US2522460A - Lubricating grease composition - Google Patents

Lubricating grease composition Download PDF

Info

Publication number
US2522460A
US2522460A US791644A US79164447A US2522460A US 2522460 A US2522460 A US 2522460A US 791644 A US791644 A US 791644A US 79164447 A US79164447 A US 79164447A US 2522460 A US2522460 A US 2522460A
Authority
US
United States
Prior art keywords
grease
black
carbon
oxidation
carbon black
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US791644A
Inventor
Arnold J Morway
Beerbower Alan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Standard Oil Development Co
Original Assignee
Standard Oil Development Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Standard Oil Development Co filed Critical Standard Oil Development Co
Priority to US791644A priority Critical patent/US2522460A/en
Application granted granted Critical
Publication of US2522460A publication Critical patent/US2522460A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M5/00Solid or semi-solid compositions containing as the essential lubricating ingredient mineral lubricating oils or fatty oils and their use
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/04Elements
    • C10M2201/041Carbon; Graphite; Carbon black
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/12Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2207/125Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/12Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2207/129Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of thirty or more carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/16Naphthenic acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/282Esters of (cyclo)aliphatic oolycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/34Esters having a hydrocarbon substituent of thirty or more carbon atoms, e.g. substituted succinic acid derivatives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/06Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings
    • C10M2215/064Di- and triaryl amines
    • C10M2215/065Phenyl-Naphthyl amines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/02Groups 1 or 11
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/04Groups 2 or 12
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/06Groups 3 or 13
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2050/00Form in which the lubricant is applied to the material being lubricated
    • C10N2050/10Semi-solids; greasy

Definitions

  • This invention pertains to lubricating grease compositions and particularly to grease compositions Which are stabilized against oxidation.
  • Lubricating gre-ases normally consist largely of alkali and alkaline earth metal soaps dispersed in lubricating oil.
  • the soaps are prepared by the neutralization of fatty acids or by the saponification of fats.
  • Various types of fats and fatty acids are commonly used, among them hydrogenated materials, and the latter have been found to be more susceptible to oxidative deterioration probably as the result of destruction of natural inhibitors during hydrogenation.
  • While most lubricating greases prepared from fatty acids and/or fats tend to oxidize to some extent those prepared from hydrogenated fats or fatty acids, as for example hydrogenated fish oil acids are particularly susceptible to oxidation. Aside from their tendencies toward oxid-ation these materials give excellent greases. In other respects these materials combine Well with mineral oil to produce good grease-type lubricants. They are compatible with various special additives such as extreme pressure agents, corrosion inhibitors and the like.
  • the acids which are formed as the result of oxidation frequently react chemically with materials in the bearings which are intended to be lubricated especially during storage or long periods of inactivity.
  • the reaction products tend to clog the parts and prevent proper lubrication and may make it impossible to move them, requiring complete dismantling.
  • the resulting corrosion may result not only in excessive Wear but it frequently causes the relatively movable parts to seize or to be locked and rapidly destroyed during use.
