US2513546A - Fluid operated propeller pitch controlling mechanism - Google Patents

Fluid operated propeller pitch controlling mechanism Download PDF

Info

Publication number
US2513546A
US2513546A US615718A US61571845A US2513546A US 2513546 A US2513546 A US 2513546A US 615718 A US615718 A US 615718A US 61571845 A US61571845 A US 61571845A US 2513546 A US2513546 A US 2513546A
Authority
US
United States
Prior art keywords
casing
servomotor
shaft
propeller
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US615718A
Inventor
Atteslander Edouard
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sulzer AG
Original Assignee
Sulzer AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sulzer AG filed Critical Sulzer AG
Application granted granted Critical
Publication of US2513546A publication Critical patent/US2513546A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H3/00Propeller-blade pitch changing
    • B63H3/06Propeller-blade pitch changing characterised by use of non-mechanical actuating means, e.g. electrical
    • B63H3/08Propeller-blade pitch changing characterised by use of non-mechanical actuating means, e.g. electrical fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H3/00Propeller-blade pitch changing
    • B63H3/06Propeller-blade pitch changing characterised by use of non-mechanical actuating means, e.g. electrical
    • B63H3/08Propeller-blade pitch changing characterised by use of non-mechanical actuating means, e.g. electrical fluid
    • B63H3/081Propeller-blade pitch changing characterised by use of non-mechanical actuating means, e.g. electrical fluid actuated by control element coaxial with the propeller shaft
    • B63H3/082Propeller-blade pitch changing characterised by use of non-mechanical actuating means, e.g. electrical fluid actuated by control element coaxial with the propeller shaft the control element being axially reciprocatable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C11/00Propellers, e.g. of ducted type; Features common to propellers and rotors for rotorcraft
    • B64C11/30Blade pitch-changing mechanisms
    • B64C11/38Blade pitch-changing mechanisms fluid, e.g. hydraulic
    • B64C11/42Blade pitch-changing mechanisms fluid, e.g. hydraulic non-automatic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B9/00Servomotors with follow-up action, e.g. obtained by feed-back control, i.e. in which the position of the actuated member conforms with that of the controlling member
    • F15B9/02Servomotors with follow-up action, e.g. obtained by feed-back control, i.e. in which the position of the actuated member conforms with that of the controlling member with servomotors of the reciprocatable or oscillatable type
    • F15B9/08Servomotors with follow-up action, e.g. obtained by feed-back control, i.e. in which the position of the actuated member conforms with that of the controlling member with servomotors of the reciprocatable or oscillatable type controlled by valves affecting the fluid feed or the fluid outlet of the servomotor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H3/00Propeller-blade pitch changing
    • B63H3/06Propeller-blade pitch changing characterised by use of non-mechanical actuating means, e.g. electrical
    • B63H3/08Propeller-blade pitch changing characterised by use of non-mechanical actuating means, e.g. electrical fluid
    • B63H2003/088Propeller-blade pitch changing characterised by use of non-mechanical actuating means, e.g. electrical fluid characterised by supply of fluid actuating medium to control element, e.g. of hydraulic fluid to actuator co-rotating with the propeller

