US2490727A - Direct-current voltage amplifier - Google Patents
Direct-current voltage amplifier Download PDFInfo
- Publication number
- US2490727A US2490727A US790176A US79017647A US2490727A US 2490727 A US2490727 A US 2490727A US 790176 A US790176 A US 790176A US 79017647 A US79017647 A US 79017647A US 2490727 A US2490727 A US 2490727A
- Authority
- US
- United States
- Prior art keywords
- voltage
- cathode
- grid
- amplifier
- direct
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000004020 conductor Substances 0.000 description 8
- 230000000903 blocking effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/34—DC amplifiers in which all stages are DC-coupled
- H03F3/36—DC amplifiers in which all stages are DC-coupled with tubes only
Definitions
- the invention relates to direct-current voltage amplifiers wherein the voltage required to be amplified is supplied to the input circuit of a tube-amplifier by means of a mechanically operated quick-acting switch.
- Direct-current voltage amplifiers without a mechanically operated quick-acting switch exhibit the disadvantage that if the input voltage of the amplifier remains constant, a voltage which is variable with time is set up in the output circuit, said action being referred to as drift of the amplifier. Steps are known per se for counteracting this drift of the amplifier.
- a direct-current voltage amplifier comprising a mechanically operated quick-acting switch the voltage to be amplified and a constant voltage (for example, the voltage zero) are supplied successively to the input circuit of the amplifier. From the output circuit are taken two voltages the difierence between which is independent of the drift of the amplifier.
- each of the two voltages taken from the output circuit is dependent upon the drift of the amplifier. This drift may occur to such an extent that the absolute values of the voltages lie outside the measuring range of a measuring device responsive to these voltages, for example a cathode ray tube.
- the invention provides a simple solution in the device under consideration.
- the mechanically operated quick-acting switch is connected in such manner that in one position of this switch the voltage to be amplified and, in the other position, a voltage derived from the output voltage of the amplifier with the aid of a network the time constant of which is preferably smaller than the switching period of the quick-acting switch, is made operative in the input circuit of the amplifier.
- Fig. 1 illustrates one form of an amplifier in accordance with the invention
- Fig. 2 illustrates a modification of the arrangement shown in Fig. 1.
- Fig. 1 the voltage to be amplified is supplied via terminals l and 2 to a contact 30f a mechanically operated quick-acting periodic switch, for example a vibrator switch.
- the arm 4 of the switch is connected to the control grid of a discharge tube 6 in the anode circuit of which is set up an amplified voltage which is supplied to deflector electrodes 1 of a cathode ray tube 8.
- a switch arm 5 is moved in synchronism with the switch arm 4 of the mechanically operated quick-acting switch.
- part of the anode voltage of tube 5 which part is determined by resistances 9 and I0, is supplied by the switch arm 5 to a condenser ll included in the grid circuit of tube 6.
- the time constant of the network 9, II], II is chosen so as to be smaller than the switching time of the quick-acting switch. Consequently, the condenser ll assumes a potential which is proportional to the voltage across the electrodes at the time when the switch is in the position with the arms 4' and 5 connected to the respective lower contacts. At this time a negative feed -,back'voltage is applied to the input circuit b,
- the time constant of the condenser H and the resistance It) is so large that the condenser does not discharge to any significant extent during the period of time in which the switch occupies that position in which the grid of the tube 6 assumes the potential of the contact terminal I. Accordingly in this position of the switch the voltage set up in the anode circuit of tube 5 will likewise be independent of the drift of the amplifier so that the disadvantage inherent to the known device is eliminated. If the time constant of the network 9, ll], H were greater than the switching frequency of the quick-acting switch, there is the danger that the control effected would not be sufficiently rapid.
- the period of time during which the grid of tube 6 assumes the potential of the contact terminal is in general chosen so as to be longer at least by a factor 5 than that during which this grid assumes the potential of the contact terminal 2.
- the time constant of the network 9, l0, II will be taken still smaller than has been mentioned above.
- the resistance 9 may be replaced by a blocking condenser or the resistance [2 included in the cathode circuit may be given a higher value.
- the mechanically operated switch comprises a single arm member which alternately connects the condenser-resistor network l'I-Hl to'the terminal 2 of the source of voltage to be amplified and to the resistor 9 of the feed back path.
- the terminal of the voltage to be amplified is fixedly connected to the grid of the amplifier tube.
