strand to the fluid under pressure discharged from the outlet orifice to twist the filaments together simultaneously with the attenuation thereof.
- Apparatus for producing strands of continuous glass filaments comprising means for flowing streams of molten glass to be attenuated to filaments, means including a winding drum to wind the filaments into a package, a guide over which said filaments are drawn as they are formed and by which they are gathered into a strand, and an annular swirl blower surrounding the strand and intermediate the winding drum and guide to direct a spiraling blast of gas onto said strand in the attenuating direction for attenuating said streams to form filaments and to falsely twist said strand.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Mechanical Engineering (AREA)
- Textile Engineering (AREA)
- Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
- Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
BE475831D BE475831A (en:Method) | 1943-02-13 | ||
US475848A US2526775A (en) | 1943-02-13 | 1943-02-13 | Method and apparatus for manufacturing fibrous products |
GB3477/44A GB577436A (en) | 1943-02-13 | 1944-02-24 | Method and apparatus for forming fibrous products |
FR950533D FR950533A (fr) | 1943-02-13 | 1947-07-30 | Procédé et appareil pour la fabrication de produits fibreux |
CH269742D CH269742A (fr) | 1943-02-13 | 1947-08-06 | Procédé et appareil pour la fabrication de produits fibreux. |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US475848A US2526775A (en) | 1943-02-13 | 1943-02-13 | Method and apparatus for manufacturing fibrous products |
Publications (1)
Publication Number | Publication Date |
---|---|
US2526775A true US2526775A (en) | 1950-10-24 |
Family
ID=23889402
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US475848A Expired - Lifetime US2526775A (en) | 1943-02-13 | 1943-02-13 | Method and apparatus for manufacturing fibrous products |
Country Status (5)
Country | Link |
---|---|
US (1) | US2526775A (en:Method) |
BE (1) | BE475831A (en:Method) |
CH (1) | CH269742A (en:Method) |
FR (1) | FR950533A (en:Method) |
GB (1) | GB577436A (en:Method) |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2747335A (en) * | 1951-04-18 | 1956-05-29 | Int Harvester Co | Glass fiber drawing mechanism |
US2763099A (en) * | 1951-02-07 | 1956-09-18 | Owens Corning Fiberglass Corp | Apparatus for producing and treating fibers |
US2855634A (en) * | 1954-12-22 | 1958-10-14 | Owens Corning Fiberglass Corp | Fibrous mat and method of making |
US2880457A (en) * | 1949-08-26 | 1959-04-07 | Schuller Werner | Apparatus for drawing fine threads of fibers of glass or the like |
US2885257A (en) * | 1951-04-18 | 1959-05-05 | Filament drawing mechanism | |
US2907082A (en) * | 1956-02-06 | 1959-10-06 | Marvaland Inc | Production of continuous filaments of high vapor pressure metals |
US2919970A (en) * | 1955-05-09 | 1960-01-05 | Owens Corning Fiberglass Corp | Method for attenuating and treating glass fibers |
US2928121A (en) * | 1955-05-19 | 1960-03-15 | Friedrich & Dimmock Inc | Apparatus for forming glass fiber mats |
US2978744A (en) * | 1955-09-09 | 1961-04-11 | Owens Corning Fiberglass Corp | Method and apparatus for forming fibers |
US2982082A (en) * | 1954-10-20 | 1961-05-02 | British Celanese | Production of voluminous yarn |
US2982000A (en) * | 1956-07-19 | 1961-05-02 | Du Pont | Apparatus for bulking yarn |
US3043088A (en) * | 1958-11-26 | 1962-07-10 | Du Pont | Process for making bulky yarn |
US3206922A (en) * | 1961-06-19 | 1965-09-21 | Teikokn Jinzo Kenshi Kabushiki | Nozzle for producing crimped yarn by the twisting method |