Definitions

  • the present invention provides a servomotor for adjusting propeller blades during service which, while turning with the propeller shaft and operated by pressure medium, is arranged in an enclosed stationary casing sealed at the outlet opening for the propeller shaft.
  • Fig.1 shows a longitudinal section through 20 Fig. 2 a cross-section on the line IL-II of the casing surrounding the servomotor.
  • Fig. 3 a longitudinal section through the servomotor and the control members to a larger'scale.
  • the servomotor I is inserted between the intermediate shaft 2, which is connected to the propulsionplant, and the propeller shaft -3. Attached to the latter is the propeller, not shown, with blades adjustable in service.
  • the servomotor I is supported in the bearing shells 4 and 5 connected to the casing bottom 6 and the upper part 1 of the casing, which are closed by the cover 8.
  • the upper bearing shell 5 carries the control casing 9 with the control valve I of the servomotor I and the small receiver piston ll of the scaling is provided by the stufiing-boxes l3 and M.
  • the leakage oil from the bearing 4, 5 of the er om tor l c ects in the um: 23, is drawn oil in through the suction pipe 21 by the pump 24, which is designed for instance as a gear-type pump and driven through the helical gear wheels 25, 26 from the intermediate shaft 2, and is delivered through the pipe 28 into a container not shown in the drawing.
  • a drain pipe down to a lower container might also be connected to the sump 23 in place of the pump 24.
  • the servomotor casing 58 is unable to fill with pressure medium and cannot be loaded by the pressure of the pressure medium. Consequently the stuffing-boxes l3 and M are also relieved of all pressure and losses of pressure medium are practically impossible. Stuffing-boxes on the propeller shaft subjected to v the pressure of the pressure medium are thus entirely dispensed with.
  • the control parts are also completely protected against dirt, rust and damage.
  • the springs 29, 30, which are mounted between the projecting pieces 3
  • a pair of springs 29, 30 may be provided in one or two cross-sections of the casing 6-8. When there is only one pair of springs 29, 30, this is arranged in the plane in which lies the centre of gravity of the casing.
  • the servomotor I may have one or more pistons which move along the axis of the propeller shaft or are designed as rotary pistons. In both cases the adjusting member 48 in the shaft 3 can perform either a rotary movement or a longitudinal movement in the propeller shaft 3 to adjust the blades of the propeller.
  • a worm gear with steep thread is arranged in a known manner.
  • the adjusting linkage in the hub of the propeller between the member 48 and the propeller blades is designed in a known manner according to the movement of the adjusting member 48.
  • the pistons 46 and 41 which are mounted on the adjusting rod 48 and supported against each other and against the fixing screw by the distance sleeves 49 and 5!
  • the pistons 46 and 47 run in liners 52 and 53 and are shut off and fixed by the cover 54 and the screwed'sleeve 55.
  • the liner 53 is integral with the partition 56.
  • the servomotor cylinder I rotates in the two piece bearing with the lower shell .4 and the upper shell 5, which are held together by the bolts 51, Fig. 2.
  • the control member ii) works in the bore 58 in collaboration with the pressure medium turns the valve Ill towards the closed position supply l5 to the space 59 and the pressure medium discharge it from the space 60, as do also the passages H and I8 leading to the servomotor" l, which are covered by the control edges 51 and 62 in the closed position of the control valve Ill.
  • the passage I1 is in communication with the annular groove IS in the bearing 4, 5.
  • the passage IB is in communication with the annular groove 2%. From the annular groove I 9 the pressure medium passes through the passage 2 I, the groove 63 in the liner 52 and the openings in the liners '52, 53 leading to the piston spaces to the 5 left of the pistons '46 and 41, while the annular groove communicates with the passage 22, to which is connected the groove 64 in the liner 52. From the groove 54 the pressure medium passes into the piston spaces lying to the right of the pistons 46, ll.
