US2501736A - Rotary distributing head oil burner - Google Patents

Rotary distributing head oil burner Download PDF

Info

Publication number
US2501736A
US2501736A US743414A US74341447A US2501736A US 2501736 A US2501736 A US 2501736A US 743414 A US743414 A US 743414A US 74341447 A US74341447 A US 74341447A US 2501736 A US2501736 A US 2501736A
Authority
US
United States
Prior art keywords
air
fuel
casing
burner
passageway
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US743414A
Inventor
Horace W Olsen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US743414A priority Critical patent/US2501736A/en
Application granted granted Critical
Publication of US2501736A publication Critical patent/US2501736A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D11/00Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space
    • F23D11/04Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space the spraying action being obtained by centrifugal action
    • F23D11/08Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space the spraying action being obtained by centrifugal action using a vertical shaft

Definitions

  • This invention relates to hydro-carbon burners, and more particularly to such burners of the non-aspirating type. It has been the consistent aim of hydro-carbon burner designers to produce burners which approach the ultimate in efliciency from th stand-- point of heat produced per unit of fuel consumption. To achieve this, various means have been devised to secure more perfect combustion by a more complete breakdown of the oil particles, coupled with an improved mixing of the oil particles with oxygen to produce a more highly volatile mixture.
  • the object of this invention is to provide a burner in which means are employed to reduce the size of the droplets, or particles, of oil to a point that nearly complete hydroxylation takes place prior to the time that the fuel is actually burned. V
  • a further object of th invention is to provide a burner of this type, wherein a maximum eificiency is obtained in the mixture of the fuel and air prior to and during its period of combustion, and in the amount of control the op- 'erator of the burner has over the flow of airin and from the wind box system.
  • I :mAnother object of the invention is the provi- Si0lfl1'0f a burner, whereinwaste materials or impurities are automatically removed from the burner and deposited clear of the burner and beyond the sphere of combustion.
  • Yet another object of the invention is to provide a burner of extreme flexibility, wherein the efiiciency remains substantially constant whether adjusted for large or small fuel consumption.
  • Figurez is, a horizontal section taken on the line 22 of Figure 1;
  • Figure 3 is a section through the spinner head takenon the line 3--3 of Figure 1 looking toward the intake ring;
  • FIG. 4 is a section taken on the same line as Figure 3, but looking in the opposite direction toward the shroud plate;
  • Figure 5 is a section taken on the line 5-5 of Figure 3 showing the seating of channel-forming spacers in the spinner head.
  • the burner ofthe present invention comprises a wind box system I, having channels 2, 3 and 4, for the passage of primary, secondary, and tertiary air supplies respectively, and a spinner head 5.
  • the wind box I is supported upon a spider 6 which may be positioned and held in a fire box in any conventional manner.
  • the spider is provided with a central hub i, from which extends a plurality of radial arms 8.
  • the outer portions of the arms turn upward and carry fiat horizontally disposed flanges 9 at their ends, the flanges forming supports for a vertical openended cylindrical casing It].
  • the casing has a peripheral flange I l skirting its lower end, which seats upon the casing supports 9 on the spider arms.
  • Casing l0 when in position on the arms, is concentric with the hub l of th spider.
  • the upper end of the casing 10 is tapered inwardly, as at 2, for a purpose to b described later.