  • An object of our invention is to prevent deterioration of the type of composition mentioned above and We have found that this may be accomplished by use of certain kinds of carbon black in small quantities.
  • certain non-toxic carbon blacks can be satisfactorily employed as oxidation inhibitors. Properly used, these materials will prevent the objectionable deterioration in the greases mentioned above over relatively long periods of time.
  • theparticular types of carbon black referred to above' have a very high absorptive power for mineral oil. They also tend to form stable colloidal or greaselike structures with the oil and because of certain The comparative structure index" properties of various carbon blacks Vare known in the art,'th ⁇ ev term structure index being dened by Sweitzer and Goodrich in an article published in Rubber Age for July, 1944, entitled ,The Carbon Spectrum for the RubberCompounder, beginning at page 469 and especially onpage 470.
  • the structure index which varies considerably with various carbon blacks, is a measure of their oil absorption capacities.
  • acetylene black has a strucy ture index lof 300, compared with ordinary chan-- nel black having an 'index of 100.
  • Carbon blacks of the type referred to above preferably have a small average particle size and are reticulate and branched in particle structure.
  • the most suitable type have an average particle size ranging vbetween 25 and 50 millimicrons. These blacks have alkaline reactions,-their pH being over 7.
  • Suitable examples are acetylene black which has a particularly high structureindex number as noted above and some of the ner particle channel carbon'blacks with structure in-v dices higher than average.
  • l y y A modified channel black, well knownin the trade for its electrical conductive properties, is prepared by removal of the absorbed oxygen-ated compounds held 'to the surface of the carbon black particles during their preparation from natural gas.
  • the carbon black last mentioned is particularly effective for the present purposes of inhibiting oxidation since it has a high pH value. approximately 9, and an abnormally high structure index of about 200.
  • a carbon black is the product sold by the Columbian Carbon Company, New York, N. Y., under the brand name Conductex B. Some of its properties are listed in the aforesaid article in Rubber Age. Others of the carbon'v blacks mentioned above which have the requisitepropertiesof high pH, high structure index, etc., are also listed inr v said article.
  • the grease composition is thickened or given its grease structure
  • the ne particle carbon content useful for inhibiting oxidation, being kept to a minimum so as to avoid objections due to staining as far as practicable.
  • the quantities employed are sufficient to darken considerably the color of the grease, they do not cause the grease to become objectionable because of staining.
  • the black color ⁇ imparted to the grease is desirable.
  • Example 1 A grease having the following formula was prepared:
  • carbon blacks having a pH of more than 7.0, particle size between 20 to 100 millimicrons average, and higher than average structure index are suitable.
  • thev structure index should be above 100, preferably of the order of about 200 or even higher.
  • the quantity of black used will be varied, depending upon the tendency of the grease towards oxidation. As a rule it will be at least 1.0% and not more than 10%, based on the weight of the finished lubricant, but in many cases a smaller quantity, such as 0.3% or 0.5% will be sufficient.
  • Acetylene black is useful though not quite as eiective as the particular modified channel black mentioned above.
  • soap compounds may be used in lieu of the lime, sodium, lithium, aluminum, and zinc soaps specifically mentioned in the foregoing examples as Will be obvious to those skilled in the art.
  • the soap content may vary within the usual limits, e. g. 5 to 30% by Weight, based on the total composition.
  • a lubricating composition consisting essentially of 66 to 94% mineral lubricating oil, 5 to 30% of a metal soap selected from the group consisting of the soaps of fats and fatty acids, f y
  • modified channel kcarbon black having-a pH of about 9, a particle size from 20 to 100 millmicrons, and a structure 'index of about 200.