  • the small piston l I which acts as'a receiver in the hydraulic system l2 and adjusts through the set screw 65 the slide piece 65 and the lever 67 in opposition to the force of the spring 58, the loading of which can be altered “by means "of the set screw 69.
  • the lever 61 is connected through the link 18 to the control member If; and through the link H to the segment-shaped slide piece 12, which is fitted in the groove '33 of the adjusting disc T4.
  • the adjusting disc M is rigidly connected through the rods 15, which are screwed into the disc 76, to the pistons lfi, W and the adjusting rod 48.
  • the linkage 72 to 75 forms the return 'mec'ha nism of the control member Ill through the servomotor pistons 16, ll.
  • the rods 15 are passed through the flange of the intermediate shaft 2; continuous slots in the driving shafts 2, 3- for returning the movement of the linkage '43 in the interior of the propeller shaft 3 to the control member outside of this shaft can be avoided by this means to some advantage, since such slots represent a considerable weakening of the propeller shaft.
  • the device works as follows: if an adjustment of the propeller blades is started in the hydraulic system I2 by a change of pressure, for instance a pressure rise, acting through the transmitter not shown in the drawing but provided at the controls, the small piston H moves to the left.
  • the slide piece 66 turns the lever 61, the valve I Ois then moved to the left out of the closed position shown, so that pressure medium from the pipe [5 enters the passage H and the annular groove l9, passes through the passage 2! and the groove 63 to the left of the pistons 46, '4'? into the servomotor cylinder, where it moves the pistons 46, 4'! with the adjusting rod 48 to the right and brings about a turning of the propeller blades, for instance from the position for full speed ahead towards the neutral position. In the neutral position of the blades, in which the propeller exerts no thrust whatever, the pistons.
  • the lubricating oil supply or the oil filling of the hub of the adjustable propeller is provided through the stufiing-box M.
  • the latter has a passage 1-9 which communicates with a lubricant tank arranged so high above the water level ofthe water craft that the hydrostatic pressure the hub slightly exceeds the greatest hydrostatic pressure outside the hub.
  • a lubricant tank arranged so high above the water level ofthe water craft that the hydrostatic pressure the hub slightly exceeds the greatest hydrostatic pressure outside the hub.
  • a lubricating groove 80 inserted opposite the passage 19, and the passage 8! in the propeller shaft is arranged in the same cross-section, so that even when the shaft turns filling is always possible from the pipe 19.
  • the passage 82 extends through the whole of the propeller shaft 3 to the hub of the propeller.
  • On the underside of the stufiing-box M are two drain passages 84, which conduct into the interior of the casing 6 any lubricating medium leaking through the packing M.
  • a stationary casing for use in a controllable-pitch propeller assembly, a stationary casing, a shaft passing through said casing comprising a driving shaft portion, a driven hollow shaft portion and a tubular housing portion communicating internally with said driven hollow portion, all said shaft portions being connected in torque-transmitting relation to one another, a control linkage memberactivate said control linkage member, a stationary source of fluid under pressure located outside said shaft, a stationary sleeve surrounding said shaft, and passages contained in said shaft lead'-' ing from the interior of said housing portion to the exterior of said shaft within said sleeve, said sleeve serving to transmit 'fiuid under pres sure from said source to said servomotor through and spaced away from said packing elements.
  • fluid transmitti-ng means including annular grooves insidethe sleeve, conduits in the shaft leading from said grooves to the pressure-fluid chamber of the servomotor, tubes leading from the outer walls of said sleeve to the source of fluid under pressure, and the conduits in the body of said sleeve leading from said grooves to said tubes.
  • a control member for introducing selectively the fluid under pressure to chosen portions of the servomotor pressure-fluid chamber, said control member being located inside the casing and including a valve chamber inserted in the fluid transmitting means and an operable valve member within said valve chamber.