  • a second casing 13 having a lower portion l4 seating upon the horizontal portions of the spider arms 13, and an upper portion l5 of less diameter than the-lower portion and joined to the lower portion by an inclined section [6.
  • a tapered collar il'fits over the upper end of the casing l3; and extends upward to-a point substantially flush with the upper end of the casing Ill.
  • Positioning pins is have their inner ends threaded into the collar 5'! at spaced points about the periphery oi the casing 53 and extend radially outward to contact the inner wall of the casing l0. These pins may be screwed in or out to position and hold the casing i3 concentric to casing 10. When, the pins are properly adjusted, they are held in position by lock nuts I9.
  • a tube '20 has its lower end fitted into and is supported by the hub T of the spider 6.
  • the lower end of the tube extends below the hub, and the upper end rises vertically through the casing l3 and terminates above the plane of the upper ends of the casings l0 and i3.
  • passageway 2 being through tube 20
  • passageway 3 being an annular one formed between tube 20 and easing l3
  • passageway 4 also being annular and formed between casings l3 and Ill.
  • the inward taper of the upper end [2 of casing l and the collar II is substantially the same, whereby the air rising in passageway 4 is given a direction change and. issues from the mouth of the passageway to form an inwardly directed hollow cone of air.
  • the taper of collar H toward tube restricts the mouth of passageway 3 so that the cylinder of air issuing therefrom is reduced in diameter and the air is directed closely adjacent the outer perimeter of the spinner head.
  • valves Two of these valves, 2
  • sleeves 23 and 24 closely fitting and slidably mounted on the casing l3 and the tube 20 respectively
  • When sleeve 23 of valve 2
  • Tube 20 is provided with a plurality of elongated openings 27 spaced around its periphery.
  • a sleeve 28 is slidably fitted over the tube and may be moved to cover more or less of the openings 21 to control the primary supply of air.
  • a shaft 29 is positioned centrally of tube 20 and extends beyond both ends of the tube.
  • the shaft is supported at the lower end of the tube in'an anti-friction bearing carried by a bearing plug 30, which also serves to close the lower end of the tube.
  • is fixed in the tube near its'upper end and carries an anti-friction bearing which forms the upper journal for shaft 29.
  • the shaft carries the spinner head 5, and upon its lower end, a pulley 32 is mounted. A belt from a suitable source of power will pass around the pulley to rotate the shaft.
  • I Spinner head 5 is composed of two parts, a
  • Shroud plate 33 mounted on the shaft 29, and an intake ring 34 beneath the shroud plate.
  • Shroud plate 33 is a disk-like member, smooth on its upper surface and having a centrally disposed hub 35 depending from its lower face to receive and be fixed to the shaft 29.
  • the hub is joined to the disk by a slow curve 36, whereby the vertically rising fuel will be smoothly di- 'Verted in a horizontal direction.
  • Annular ribs 3'! project from the under side of the disk, the ribs being positioned concentric to the disk.
  • Intake ring 34 is of smaller outside diameter than the shroud plate, and its inner opening 38 is of Sufficient size to form with the hub 35 an annular opening for the passage of fuel.
  • Intake ring 34 is also provided with a plurality of spaced concentric annular ribs 40, the ribs on the intake ring being of such number and size with respect to those on the shroud plate that when the two members, intake ring, and shroud plate are placed in operative association, the ribs 31 of the shroud plate fit into the recesses between the ribs 40 of the intake ring.
  • Both shroud plate and intake ring are provided with grooves, the grooves extending across the respective ribs and shown at 4
  • the grooves occupy positions substantially tangential to the intake throat formed between the opening 38 in the intake ring and the hub 35 of the shroud plate.