Description

Sept. 12, 1950 Y 'A. J. MoRwAY ETAL l .'LUBRIcAT-ING GREASE COMPOSITION Filed Dec. 15, v194'? 5 w a om@ om@ 05.02. or@ 0mm oww 2N o2 o5 om;n o2 o: om oro m m m w 5 L o QN wa u@ om ww Ndjmd Z .l-O.. P( O 30 23N OP D D \rJ.rz.u u 0.? om e o o 01N. .la OH 0.o n a o fz a@ O w- "Plassula (Ls/me) JU/J0 2094.20 NY mw, ...idoknmmm um md Patented Sept. 12, 1950 Arnold J. Morway,
Clark Township,
Union County, N. J., and Alan Beerbower, Baltimore, Md., assignors to Standard Oil Development Company, a corporation of Delaware Application December 13, 1947, Serial No. 791,644
1 Claims.
This invention pertains to lubricating grease compositions and particularly to grease compositions Which are stabilized against oxidation.
Lubricating gre-ases normally consist largely of alkali and alkaline earth metal soaps dispersed in lubricating oil. The soaps are prepared by the neutralization of fatty acids or by the saponification of fats. Various types of fats and fatty acids are commonly used, among them hydrogenated materials, and the latter have been found to be more susceptible to oxidative deterioration probably as the result of destruction of natural inhibitors during hydrogenation. While most lubricating greases prepared from fatty acids and/or fats tend to oxidize to some extent those prepared from hydrogenated fats or fatty acids, as for example hydrogenated fish oil acids are particularly susceptible to oxidation. Aside from their tendencies toward oxid-ation these materials give excellent greases. In other respects these materials combine Well with mineral oil to produce good grease-type lubricants. They are compatible with various special additives such as extreme pressure agents, corrosion inhibitors and the like.
Because of the tendency of hydrogenated fatty materials toward oxidation and resultantl instability, these materials commonly deteriorate early in use. Such deterioration results first in forming peroxides, lactones, and other oxygen bearing materials. These materials catalyze further oxidation in the lubricant causing it to become rancid and foul smelling and they induce the separation or bleeding of oil in storage from the soap which forms the grease structure. A similar separation occurs in prepacked bearings either in storage or in service.
In addition, the acids which are formed as the result of oxidation frequently react chemically with materials in the bearings which are intended to be lubricated especially during storage or long periods of inactivity. The reaction products tend to clog the parts and prevent proper lubrication and may make it impossible to move them, requiring complete dismantling. The resulting corrosion may result not only in excessive Wear but it frequently causes the relatively movable parts to seize or to be locked and rapidly destroyed during use.
An object of our invention is to prevent deterioration of the type of composition mentioned above and We have found that this may be accomplished by use of certain kinds of carbon black in small quantities. In particular, we have found that certain non-toxic carbon blacks can be satisfactorily employed as oxidation inhibitors. Properly used, these materials will prevent the objectionable deterioration in the greases mentioned above over relatively long periods of time.
In addition to inhibiting oxidation, theparticular types of carbon black referred to above' have a very high absorptive power for mineral oil. They also tend to form stable colloidal or greaselike structures with the oil and because of certain The comparative structure index" properties of various carbon blacks Vare known in the art,'th`ev term structure index being dened by Sweitzer and Goodrich in an article published in Rubber Age for July, 1944, entitled ,The Carbon Spectrum for the RubberCompounder, beginning at page 469 and especially onpage 470. The structure index, which varies considerably with various carbon blacks, is a measure of their oil absorption capacities. Thus acetylene black has a strucy ture index lof 300, compared with ordinary chan-- nel black having an 'index of 100.
Carbon blacks of the type referred to above preferably have a small average particle size and are reticulate and branched in particle structure. The most suitable type have an average particle size ranging vbetween 25 and 50 millimicrons. These blacks have alkaline reactions,-their pH being over 7. Suitable examples are acetylene black which has a particularly high structureindex number as noted above and some of the ner particle channel carbon'blacks with structure in-v dices higher than average.l y y A modified channel black, well knownin the trade for its electrical conductive properties, is prepared by removal of the absorbed oxygen-ated compounds held 'to the surface of the carbon black particles during their preparation from natural gas. The carbon black last mentioned is particularly effective for the present purposes of inhibiting oxidation since it has a high pH value. approximately 9, and an abnormally high structure index of about 200. One example of such a carbon black is the product sold by the Columbian Carbon Company, New York, N. Y., under the brand name Conductex B. Some of its properties are listed in the aforesaid article in Rubber Age. Others of the carbon'v blacks mentioned above which have the requisitepropertiesof high pH, high structure index, etc., are also listed inr v said article.