Description

July 4, 1950 E. ATTESLANDER 2,513,546
FLUID OPERATED PROPELLER PITCH CONTROLLING MECHANISM gw m 2 1 ATTORNEYS-V m 0 N g i TE 7 0 7 6 7 W m Z 6 w 00 my a 6 7m .v 0 6 I17 J i W 6 =4 66 f m M 9 W 1 T w, 6 w R, in g 5 2 W A, 0 2 m. 6 N ,6 J 6 M 3 d n f e p 1 6 m m 6 m 6 w o 4 6 6 6 6 w w 6 MW w 6 6 W Patented July 4, 1950 FLUID OPERATED PROPELLER PITCH CONTROLLING MECHANISM Edouard Atteslander, Winterthur, Switzerland, assignor to Sulzer Freres, Societe Anonyme, Winterthur, Switzerland Application September 12, 1945, Serial No. 615,718
UNITED STATES PATENTOFFICE In Switzerland December 2, 1944 5 Claims.
In order to eliminate this disadvantage the present invention provides a servomotor for adjusting propeller blades during service which, while turning with the propeller shaft and operated by pressure medium, is arranged in an enclosed stationary casing sealed at the outlet opening for the propeller shaft.
An embodiment of the invention is shown dia grammatically in the drawing.
Fig.1 shows a longitudinal section through 20 Fig. 2 a cross-section on the line IL-II of the casing surrounding the servomotor.
Fig. 1,
Fig. 3 a longitudinal section through the servomotor and the control members to a larger'scale.
In the shafting of a propeller which serves for the;propu1si0n of .a water or air craft the servomotor I is inserted between the intermediate shaft 2, which is connected to the propulsionplant, and the propeller shaft -3. Attached to the latter is the propeller, not shown, with blades adjustable in service. The servomotor I is supported in the bearing shells 4 and 5 connected to the casing bottom 6 and the upper part 1 of the casing, which are closed by the cover 8.
The upper bearing shell 5 carries the control casing 9 with the control valve I of the servomotor I and the small receiver piston ll of the scaling is provided by the stufiing-boxes l3 and M. The pressure medium for the servomotor I,
usually pressure oil, is supplied and led off through L the connecting branches i and IS, the passages l1 and I8 in the control casing 9 and in the upper bearing shell 5, according to the position of the control valve l0, and further through the annular grooves l9 and in the bearing shell 4 and 5, passing from there through the passages 2| and 22 to the servomotor pistons in the casing of the servomotor l.
The leakage oil from the bearing 4, 5 of the er om tor l c ects in the um: 23, is drawn oil in through the suction pipe 21 by the pump 24, which is designed for instance as a gear-type pump and driven through the helical gear wheels 25, 26 from the intermediate shaft 2, and is delivered through the pipe 28 into a container not shown in the drawing. A drain pipe down to a lower container might also be connected to the sump 23 in place of the pump 24.
In this way the servomotor casing 58 is unable to fill with pressure medium and cannot be loaded by the pressure of the pressure medium. Consequently the stuffing-boxes l3 and M are also relieved of all pressure and losses of pressure medium are practically impossible. Stuffing-boxes on the propeller shaft subjected to v the pressure of the pressure medium are thus entirely dispensed with. The control parts are also completely protected against dirt, rust and damage.
In order to keep the sealing of the bearing 4. 5 intact if possible for years, wear is practically prevented by the weight of the casing 6-8, of the bearing 4, 5 and of the control parts 9 and [0 being entirely compensated. The springs 29, 30, which are mounted between the projecting pieces 3| on the casing element 6 and the foundation 32, are provided for this purpose. A pair of springs 29, 30 may be provided in one or two cross-sections of the casing 6-8. When there is only one pair of springs 29, 30, this is arranged in the plane in which lies the centre of gravity of the casing.
In order to prevent the casing from turning the pins 33, 34 are provided, and these can be adjusted, with a small clearance required for the spring efiect, by means of the nuts 35. The loading of the springs 29, 30 can be accurately adjusted with the nuts 36. The servomotor I may have one or more pistons which move along the axis of the propeller shaft or are designed as rotary pistons. In both cases the adjusting member 48 in the shaft 3 can perform either a rotary movement or a longitudinal movement in the propeller shaft 3 to adjust the blades of the propeller.
Between reciprocating pistons and. a rotary adjusting shaft 48 a worm gear with steep thread is arranged in a known manner. The adjusting linkage in the hub of the propeller between the member 48 and the propeller blades is designed in a known manner according to the movement of the adjusting member 48. The servomotor i Fig. 3.
In the servomotor l are the pistons 46 and 41, which are mounted on the adjusting rod 48 and supported against each other and against the fixing screw by the distance sleeves 49 and 5! The pistons 46 and 47 run in liners 52 and 53 and are shut off and fixed by the cover 54 and the screwed'sleeve 55. The liner 53 is integral with the partition 56.
The servomotor cylinder I rotates in the two piece bearing with the lower shell .4 and the upper shell 5, which are held together by the bolts 51, Fig. 2. The control member ii) works in the bore 58 in collaboration with the pressure medium turns the valve Ill towards the closed position supply l5 to the space 59 and the pressure medium discharge it from the space 60, as do also the passages H and I8 leading to the servomotor" l, which are covered by the control edges 51 and 62 in the closed position of the control valve Ill.
The passage I1 is in communication with the annular groove IS in the bearing 4, 5. The passage IB is in communication with the annular groove 2%. From the annular groove I 9 the pressure medium passes through the passage 2 I, the groove 63 in the liner 52 and the openings in the liners '52, 53 leading to the piston spaces to the 5 left of the pistons '46 and 41, while the annular groove communicates with the passage 22, to which is connected the groove 64 in the liner 52. From the groove 54 the pressure medium passes into the piston spaces lying to the right of the pistons 46, ll.