  • Spacers 43 fit into the grooves, and the shroud plate and intake ring are fastened together by bolts 44.
  • the spacers serve to hold the shroud plate and intake ring at the proper distance from each other, so that the ribs of the two elements interflt without touching, leaving a tortuous passageway between them.
  • the spacers also serve to divide this passageway into a plurality of channels. It will be noted that when the spinner head is assembled, the shroud plate presents a peripheral portion 45 which overhangs the intake ring and forms a guiding surface to give the fuel leaving the spinner head its initial horizontal direction.
  • Pipe 46 may conveniently extend upward through passageway 3 and be inserted through the tube 20 at a point above the spider 3
  • the outlet end of the pipe may be flattened to form a nozzle 41, and the nozzle terminates within the intake throat of the spinner head.
  • the head In operation, the head is rotated by means of shaft 29, and fuel is introduced into the rapidly rotating head. In the head, it is picked up and forced outward through the tortuous path be tween the spacers 43 and the nested annular ribs on the shroud plate and intake ring. In passing through the head, the size of the individual particles or droplets of oil is reduced materially.
  • the overhanging lip 45 on the shroud plate directs the flow of these finely divided droplets into the streams of air from the secondary and tertiary air supplies. The flow of these streams is induced by the difference in temperature in the wind box and that at the mouth where the combustion of the gaseous mixture of fuel oil and air takes place.
  • the size of the particles or droplets of fuel on leaving the head is such that while they have sufficient momentum to penetrate the stream of secondary air completely, their direction of flow will be materially affected thereby, the gases in their passage through the secondary air acquiring a torus motion.
  • This resulting motion, or turbulence, is accentuated by the flow ofair from the outer passageway 4.
  • the flow of air from passageways 3 and 4 is so directed that the fuel enters each of these streams approximately at right angles thereto.
  • the flame resulting from the above described action will be short and nearly spherical in shape.
  • the burner described will operate quite eificiently when adjusted to burn a large amount of fuel and will operate with the same efliciency when turned down to burn a small amount.
  • the temperature in the combustion area will induce the proper flow of air through the wind box for the amount of fuel being burned.
  • the correct proportional ratio of air flowing through the various passageways is controlled by the valves in the individual passageways.
  • the efficiency is further enhanced by the serpentine passage of the fuel through the head which produces the optimum time lag between the time the fuel flows into the head and the time that it is actually burned. Waste materials or impurities in the fuel consumed will not hamper materially the efiicient operation of the burner.
  • a spinner head comprising axially spaced plates having their diametrically juxtaposed faces shaped to form between them a tortuous path from the center of the plates to the periphery thereof, means between the plates spaced peripherally thereof to divide the tortuous path into a plurality of tortuous channels, a shaft supporting said spinner head, means to supply fuel to the space between the plates, a plurality of cylindrical casings concentric to each other and to said shaft and forming between them passageways for primary, secondary, and tertiary air supplies, the primary air passageway communicating with the space between the plates, the secondary air passageway shaped to discharge a cylinder of air around the perimeter of the spinner head, and the tertiary air passageway shaped to discharge a converging cone of air outside the secondary cylinder of air, and means to control the amount of air permitted to flow through the respective passageways.