- the invention is not limited to' the example illustrated but may, of course, also be applied to amplifiers comprising a plurality of tubes and'to push-pull or cathode coupled amplifiers. If desired, an amplifiying tube may be incorporated in the circuit of the resistance a.
- a direct-current voltage amplifier circuit arrangement comprising an electron discharge tube having a cathode, a control grid and an anode; an input circuit for applying the voltage to be amplified to the cathode and grid of said discharge-tube; an output circuit coupled to said cathode and anode for producing an output voltage, mechanically actuated switching means for periodically interrupting said input circuit, and means to periodically apply said output voltage to-s'aid control grid in negative feedback relationship during the said interruption of said input circuit.
- a direct-current voltage amplifier circuit arrangement comprising an electron discharge tube having a cathode, a control grid and an anode, an input circuit for applying the voltage to be amplified to the cathode-and grid of said discharge tube, an output circuit coupled to said cathode and-anode for producing an output voltage, mechanically actuated switching means for periodically interrupting said input circuit, and means to periodically apply said output voltage to said control grid in negative feedback relationship during the said interruption of said input circuit, saidilatter means comprising a network having a chargingtime-constant shorter than the period of said switching means and a discharging time constant greater than the period of said switching means.
- a direct-current voltage amplifier circuit arrangement comprising an electron discharge tube having a cathode, a control grid and an anode, an input circuit for applying the voltage'to be amplified-to the cathode'andgrid ofsaid'discharge tube, an output circuit coupled to said cathode and anode for producing an output voltage, mechanically actuated switching means for periodically interrupting said input ci'rcuiigand means to periodicallyapply said output voltage to said.
- a direct-current voltage amplifier circuit arrangement comprising anelectron discharge: tube having a-cathode, acontrolgrid and'an-anode, an input circuit for applying the voltage to be amplified to the cathode and grid of said dis-' charge tube, an output circuit coupled to: said cathode and anode for producing an output voltage, mechanically actuated switching means for periodically interrupting said input circuit in a ratio at which the voltage to be amplified is connected to said cathode and grid for a time interval greater than about five times the period of said interruption, and means to periodically apply said output voltage to said control grid in negative feed-back relationship during the said interruption of said input circuit, said latter means comprising afirst resistance element coupled to said cathode and grid, a capacitive element shunting said resistance element and forming therewith a network having a time constant greater than said time interval, a switching elementoperative'in synchronism with said switching means and coupled to said first resistance element, and a second resistance element coupled between said
- a direct-current voltage amplifier circuit arrangement comprising an electron dischargetubehavinga cathoda a control grid andan-anode, aninput circuit comprising a first conductor and a second conductor for'applyng' the voltage tobe amplified to the cathode and grid of said discharge tube, an output circuit coupled to said cathode andanode for producingan-outp'ut voltage, mechanically actuated'fir'st switching means for periodically selectively connecting said first andsecond conductors to said grid comprising a switch arm member connected to saidgrid;
- first contact member connected'to said first conductor and a second contact member connected to-said'second conductor, and means to'period-- pled to said output circuit andsecondswitchingmeans: operative in synchronism with said'first switchin means to periodically connect said secondresistance element to said first resistance element.
- a direct current voltageam'plifiercircuit arrangement comprising an electrondischarge tube @having a cathode; a control grid andan anode,
- an input circuit comprising a first conductor connected to said grid and a second conductor for applying the voltage to-be-amplified to-the cathode and grid of said discharge tube, an output circuit-coupled to saidcathode-and anode for producing an output-voltage; mechanically actuated switching: means for periodic-ally interrupting said inputcircuit comprising a switch arm member coupled to said cathode and'a first contact member coupled to said second conductor, and means to periodically apply said output voltage to said control grid in negative feedback relationship during the said interruption of said input circuit, said meansv comprising afirst re-- sistance element interposed between said switcharm member and said cathode, a capacitance element shunting; said first resistance-element,-a-