In a further bore in the casing '9 is the small piston l I, which acts as'a receiver in the hydraulic system l2 and adjusts through the set screw 65 the slide piece 65 and the lever 67 in opposition to the force of the spring 58, the loading of which can be altered "by means "of the set screw 69. The lever 61 is connected through the link 18 to the control member If; and through the link H to the segment-shaped slide piece 12, which is fitted in the groove '33 of the adjusting disc T4. The adjusting disc M is rigidly connected through the rods 15, which are screwed into the disc 76, to the pistons lfi, W and the adjusting rod 48.
' The linkage 72 to 75 forms the return 'mec'ha nism of the control member Ill through the servomotor pistons 16, ll. The rods 15 are passed through the flange of the intermediate shaft 2; continuous slots in the driving shafts 2, 3- for returning the movement of the linkage '43 in the interior of the propeller shaft 3 to the control member outside of this shaft can be avoided by this means to some advantage, since such slots represent a considerable weakening of the propeller shaft.
The device works as follows: if an adjustment of the propeller blades is started in the hydraulic system I2 by a change of pressure, for instance a pressure rise, acting through the transmitter not shown in the drawing but provided at the controls, the small piston H moves to the left. The slide piece 66 turns the lever 61, the valve I Ois then moved to the left out of the closed position shown, so that pressure medium from the pipe [5 enters the passage H and the annular groove l9, passes through the passage 2! and the groove 63 to the left of the pistons 46, '4'? into the servomotor cylinder, where it moves the pistons 46, 4'! with the adjusting rod 48 to the right and brings about a turning of the propeller blades, for instance from the position for full speed ahead towards the neutral position. In the neutral position of the blades, in which the propeller exerts no thrust whatever, the pistons.
46, 41 are in the middle position; the outerrnos't 7 said passages, said sleeve being inside said casing shown. When the small piston H is brought to a standstill, the valve Hi will be moved to the right till the passages 51 and [8 are completely closed and will remain in this closed position. The pistons '45, M moving to the right force the pressure medium in the right-hand piston spaces through the groove Ki l, the passage 22, the annular groove 28 and the passage [8 into the space and from there into the drain pipe Hi.
If the valve It is displaced to the right out of the closed position shown, the passage l8 and with it the'spaces to the right of the pistons 46, 41 is connected to the pressure medium supply 15, while the pressure medium from the spaces to the left of the pistons 46, 47 passes by the route indicated to the passage il and through the longitudinal passage 1'! and the openings is to the space [ill and to the drain pipe l6. c
The lubricating oil supply or the oil filling of the hub of the adjustable propeller is provided through the stufiing-box M. The latter has a passage 1-9 which communicates with a lubricant tank arranged so high above the water level ofthe water craft that the hydrostatic pressure the hub slightly exceeds the greatest hydrostatic pressure outside the hub. In thestuffing-box M is a lubricating groove 80, inserted opposite the passage 19, and the passage 8! in the propeller shaft is arranged in the same cross-section, so that even when the shaft turns filling is always possible from the pipe 19. The passage '81- into the passage iii. of the adjusting member *48,
which is sealed olT from the servomotor I by a packing 83. The passage 82 extends through the whole of the propeller shaft 3 to the hub of the propeller. On the underside of the stufiing-box M are two drain passages 84, which conduct into the interior of the casing 6 any lubricating medium leaking through the packing M.
I claim:
1. For use in a controllable-pitch propeller assembly, a stationary casing, a shaft passing through said casing comprising a driving shaft portion, a driven hollow shaft portion and a tubular housing portion communicating internally with said driven hollow portion, all said shaft portions being connected in torque-transmitting relation to one another, a control linkage memberactivate said control linkage member, a stationary source of fluid under pressure located outside said shaft, a stationary sleeve surrounding said shaft, and passages contained in said shaft lead'-' ing from the interior of said housing portion to the exterior of said shaft within said sleeve, said sleeve serving to transmit 'fiuid under pres sure from said source to said servomotor through and spaced away from said packing elements.
In the combination of claim 1, fluid transmitti-ng means including annular grooves insidethe sleeve, conduits in the shaft leading from said grooves to the pressure-fluid chamber of the servomotor, tubes leading from the outer walls of said sleeve to the source of fluid under pressure, and the conduits in the body of said sleeve leading from said grooves to said tubes.
3. In the combination of claim 2, a control member for introducing selectively the fluid under pressure to chosen portions of the servomotor pressure-fluid chamber, said control member being located inside the casing and including a valve chamber inserted in the fluid transmitting means and an operable valve member within said valve chamber.
4. In the combination of claim 1, a sump within the casing for collecting fluid leading past the sleeve, a fluid pump scavenging from said sump, a fluid receiver outside said sleeve and tubes connecting said pump to said receiver.
5. In the combination of claim 1, means for relieving the shaft of at least a part of the weight of the casing, said means consisting of elastic elements connecting said casing to fixed points of support.
EDOUARD ATTESLANDER.
REFERENCES CITED The following references are of record in the file of this patent:
UNITED STATES PATENTS Number Name- Date 1,945,0'71 Popp Jan. 30, 1934 2,028,448 Harza Jan. 21, 1936 2,210,009 Ruths et a1 Aug. 6, 1940 2,244,770 Englesson June 10, 1941 2,456,361 Atteslander Dec. 14, 1948 FOREIGN PATENTS Number Country Date 553,929 Great Britain June 10, 1943
US615718A 1944-12-02 1945-09-12 Fluid operated propeller pitch controlling mechanism Expired - Lifetime US2513546A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH250261T 1944-12-02
CH248141T 1944-12-02