Description

March 28, 1950 H, w, OLSEN 2,501,736
ROTARY DISTRIBUTING HEAD OIL BURNER Filed April 25, 1947 2 Sheets-Sheet l IN V EN TOR.
.Hgraca V 01.9911
4 ATTX March 28, 1950 H. w.' OLSEN 2,501,736
ROTARY DISTRIBUTING HEAD OIL BURNER Filed April 25, 1947 2 sheets-Sheet 2 Patented Mar. 28, 1950 UNITED STATES .m! QFFHCE This invention relates to hydro-carbon burners, and more particularly to such burners of the non-aspirating type. It has been the consistent aim of hydro-carbon burner designers to produce burners which approach the ultimate in efliciency from th stand-- point of heat produced per unit of fuel consumption. To achieve this, various means have been devised to secure more perfect combustion by a more complete breakdown of the oil particles, coupled with an improved mixing of the oil particles with oxygen to produce a more highly volatile mixture. The object of this invention is to provide a burner in which means are employed to reduce the size of the droplets, or particles, of oil to a point that nearly complete hydroxylation takes place prior to the time that the fuel is actually burned. V
A further object of th invention is to provide a burner of this type, wherein a maximum eificiency is obtained in the mixture of the fuel and air prior to and during its period of combustion, and in the amount of control the op- 'erator of the burner has over the flow of airin and from the wind box system.
It is a still further object of the invention to provide a burner, wherein atomized fuel is thrown outward from a central head by centrifugal force, the force being suflicient to throw the fuel. across a surrounding concentric secondary air supply into a tertiary air supply, the droplets being sufiiciently small, to have their direction of flow materially affected by the flow of secondary air thereby acquiring a torus motion accentuated by the tertiary air flow to produce a short and nearly spherical-shaped flame. I :mAnother object of the invention is the provi- Si0lfl1'0f a burner, whereinwaste materials or impurities are automatically removed from the burner and deposited clear of the burner and beyond the sphere of combustion.
Yet another object of the invention is to provide a burner of extreme flexibility, wherein the efiiciency remains substantially constant whether adjusted for large or small fuel consumption Other objects will become apparent, from the fpllowing detailed description of one form of the invention, taken in conjunction with the draw-.
ings which accompany and form a part of this specification.
--In the drawings: -Figure l is a verticalsection through a hydrocarbon burner embodying the principles of the present invention:
Figurez is, a horizontal section taken on the line 22 of Figure 1;
Figure 3 is a section through the spinner head takenon the line 3--3 of Figure 1 looking toward the intake ring;
A Figure 4 is a section taken on the same line as Figure 3, but looking in the opposite direction toward the shroud plate; and
Figure 5 is a section taken on the line 5-5 of Figure 3 showing the seating of channel-forming spacers in the spinner head.
Referring to the drawings in detail, the burner ofthe present invention comprises a wind box system I, having channels 2, 3 and 4, for the passage of primary, secondary, and tertiary air supplies respectively, and a spinner head 5.
The wind box I is supported upon a spider 6 which may be positioned and held in a fire box in any conventional manner. The spider is provided with a central hub i, from which extends a plurality of radial arms 8. The outer portions of the arms turn upward and carry fiat horizontally disposed flanges 9 at their ends, the flanges forming supports for a vertical openended cylindrical casing It]. The casing has a peripheral flange I l skirting its lower end, which seats upon the casing supports 9 on the spider arms. Casing l0, when in position on the arms, is concentric with the hub l of th spider. The upper end of the casing 10 is tapered inwardly, as at 2, for a purpose to b described later.
- concentrically positioned within the casing I0 is a second casing 13 having a lower portion l4 seating upon the horizontal portions of the spider arms 13, and an upper portion l5 of less diameter than the-lower portion and joined to the lower portion by an inclined section [6. A tapered collar il'fits over the upper end of the casing l3; and extends upward to-a point substantially flush with the upper end of the casing Ill. Positioning pins is have their inner ends threaded into the collar 5'! at spaced points about the periphery oi the casing 53 and extend radially outward to contact the inner wall of the casing l0. These pins may be screwed in or out to position and hold the casing i3 concentric to casing 10. When, the pins are properly adjusted, they are held in position by lock nuts I9.
A tube '20 has its lower end fitted into and is supported by the hub T of the spider 6. The lower end of the tube extends below the hub, and the upper end rises vertically through the casing l3 and terminates above the plane of the upper ends of the casings l0 and i3.