US3279164A (en) * | 1959-05-04 | 1966-10-18 | Du Pont | Fluid jet process for twisting yarn |
US3486318A (en) * | 1964-06-09 | 1969-12-30 | British Nylon Spinners Ltd | Yarns of polymeric material and a process and apparatus for making same |
US4020623A (en) * | 1975-12-03 | 1977-05-03 | Ppg Industries, Inc. | Novel textile process |
US20180237954A1 (en) * | 2015-08-14 | 2018-08-23 | The Board Of Regents Of The University Of Oklahoma | Melt blowing apparatus and method |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2067251A (en) * | 1933-04-21 | 1937-01-12 | Celanese Corp | Manufacture of textile materials |
US2133236A (en) * | 1933-12-26 | 1938-10-11 | Owens Illinois Glass Co | Glass wool and method and apparatus for making same |
US2206058A (en) * | 1936-10-23 | 1940-07-02 | Owens Corning Fiberglass Corp | Manufacture of glass wool |
US2209850A (en) * | 1938-01-21 | 1940-07-30 | Owens Corning Fiberglass Corp | Fibrous glass textile material for electrical insulation |
US2212448A (en) * | 1935-06-08 | 1940-08-20 | Owens Corning Fiberglass Corp | Method and apparatus for the production of fibers from molten glass and similar meltable materials |
US2216759A (en) * | 1935-01-31 | 1940-10-08 | Owens Corning Fiberglass Corp | Apparatus for fabricating fibrous material |
US2272588A (en) * | 1937-07-31 | 1942-02-10 | Owens Corning Fiberglass Corp | Coating for fibrous glass strands |
US2300736A (en) * | 1938-05-20 | 1942-11-03 | Owens Corning Fiberglass Corp | Method of making filamentous glass |
US2332274A (en) * | 1941-02-01 | 1943-10-19 | Owens Corning Fiberglass Corp | Fiber forming apparatus |
US2369481A (en) * | 1938-03-22 | 1945-02-13 | Owens Corning Fiberglass Corp | Manufacture of spun glass fibers |
-
0
- BE BE475831D patent/BE475831A/xx unknown
-
1943
- 1943-02-13 US US475848A patent/US2526775A/en not_active Expired - Lifetime
-
1944
- 1944-02-24 GB GB3477/44A patent/GB577436A/en not_active Expired
-
1947
- 1947-07-30 FR FR950533D patent/FR950533A/fr not_active Expired
- 1947-08-06 CH CH269742D patent/CH269742A/fr unknown
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2067251A (en) * | 1933-04-21 | 1937-01-12 | Celanese Corp | Manufacture of textile materials |
US2133236A (en) * | 1933-12-26 | 1938-10-11 | Owens Illinois Glass Co | Glass wool and method and apparatus for making same |
US2216759A (en) * | 1935-01-31 | 1940-10-08 | Owens Corning Fiberglass Corp | Apparatus for fabricating fibrous material |
US2212448A (en) * | 1935-06-08 | 1940-08-20 | Owens Corning Fiberglass Corp | Method and apparatus for the production of fibers from molten glass and similar meltable materials |
US2206058A (en) * | 1936-10-23 | 1940-07-02 | Owens Corning Fiberglass Corp | Manufacture of glass wool |
US2272588A (en) * | 1937-07-31 | 1942-02-10 | Owens Corning Fiberglass Corp | Coating for fibrous glass strands |
US2209850A (en) * | 1938-01-21 | 1940-07-30 | Owens Corning Fiberglass Corp | Fibrous glass textile material for electrical insulation |
US2369481A (en) * | 1938-03-22 | 1945-02-13 | Owens Corning Fiberglass Corp | Manufacture of spun glass fibers |
US2300736A (en) * | 1938-05-20 | 1942-11-03 | Owens Corning Fiberglass Corp | Method of making filamentous glass |
US2332274A (en) * | 1941-02-01 | 1943-10-19 | Owens Corning Fiberglass Corp | Fiber forming apparatus |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2880457A (en) * | 1949-08-26 | 1959-04-07 | Schuller Werner | Apparatus for drawing fine threads of fibers of glass or the like |
US2763099A (en) * | 1951-02-07 | 1956-09-18 | Owens Corning Fiberglass Corp | Apparatus for producing and treating fibers |