Publications (1)

Publication Number Publication Date
US2513546A true US2513546A (en) 1950-07-04

Family

ID=41228725

Family Applications (1)

Application Number Title Priority Date Filing Date
US615718A Expired - Lifetime US2513546A (en) 1944-12-02 1945-09-12 Fluid operated propeller pitch controlling mechanism

Country Status (4)

Country Link
US (1) US2513546A (en)
CH (2) CH250261A (en)
FR (1) FR916934A (en)
GB (1) GB603115A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2679233A (en) * 1946-10-07 1954-05-25 Liaaen Nils Johannes Shaft-housed servomotor of the follow-up type
US2693243A (en) * 1952-07-23 1954-11-02 John H Strandell Double crank controllable pitch propeller
US2739571A (en) * 1952-12-29 1956-03-27 Northrop Aircraft Inc Cylinder assembly for hydraulic actuator
US2753847A (en) * 1952-08-14 1956-07-10 Reynolds Metals Co Apparatus for hydraulic production of metallic extrusions and forgings
US2754923A (en) * 1952-06-30 1956-07-17 John H Strandell Single crank controllable pitch propeller
US2794508A (en) * 1953-10-26 1957-06-04 Karlstad Mekaniska Ab Controllable pitch propeller
US2798564A (en) * 1952-06-30 1957-07-09 John H Strandell Mechanical controllable pitch propeller
US2944520A (en) * 1954-09-13 1960-07-12 Swanson Bernard August Fluid motor with rotary and/or rectilinear movable piston
US2954830A (en) * 1954-05-27 1960-10-04 Cooper Bessemer Corp Propeller pitch control mechanism
US2992688A (en) * 1957-02-18 1961-07-18 Hartzell Propeller Inc Adjustable pitch propeller
US3051248A (en) * 1957-04-18 1962-08-28 Ernest-Charles Hatcher Propellers or the like having variable-pitch blades
US3229771A (en) * 1963-04-29 1966-01-18 Karlstad Mekaniska Ab Runner-controlled hydraulic turbines, pumps and propellers

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1945071A (en) * 1927-08-31 1934-01-30 Harry E Popp Hydraulic turbine
US2028448A (en) * 1935-04-03 1936-01-21 Leroy F Harza Hydraulic turbine
US2210009A (en) * 1938-08-10 1940-08-06 Robert J Ruths Hydraulic operated variable pitch propeller
US2244770A (en) * 1937-01-15 1941-06-10 Englesson John Elov Operating device for propellers, turbine wheels, and pump wheels having rotatable blades
GB553929A (en) * 1941-03-08 1943-06-10 Escher Wyss Maschf Ag Improvements in or relating to variable-pitch propellers
US2456361A (en) * 1943-08-14 1948-12-14 Sulzer Ag Device for adjusting the blades of ships' propellers