Although various types of carbon blacks have been employed in greases-in the past including the channel or color blacks, the latter have been seriously objectionable to Workmen because of their extreme staining capacity. For this reason, it is preferred to use only small percentages of the fine particle black in soap thickened lubricants. Hence in the present invention the grease composition is thickened or given its grease structure With soap, the ne particle carbon content, useful for inhibiting oxidation, being kept to a minimum so as to avoid objections due to staining as far as practicable. While the quantities employed are sufficient to darken considerably the color of the grease, they do not cause the grease to become objectionable because of staining. In fact, in some instances the black color` imparted to the grease is desirable. Light colored greases in thin films are frequently almost invisible and this characteristic sometimes makes it dicult for operators of machinery to maintain proper lubrication. There is a tendency frequently to over-lubrication and Waste and the presence of color makes it easier to detect and prevent the use of excessive quantities. On the other hand, there may be danger of failure to lubricate because of the lack of contrast between the unlubricated bearing and one carrying a thin nlm of grease. The black grease film, on the other hand, is readily noticed on shiny bearing metals.
Another factor to be considered in the inhibition of tendencies of lubricants toward oxidation is toxicity. Certain common oxidation inhibitors are very toxic and frequently these toxic metals cause vdermatitis and skin eruptions of Various kinds, to those who handle greases. Carbon blacks of the type used herein are non-toxic and do not give rise to such difficulties.
The following examples show the effect of carbon blacks of the general character listed above as they affect the oxidation resistance of greases.
Example 1 A grease having the following formula was prepared:
15.00% hydrogenated fish oil of 54 titre and 57 C. melting point 5.00% hydrogenated fatty acids 2.40% NaOI-I 0.70% hydrated lime 77.86% phenol extracted low cold test mineral oil Bomb Life, Pressure Drop (in oxygen ab- Grease sorbed), in lbs./in.2
- Hrs Hrs Hrs. Hrs. Grease described 111 Example l 38 40 42 42 Same-i-lffo Carbon black 1 48 50 52 54 Same+2% Carbon black 1 128 172 232 268 Same+4% Carbon black l.. 110 182 252 318 Y I Moded channel black, with pH of about 9, structure index 200.
Eample 2 Another grease tested had the following composition:
15 %v lithium stearate 0.5% aluminum stearate 0.5% zinc naphthenate 84.0% di-2-ethy1 hexyl sebacate This grease was subjected to the standard Norma-Hoffman Bomb test in comparison with a similar compound to which Was added 4% of the ne particle carbon black described above as having a high pH (about 9) and high structure index (200). The results are indicated in the following table:
Bomb Life, Pressure Drop in lbs./in.'-
Hrs. Hrs. Hrs. Hrs. Grease ol Example 2 24 30 44 Same-l-4% Black 738+ Ezvample 3 A third example consisted of a standard commercially available mixed soda-calcium base grease employed for ball and roller bearing lubrication. This grease has approximately the following composition:
This grease was tested in comparison with the same compound having added thereto 4% of the carbon black of high pH value and high structure index (200) described above, and the Norma- Hoifman test results are indicated in the following table:
Bomb Life, Pressure Drop in lbs/ini Hrs. Hrs. H'rs H rs. Soda-calcium base grease 26 44 Same-|-4.0% Carbon black 50 106 124-!- The accompanying drawing shows the high temperature-pressure viscosity of the two lubricants just described. It v/ill be noted that the viscosity drops off much less rapidly at higher temperature in the case of the lubricant containing carbon black. On the other hand, at normal temperature the carbon black composition has a lower viscosity than the standard lubricant without the carbon black, an effect which is surprising. Both of these characteristics are highly desirable.
While we have referred specifically to the use of the particular modified channel carbon black having a pI-I of about 9 and a structure index of about 200, it will be understood that our invention is not limited. thereto.
In general, carbon blacks having a pH of more than 7.0, particle size between 20 to 100 millimicrons average, and higher than average structure index are suitable. Thus thev structure index should be above 100, preferably of the order of about 200 or even higher. The quantity of black used will be varied, depending upon the tendency of the grease towards oxidation. As a rule it will be at least 1.0% and not more than 10%, based on the weight of the finished lubricant, but in many cases a smaller quantity, such as 0.3% or 0.5% will be sufficient. Acetylene black is useful though not quite as eiective as the particular modified channel black mentioned above.
It will further be understood that various soap compounds may be used in lieu of the lime, sodium, lithium, aluminum, and zinc soaps specifically mentioned in the foregoing examples as Will be obvious to those skilled in the art. The soap content may vary within the usual limits, e. g. 5 to 30% by Weight, based on the total composition.
We claim:
A lubricating composition consisting essentially of 66 to 94% mineral lubricating oil, 5 to 30% of a metal soap selected from the group consisting of the soaps of fats and fatty acids, f y
and 2 to 4% of a modified channel kcarbon black having-a pH of about 9, a particle size from 20 to 100 millmicrons, and a structure 'index of about 200.
rARNOLD J. Mo-RWAY.
ALAN BEERBOWER.
REFERENCES CITED The following references are of record in the file of this patent: f
UNITED STATES PATENTS dian Chem. Met., vol. 17, May 1933, p. 95,.
Industrial Carbon, by Mantell, published by Van Nostrand Co., New York, 1928, p. 229.
US791644A 1947-12-13 1947-12-13 Lubricating grease composition Expired - Lifetime US2522460A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US791644A US2522460A (en) 1947-12-13 1947-12-13 Lubricating grease composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US791644A US2522460A (en) 1947-12-13 1947-12-13 Lubricating grease composition