US2747335A (en) * | 1951-04-18 | 1956-05-29 | Int Harvester Co | Glass fiber drawing mechanism |
US2885257A (en) * | 1951-04-18 | 1959-05-05 | Filament drawing mechanism | |
US2982082A (en) * | 1954-10-20 | 1961-05-02 | British Celanese | Production of voluminous yarn |
US2855634A (en) * | 1954-12-22 | 1958-10-14 | Owens Corning Fiberglass Corp | Fibrous mat and method of making |
US2919970A (en) * | 1955-05-09 | 1960-01-05 | Owens Corning Fiberglass Corp | Method for attenuating and treating glass fibers |
US2928121A (en) * | 1955-05-19 | 1960-03-15 | Friedrich & Dimmock Inc | Apparatus for forming glass fiber mats |
US2978744A (en) * | 1955-09-09 | 1961-04-11 | Owens Corning Fiberglass Corp | Method and apparatus for forming fibers |
US2907082A (en) * | 1956-02-06 | 1959-10-06 | Marvaland Inc | Production of continuous filaments of high vapor pressure metals |
US2982000A (en) * | 1956-07-19 | 1961-05-02 | Du Pont | Apparatus for bulking yarn |
US3043088A (en) * | 1958-11-26 | 1962-07-10 | Du Pont | Process for making bulky yarn |
US3279164A (en) * | 1959-05-04 | 1966-10-18 | Du Pont | Fluid jet process for twisting yarn |
US3206922A (en) * | 1961-06-19 | 1965-09-21 | Teikokn Jinzo Kenshi Kabushiki | Nozzle for producing crimped yarn by the twisting method |
US3486318A (en) * | 1964-06-09 | 1969-12-30 | British Nylon Spinners Ltd | Yarns of polymeric material and a process and apparatus for making same |
US4020623A (en) * | 1975-12-03 | 1977-05-03 | Ppg Industries, Inc. | Novel textile process |
US20180237954A1 (en) * | 2015-08-14 | 2018-08-23 | The Board Of Regents Of The University Of Oklahoma | Melt blowing apparatus and method |
US11313052B2 (en) * | 2015-08-14 | 2022-04-26 | The Board Of Regents Of The University Of Oklahoma | Melt blowing apparatus and method |
Also Published As
Publication number | Publication date |
---|---|
BE475831A (en:Method) | |
GB577436A (en) | 1946-05-17 |
FR950533A (fr) | 1949-09-29 |
CH269742A (fr) | 1950-07-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US2526775A (en) | Method and apparatus for manufacturing fibrous products | |
US2431205A (en) | Apparatus for manufacturing fibrous glass | |
US3697241A (en) | Method and apparatus for providing controlled quench in the manufacture of fiber glass | |
US2886877A (en) | Method and apparatus for producing staple like yarn from continuous strand | |
US3093878A (en) | Air jet for producing bulked stub yarn | |
US2719352A (en) | Method for handling continuous strands and the like | |
US2291289A (en) | Apparatus for making siliceous fibers | |
US2300736A (en) | Method of making filamentous glass | |
US3773483A (en) | Process for fibre drawing by fluid means | |
US2719350A (en) | Method and apparatus for packaging a continuously available strand | |
US2934458A (en) | Method for coating filaments of glass | |
US2947028A (en) | Apparatus for manufacture of fibrous glass | |
JPS6424047A (en) | Production of glass yarn | |
US3118213A (en) | Spun roving apparatus | |
CN107190386A (zh) | 汽车离合器面片用长丝复合线的制备方法 | |
US2398808A (en) | Apparatus for forming fibrous strands | |
US3060674A (en) | Method for producing glass roving | |
US3041663A (en) | Method and apparatus for forming fibers | |
US2795926A (en) | Method for producing a continuous roving | |
US4223518A (en) | Suction air nozzle for forming a thread reserve | |
US2239722A (en) | Apparatus for making sliver | |
US3273812A (en) | Method for forming and winding glass strands | |
GB1268908A (en) | Improved melt spinning process for aromatic polyesters | |
US2241405A (en) | Apparatus for gathering fibers | |
GB825776A (en) | Process and apparatus for spinning a yarn |