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1945071A (en) * 1927-08-31 1934-01-30 Harry E Popp Hydraulic turbine
US2028448A (en) * 1935-04-03 1936-01-21 Leroy F Harza Hydraulic turbine
US2244770A (en) * 1937-01-15 1941-06-10 Englesson John Elov Operating device for propellers, turbine wheels, and pump wheels having rotatable blades
US2210009A (en) * 1938-08-10 1940-08-06 Robert J Ruths Hydraulic operated variable pitch propeller
GB553929A (en) * 1941-03-08 1943-06-10 Escher Wyss Maschf Ag Improvements in or relating to variable-pitch propellers
US2456361A (en) * 1943-08-14 1948-12-14 Sulzer Ag Device for adjusting the blades of ships' propellers

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2679233A (en) * 1946-10-07 1954-05-25 Liaaen Nils Johannes Shaft-housed servomotor of the follow-up type
US2754923A (en) * 1952-06-30 1956-07-17 John H Strandell Single crank controllable pitch propeller
US2798564A (en) * 1952-06-30 1957-07-09 John H Strandell Mechanical controllable pitch propeller
US2693243A (en) * 1952-07-23 1954-11-02 John H Strandell Double crank controllable pitch propeller
US2753847A (en) * 1952-08-14 1956-07-10 Reynolds Metals Co Apparatus for hydraulic production of metallic extrusions and forgings
US2739571A (en) * 1952-12-29 1956-03-27 Northrop Aircraft Inc Cylinder assembly for hydraulic actuator
US2794508A (en) * 1953-10-26 1957-06-04 Karlstad Mekaniska Ab Controllable pitch propeller
US2954830A (en) * 1954-05-27 1960-10-04 Cooper Bessemer Corp Propeller pitch control mechanism
US2944520A (en) * 1954-09-13 1960-07-12 Swanson Bernard August Fluid motor with rotary and/or rectilinear movable piston
US2992688A (en) * 1957-02-18 1961-07-18 Hartzell Propeller Inc Adjustable pitch propeller
US3051248A (en) * 1957-04-18 1962-08-28 Ernest-Charles Hatcher Propellers or the like having variable-pitch blades
US3229771A (en) * 1963-04-29 1966-01-18 Karlstad Mekaniska Ab Runner-controlled hydraulic turbines, pumps and propellers

Also Published As

Publication number Publication date
FR916934A (en) 1946-12-19
CH248141A (en) 1947-04-15
CH250261A (en) 1948-06-01
GB603115A (en) 1948-06-09

Similar Documents

Publication Publication Date Title
US2513546A (en) Fluid operated propeller pitch controlling mechanism
US4245844A (en) Apparatus for removing leakage flow of a pressurized medium from gap type seals
US4534271A (en) Dual machine aggregates with a connection for a consumer of mechanical energy
US3133506A (en) Gear pump having internal bearings and seals
US2114076A (en) Hydraulic power transmission mechanism
JPS58194690A (en) Hydraulic device for variable pitch propeller
US3799291A (en) Lubricating device for a z-drive for ships
US1840872A (en) Power transmission
US1904496A (en) Hydraulic transmission system
US2187147A (en) Swivel joint
US2036437A (en) Motor vehicle
US2028448A (en) Hydraulic turbine
US2590870A (en) Lubricating means for power transmitting mechanism
US3150599A (en) Hydraulic power conversion device
US1924124A (en) Pump
US1840876A (en) Power transmitting apparatus
US2293731A (en) Hydraulic clutch transmission mechanism
US2440338A (en) Outboard motor lubrication
US4131400A (en) Hydraulic rotary screw machine with axial balancing piston
US2894582A (en) Rotary cutoff machine with radially movable cutters
US3229794A (en) Hydraulic couplings
US2247429A (en) Locomotive booster
US2505968A (en) Shaft seal and method of effecting the seal
US2820436A (en) Effecting relative displacement between pusher member and separator cage of a push-type centrifucal machine
US2252642A (en) Hydraulic coupling