. Thus. there are provided three concentric cas-v ings forming the three passageways 2, 3 and 4, mentioned above, passageway 2 being through tube 20, passageway 3 being an annular one formed between tube 20 and easing l3, and passageway 4 also being annular and formed between casings l3 and Ill. The inward taper of the upper end [2 of casing l and the collar II is substantially the same, whereby the air rising in passageway 4 is given a direction change and. issues from the mouth of the passageway to form an inwardly directed hollow cone of air. The taper of collar H toward tube restricts the mouth of passageway 3 so that the cylinder of air issuing therefrom is reduced in diameter and the air is directed closely adjacent the outer perimeter of the spinner head.
Control of the incoming air in the three passageways is obtained through the use of valves. Two of these valves, 2| and 22, controlling the passageways 4 and 3 respectively, are similar, and comprise sleeves 23 and 24 closely fitting and slidably mounted on the casing l3 and the tube 20 respectively, and outwardly flared conical skirts 25 and 26, which depend from sleeves 23 and 24 and are the valves proper. When sleeve 23 of valve 2| is slid upwardly on casing I3, the outer edge of its skirt 25 comes in contact with the lower surface of flange ll of casing I0, shutting off the supply of air through the passageway 4. Downward movement of the valve moves the skirt from the flange H and permits the entrance of increasing amounts of air. Movement of valve 24 gives similar control over the air supply through passageway 3, the skirt 26 cooperating with the inclined section [6 of casing i3 to cut off the supply of air. Tube 20 is provided with a plurality of elongated openings 27 spaced around its periphery. A sleeve 28 is slidably fitted over the tube and may be moved to cover more or less of the openings 21 to control the primary supply of air.
A shaft 29 is positioned centrally of tube 20 and extends beyond both ends of the tube. The shaft is supported at the lower end of the tube in'an anti-friction bearing carried by a bearing plug 30, which also serves to close the lower end of the tube. A spider 3| is fixed in the tube near its'upper end and carries an anti-friction bearing which forms the upper journal for shaft 29. At its upper end, the shaft carries the spinner head 5, and upon its lower end, a pulley 32 is mounted. A belt from a suitable source of power will pass around the pulley to rotate the shaft.
I Spinner head 5 is composed of two parts, a
shroud plate 33 mounted on the shaft 29, and an intake ring 34 beneath the shroud plate. Shroud plate 33 is a disk-like member, smooth on its upper surface and having a centrally disposed hub 35 depending from its lower face to receive and be fixed to the shaft 29. The hub is joined to the disk by a slow curve 36, whereby the vertically rising fuel will be smoothly di- 'Verted in a horizontal direction. Annular ribs 3'! project from the under side of the disk, the ribs being positioned concentric to the disk. Intake ring 34 is of smaller outside diameter than the shroud plate, and its inner opening 38 is of Sufficient size to form with the hub 35 an annular opening for the passage of fuel. The sides of the opening diverge upwardly to aid the smooth flow of the fuel in making its direction change. The periphery of the ring is undercut to provide an annular boss 39, which just fits within the upper end of the tube 20. Intake ring 34 is also provided with a plurality of spaced concentric annular ribs 40, the ribs on the intake ring being of such number and size with respect to those on the shroud plate that when the two members, intake ring, and shroud plate are placed in operative association, the ribs 31 of the shroud plate fit into the recesses between the ribs 40 of the intake ring.
Both shroud plate and intake ring are provided with grooves, the grooves extending across the respective ribs and shown at 4| and 42 in the shroud plate and intake ring respectively. The grooves occupy positions substantially tangential to the intake throat formed between the opening 38 in the intake ring and the hub 35 of the shroud plate. Spacers 43 fit into the grooves, and the shroud plate and intake ring are fastened together by bolts 44. The spacers serve to hold the shroud plate and intake ring at the proper distance from each other, so that the ribs of the two elements interflt without touching, leaving a tortuous passageway between them. The spacers also serve to divide this passageway into a plurality of channels. It will be noted that when the spinner head is assembled, the shroud plate presents a peripheral portion 45 which overhangs the intake ring and forms a guiding surface to give the fuel leaving the spinner head its initial horizontal direction.
Fuel oil is fed to the spinner head by means of a pipe 46. Pipe 46 may conveniently extend upward through passageway 3 and be inserted through the tube 20 at a point above the spider 3|. The outlet end of the pipe may be flattened to form a nozzle 41, and the nozzle terminates within the intake throat of the spinner head.