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Amplifiers (AREA)
- X-Ray Techniques (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
NL646581X | 1946-10-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
US2490727A true US2490727A (en) | 1949-12-06 |
Family
ID=19791943
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US790176A Expired - Lifetime US2490727A (en) | 1946-10-25 | 1947-12-06 | Direct-current voltage amplifier |
Country Status (4)
Country | Link |
---|---|
US (1) | US2490727A (enrdf_load_stackoverflow) |
DE (1) | DE854959C (enrdf_load_stackoverflow) |
FR (1) | FR956050A (enrdf_load_stackoverflow) |
GB (1) | GB646581A (enrdf_load_stackoverflow) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2567532A (en) * | 1947-10-07 | 1951-09-11 | Emi Ltd | Electrical analogue device |
US2685000A (en) * | 1949-04-29 | 1954-07-27 | Rca Corp | Stabilized direct current amplifier |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE903698C (de) * | 1951-07-24 | 1954-02-08 | Siemens Ag | Eingangsschaltung fuer Gleichspannungsverstaerker |
US2795653A (en) * | 1953-11-12 | 1957-06-11 | Reeves Instrument Corp | Vacuum tube voltmeter amplifier circuit |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1820212A (en) * | 1929-11-07 | 1931-08-25 | Bauer Paul Sherman | Electric meter |
US1926568A (en) * | 1930-02-21 | 1933-09-12 | Stanolind Oil & Gas Co | Direct current amplifier and method of operating same |
US2043107A (en) * | 1933-05-20 | 1936-06-02 | Paul H Macneil | Direct current amplifier |
US2297543A (en) * | 1937-10-09 | 1942-09-29 | Eberhardt Rolf | Device for amplifying direct voltage or current |
US2413788A (en) * | 1942-05-11 | 1947-01-07 | Gen Motors Corp | Amplifier for small voltages |
US2442298A (en) * | 1944-05-29 | 1948-05-25 | Gen Motors Corp | Modulated heat ray detector |
-
0
- FR FR956050D patent/FR956050A/fr not_active Expired
-
1947
- 1947-10-22 GB GB28294/47A patent/GB646581A/en not_active Expired
- 1947-12-06 US US790176A patent/US2490727A/en not_active Expired - Lifetime
-
1948
- 1948-11-04 DE DEP20539D patent/DE854959C/de not_active Expired
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1820212A (en) * | 1929-11-07 | 1931-08-25 | Bauer Paul Sherman | Electric meter |
US1926568A (en) * | 1930-02-21 | 1933-09-12 | Stanolind Oil & Gas Co | Direct current amplifier and method of operating same |
US2043107A (en) * | 1933-05-20 | 1936-06-02 | Paul H Macneil | Direct current amplifier |
US2297543A (en) * | 1937-10-09 | 1942-09-29 | Eberhardt Rolf | Device for amplifying direct voltage or current |
US2413788A (en) * | 1942-05-11 | 1947-01-07 | Gen Motors Corp | Amplifier for small voltages |
US2442298A (en) * | 1944-05-29 | 1948-05-25 | Gen Motors Corp | Modulated heat ray detector |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2567532A (en) * | 1947-10-07 | 1951-09-11 | Emi Ltd | Electrical analogue device |
US2685000A (en) * | 1949-04-29 | 1954-07-27 | Rca Corp | Stabilized direct current amplifier |
Also Published As
Publication number | Publication date |
---|---|
FR956050A (enrdf_load_stackoverflow) | 1950-01-23 |
DE854959C (de) | 1952-11-10 |
GB646581A (en) | 1950-11-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US2714136A (en) | Stabilized direct-coupled amplifier | |
US2443864A (en) | Voltage gain control device | |
US2313122A (en) | Amplifier | |
US2490727A (en) | Direct-current voltage amplifier | |
US2570225A (en) | Series electronic switch | |
US2365575A (en) | Electron discharge amplifier | |
US2638512A (en) | Direct coupled amplifying system | |
US2525632A (en) | Low-frequency amplifier | |
US2579816A (en) | Voltage regulator | |
US3247462A (en) | Balanced paraphase amplifier including a feed forward path | |
US2284064A (en) | Amplifier | |
US2619594A (en) | Electronic switching device | |
US2154200A (en) | Voltage regulator device | |
US2557644A (en) | Electronic switching circuit | |
US2462190A (en) | Amplifier for small direct currents | |
US3052852A (en) | Symmetrical off-set relay circuit utilizing a non-linear difference amplifier | |
US2935693A (en) | Stabilized direct and alternating voltage amplifier circuit arrangement | |
US2511122A (en) | Amplifier compensated for cathode emission change | |
US2835749A (en) | Feedback amplifiers | |
US2926309A (en) | Screen grid amplifier | |
US2782266A (en) | Volume control | |
US2400734A (en) | Direct coupled amplifier | |
US2058738A (en) | Electrical circuit for cold cathode tubes | |
US2499604A (en) | Keying circuit employing thermionic valves | |
US3134046A (en) | Amplifier and coupling circuit |