Publications (1)

Publication Number Publication Date
US2522460A true US2522460A (en) 1950-09-12

Family

ID=25154338

Family Applications (1)

Application Number Title Priority Date Filing Date
US791644A Expired - Lifetime US2522460A (en) 1947-12-13 1947-12-13 Lubricating grease composition

Country Status (1)

Country Link
US (1) US2522460A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2653131A (en) * 1951-03-29 1953-09-22 Standard Oil Dev Co Aluminum-carbon black thickened grease compositions
US2687175A (en) * 1950-10-17 1954-08-24 Standard Oil Co Gelled hydrocarbon and use thereof
US2696470A (en) * 1951-03-01 1954-12-07 Standard Oil Dev Co Lubricating greases thickened with carbon black
US2696469A (en) * 1952-02-09 1954-12-07 Standard Oil Dev Co Carbon black lubricating grease
US2818384A (en) * 1953-06-11 1957-12-31 Rockwell Mfg Co Polysulfide polymer sealant and lubricant
US2929779A (en) * 1956-10-31 1960-03-22 Francis F Sullivan Silicone oil grease containing a phthalocyanine and acetylene black

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2341134A (en) * 1941-05-29 1944-02-08 Standard Oil Co Grease
US2349058A (en) * 1940-03-29 1944-05-16 Standard Oil Co Lubricant and the method of preparing the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2349058A (en) * 1940-03-29 1944-05-16 Standard Oil Co Lubricant and the method of preparing the same
US2341134A (en) * 1941-05-29 1944-02-08 Standard Oil Co Grease

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2687175A (en) * 1950-10-17 1954-08-24 Standard Oil Co Gelled hydrocarbon and use thereof
US2696470A (en) * 1951-03-01 1954-12-07 Standard Oil Dev Co Lubricating greases thickened with carbon black
US2653131A (en) * 1951-03-29 1953-09-22 Standard Oil Dev Co Aluminum-carbon black thickened grease compositions
DE923029C (en) * 1951-03-29 1955-01-31 Standard Oil Dev Co Process for the production of a lubricating grease resistant to high pressure and high temperatures
US2696469A (en) * 1952-02-09 1954-12-07 Standard Oil Dev Co Carbon black lubricating grease
US2818384A (en) * 1953-06-11 1957-12-31 Rockwell Mfg Co Polysulfide polymer sealant and lubricant
US2929779A (en) * 1956-10-31 1960-03-22 Francis F Sullivan Silicone oil grease containing a phthalocyanine and acetylene black

Similar Documents

Publication Publication Date Title
US2413353A (en) Cutting oil composition
US2522460A (en) Lubricating grease composition
US2261888A (en) Steam turbine lubrication
US2351280A (en) Lubricant
US2614077A (en) Grease composition
US2363013A (en) Stable lubricating composition
US2122940A (en) Lubricant
CA1111828A (en) Synergistic lubricating compositions
US2614986A (en) Greases based on finely divided inorganic material
US2487260A (en) Extreme pressure lubricants
US2138835A (en) Lubricant
US2387999A (en) Lubrication
US2285453A (en) Lubricant
JPH06279777A (en) Silicone grease composition
US2383146A (en) Lubricants
US2386553A (en) Lubricants
US3794595A (en) Working of non-ferrous metals
US2289509A (en) Lubricant
US2696469A (en) Carbon black lubricating grease
US2149271A (en) Lubricant
US3385792A (en) Lubricants containing mixed metal salt of fatty acid and diphenols
US2758973A (en) Process for preparing lubricating grease compositions
US2347217A (en) Lubricating composition
US3203897A (en) Sodium soap grease containing a zinc salt of a dialkyl dithiophosphate
Mullett Grease lubrication of rolling bearings