In operation, the head is rotated by means of shaft 29, and fuel is introduced into the rapidly rotating head. In the head, it is picked up and forced outward through the tortuous path be tween the spacers 43 and the nested annular ribs on the shroud plate and intake ring. In passing through the head, the size of the individual particles or droplets of oil is reduced materially. The overhanging lip 45 on the shroud plate directs the flow of these finely divided droplets into the streams of air from the secondary and tertiary air supplies. The flow of these streams is induced by the difference in temperature in the wind box and that at the mouth where the combustion of the gaseous mixture of fuel oil and air takes place. The size of the particles or droplets of fuel on leaving the head is such that while they have sufficient momentum to penetrate the stream of secondary air completely, their direction of flow will be materially affected thereby, the gases in their passage through the secondary air acquiring a torus motion. This resulting motion, or turbulence, is accentuated by the flow ofair from the outer passageway 4. The flow of air from passageways 3 and 4 is so directed that the fuel enters each of these streams approximately at right angles thereto. The flame resulting from the above described action will be short and nearly spherical in shape.
The burner described will operate quite eificiently when adjusted to burn a large amount of fuel and will operate with the same efliciency when turned down to burn a small amount. The temperature in the combustion area will induce the proper flow of air through the wind box for the amount of fuel being burned. The correct proportional ratio of air flowing through the various passageways is controlled by the valves in the individual passageways. The efficiency is further enhanced by the serpentine passage of the fuel through the head which produces the optimum time lag between the time the fuel flows into the head and the time that it is actually burned. Waste materials or impurities in the fuel consumed will not hamper materially the efiicient operation of the burner. These impurities, being normally heavier than the fuel itself, are by reason of their greater momentum thrown outward beyond the sphere in which combustion takes place, thus removing them automatically from the fuel. The design of the burner is such that these impurities will be thrown entirely clear of the burner structure.
While in the above there has been described one practical embodiment of the invention, it will be obvious that the invention may take other forms without departing from the inventive concept as defined by the appended claims.
What I claim is:
1. In hydro-carbon burners, a spinner head comprising axially spaced plates having their diametrically juxtaposed faces shaped to form between them a tortuous path from the center of the plates to the periphery thereof, means between the plates spaced peripherally thereof to divide the tortuous path into a plurality of tortuous channels, a shaft supporting said spinner head, means to supply fuel to the space between the plates, a plurality of cylindrical casings concentric to each other and to said shaft and forming between them passageways for primary, secondary, and tertiary air supplies, the primary air passageway communicating with the space between the plates, the secondary air passageway shaped to discharge a cylinder of air around the perimeter of the spinner head, and the tertiary air passageway shaped to discharge a converging cone of air outside the secondary cylinder of air, and means to control the amount of air permitted to flow through the respective passageways.
2. A spinner head for hydro-carbon burners,
6 comprising a shroud plate having a diametrical face and a depending hub, an intake ring having a diametrical face with a central opening larger than said hub and adapted to form with said hub an intake throat when said shroud plate and intake ring are juxtaposed, the juxtaposed diametrical faces of the plate and ring being each provided with a plurality of concentric ribs, the ribs on the respective plate and ring being of such diameters that the ribs of one fit closely between the ribs of the other, the diametrical faces of said plate and ring having peripherally spaced matching grooves, spacers fitting in the grooves, and means to hold the ring to the plate, said grooves and spacers extending substantially tangentially of the opening in said ring, and said spacers spacing the diametrical faces of the plate and ring and their interfitting ribs to define a very narrow tortuous path for producing the optimum time lag of oil passage therethrough and materially reducing the size of the oil droplets.
HORACE W. OLSEN.
REFERENCES CITED The following references are of record in the file of this patent:
UNITED STATES PATENTS Number Name Date 1,543,235 Scheminger, Jr. June 23, 1925 1,726,175 Brown Aug. 27, 1929 1,726,640 Benninger Sept. 3, 1929 1,870,099 Croan Aug. 2, 1932 2,025,526 Rodler Dec. 24, 1935 2,112,888 Greenwalt Apr. 5, 1938 2,370,345 Frost Feb. 27, 1945 2,390,056 Cleaver et a1. Dec. 4, 1945 FOREIGN PATENTS Number Country Date 29,298 Great Britain of 1910 104,246 Great Britain Mar. 1, 1917
US743414A 1947-04-23 1947-04-23 Rotary distributing head oil burner Expired - Lifetime US2501736A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US743414A US2501736A (en) 1947-04-23 1947-04-23 Rotary distributing head oil burner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US743414A US2501736A (en) 1947-04-23 1947-04-23 Rotary distributing head oil burner

Publications (1)

Publication Number Publication Date
US2501736A true US2501736A (en) 1950-03-28

Family

ID=24988685

Family Applications (1)

Application Number Title Priority Date Filing Date
US743414A Expired - Lifetime US2501736A (en) 1947-04-23 1947-04-23 Rotary distributing head oil burner

Country Status (1)

Country Link
US (1) US2501736A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2733961A (en) * 1956-02-07 Atomizer
US2753211A (en) * 1951-10-18 1956-07-03 Francis C Hubbard Fluid sprinkler
US3044441A (en) * 1960-05-06 1962-07-17 American Can Co Spray coating apparatus
US3148832A (en) * 1961-06-23 1964-09-15 Sames Mach Electrostat Liquid spray coating device
US6142386A (en) * 1995-12-12 2000-11-07 Dan Mamtirim Rotary sprinkler without dynamic seals

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB191029298A (en) * 1910-12-16 1911-07-20 Frederick William Golby Improvements in Centrifugal Oil Burners.
GB104246A (en) * 1916-03-27 1917-03-01 William James Young Improvements in Oil Fuel Burners.
US1543235A (en) * 1924-04-17 1925-06-23 Aetna Automatic Oil Burner Inc Oil-distributing head
US1726175A (en) * 1928-05-14 1929-08-27 William A Brown Oil burner
US1726640A (en) * 1927-06-07 1929-09-03 Benniger John Oil burner
US1870099A (en) * 1930-09-01 1932-08-02 Walter B Croan Atomizer
US2025526A (en) * 1932-11-02 1935-12-24 Oil Equipment Lab Inc Oil burning device
US2112888A (en) * 1934-02-09 1938-04-05 John E Greenawalt Burner
US2370345A (en) * 1942-10-19 1945-02-27 John G Frost Horizontal rotary type oil burner
US2390056A (en) * 1942-01-09 1945-12-04 Cleaver Brooks Co Oil burner

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB191029298A (en) * 1910-12-16 1911-07-20 Frederick William Golby Improvements in Centrifugal Oil Burners.
GB104246A (en) * 1916-03-27 1917-03-01 William James Young Improvements in Oil Fuel Burners.
US1543235A (en) * 1924-04-17 1925-06-23 Aetna Automatic Oil Burner Inc Oil-distributing head
US1726640A (en) * 1927-06-07 1929-09-03 Benniger John Oil burner
US1726175A (en) * 1928-05-14 1929-08-27 William A Brown Oil burner
US1870099A (en) * 1930-09-01 1932-08-02 Walter B Croan Atomizer
US2025526A (en) * 1932-11-02 1935-12-24 Oil Equipment Lab Inc Oil burning device
US2112888A (en) * 1934-02-09 1938-04-05 John E Greenawalt Burner
US2390056A (en) * 1942-01-09 1945-12-04 Cleaver Brooks Co Oil burner
US2370345A (en) * 1942-10-19 1945-02-27 John G Frost Horizontal rotary type oil burner

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2733961A (en) * 1956-02-07 Atomizer
US2753211A (en) * 1951-10-18 1956-07-03 Francis C Hubbard Fluid sprinkler
US3044441A (en) * 1960-05-06 1962-07-17 American Can Co Spray coating apparatus
US3148832A (en) * 1961-06-23 1964-09-15 Sames Mach Electrostat Liquid spray coating device
US6142386A (en) * 1995-12-12 2000-11-07 Dan Mamtirim Rotary sprinkler without dynamic seals

Similar Documents

Publication Publication Date Title
US2602292A (en) Fuel-air mixing device
US2164225A (en) Liquid fuel burner
US2501736A (en) Rotary distributing head oil burner
US2275394A (en) Pulverized fuel burning apparatus
US2275555A (en) Gas burner
US2284906A (en) Method and apparatus for burning fuel
US2112888A (en) Burner
US2165191A (en) Fuel burner
US2549347A (en) Gaseous fuel burner and flame spreader
US1935318A (en) Oil burner
US2324540A (en) Forced air heater
US2620864A (en) Rotary oil burner
US2560076A (en) Method and apparatus for burning fuel
US1064314A (en) Oil-burner.
US1891835A (en) Oil burner
US1853277A (en) Reverse blast oil burner
US2039591A (en) Air distributor for oil burners
CN206755165U (en) A kind of burner with blossom type nozzle
US2030123A (en) Rotary projector head for oil burners
US2592911A (en) Gas burner and sectional hearth
US2072587A (en) Burner
US1888476A (en) Rotary oil burner
US2684711A (en) Gas burner secondary air feed and flame baffle
US1971874A (en) Oil burner
US1728011A (en) Centrifugal fluid-fuel burner