US2485938A - Voltage generator, hyperbolic wave form - Google Patents

Voltage generator, hyperbolic wave form Download PDF

Info

Publication number
US2485938A
US2485938A US759640A US75964047A US2485938A US 2485938 A US2485938 A US 2485938A US 759640 A US759640 A US 759640A US 75964047 A US75964047 A US 75964047A US 2485938 A US2485938 A US 2485938A
Authority
US
United States
Prior art keywords
resistor
circuit
relay
wave form
switch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US759640A
Inventor
Talbott Francis Leo
Jr Ralph O Robinson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
US Department of Navy
Original Assignee
US Department of Navy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by US Department of Navy filed Critical US Department of Navy
Priority to US759640A priority Critical patent/US2485938A/en
Application granted granted Critical
Publication of US2485938A publication Critical patent/US2485938A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06GANALOGUE COMPUTERS
    • G06G7/00Devices in which the computing operation is performed by varying electric or magnetic quantities
    • G06G7/12Arrangements for performing computing operations, e.g. operational amplifiers
    • G06G7/16Arrangements for performing computing operations, e.g. operational amplifiers for multiplication or division
    • G06G7/163Arrangements for performing computing operations, e.g. operational amplifiers for multiplication or division using a variable impedance controlled by one of the input signals, variable amplification or transfer function

Definitions

  • the object of this invention is to provide a method of and means for generating an oscillating or other fluctuating voltage having a hyperbolic envelope.
  • More specifically it relates to a system for producing an oscillating voltage of uniform amplitude, and for modulating this voltage hyperbolically, usually in the sense that the maxima of successive oscillations increase with elapsed time according to the desired hyperbolic variation.
  • a further object is to provide automatic means for varying the impedance of a circuit at a substantially uniform rate, while applying an oscillating voltage of constant amplitude to the impedance, whereby the current through the circuit, which varies inversely as the impedance, will grow at an ever-increasing rate, closely approximating the manner in which the ordinates of an equilateral hyperbola increase as the corresponding abscissas decrease.
  • Fig. 1 shows one circuit that may be used in practicing the invention.
  • Fig. 2 shows mechanical details of the rotating elements of this circuit.
  • an oscillator I that may be of any desired kind, the oscillator includes an adjusting dial such as 2 for varying the generated frequency.
  • the output of this oscillator is fed to the input terminals of a transformer 3, here shown as an auto-transformer of the iron-core type.
  • the member 3 will act as a step-down transformer, feeding to two conductom 4 and 5 a voltage lower than that generated in the oscillator I.
  • this step-down transformation is a very desirable feature, as it diminishes the current drain of the oscillator and has much less tendency to disturb its constancy of voltage and/or frequency.
  • the conductor 5 may be grounded, as shown, to stabilize the circuit, although this is not always requisite.
  • a conductor 6 leads from a shiftable contact l of the transformer 3 to one end of a resistor 8, here shown as approximately 10,000 ohms in value.
  • This resistor 8 however is preferably variable as shown, its slider being connected to a :r
  • Another resistor l0 also nominally 10,000 ohms, is connected to the other end of the conductor 9 by a conductor H, a common conductor
  • the relay M has a winding IS.
  • 6 leads from the upper contact of the relay M to the other end of the resistor l0, and also is connected to one wire I 1 of the output wires I1 and Hi.
  • the conductor 4 connected through the wire 6 to one end of the resistor 8, leads to the lower contact of the relay M.
  • the wire 5 continues as the output wire I8, a variable resistor l3 being bridged across the wires I! and I8 to control manually the voltage delivered at the output end of the device.
  • the relay winding I5 has one end thereof connected to the positive terminal of a battery or other current source 20, the negative terminal of which is connected to the cathode 2
  • the specific tube illustrated is the 884 type, often called a thyratron.
  • the plate 24 of the tube is connected to the other end of the winding l5 through a wire 25 and a switch 26, the latter being manually actuable.
  • Another switch 2! is provided to control a con ductor connecting the cathode 2
  • a relatively high negative potential is applied to the grid 28 by a battery 29, with a protective or current limiting resistance 30 in series therewith, between the grid 28 and cathode 2
  • the resistor I0 preferably is of the type shown in Fig. 2, namely, one in which the resistance element is arranged in substantially a full circle.
  • This resistor is so constructed that the resistance thereof varies uniformly with the angular position of a radial arm 3
  • is preferably continuously rotatable, by means of a motor 32 and shaft 33.
  • the arm of the switch 2'! in the grid circuit is also carried by the shaft 33, so as to rotate in synchronism with the arm 3
  • the oscillations from the oscillator I will pass through the transformer l, and some of their energy will produce an output at the wires i1 and it that is attenuated by the resistor 8 and the resistor It. This energy will flow through the wires 9 and H, the movable element It of the relay l4, and the wires 18 and I1.
  • the relay I4 is of a very quick-acting type, so that the shift takes place almost instantaneously.
  • the resistor 8 is preferably high enough to be adjustable to equality with the maximum value of the resistor Hi.
  • the effect of rotation of the radial arm 3! is to decrease thevalue of the'resistance in the rheostat II at a uniform rate, down nearly to zero. During this decrease, the current flowing through the rheostat ID will increase inversely as the resistance left in the circuit, thus giving the desired hyperbolic rate of increase of amplitude of the oscillations appearing at the output end of the circuit, at the terminals i1 and II.
  • a circuit for modulating oscillations comprising a variable resistor, means for varying the value thereof from maximum to minimum at a uniform rate, a substantially constant resistor the value of which is approximately equal to the maximum of the variable resistor, a source of oscillations, the said substantially constant resistor normally being connected in series with the said source of oscillations, and means for substituting the said uniformly varying resistor in place of the said substantially constant resistor.
  • a circuit including a resistor the value of which periodically changes continuously from maximumto minimum, means for normally short-circuiting the said resistor, and means for removing the said short circuit at the instant that the said resistor is ata maximum value, the said last named means being mechanically actuated by the same means that produces the periodic variations in the said resistor.
  • a circuit including a series resistor, means for normally short circuiting the said resistor, a second resistor, means for normally maintaining the second resistor in series with the circuit, a switch co-acting with the said two means which will short circuit the second resistor and simultaneously remove the short circuit from the first one, and a thyratron-controlled circuit for actuating the said switch.
  • a circuit as defined in claim 4, wherein the switch that co-acts with the said two means is a relay having a winding operable by the plate current of the thyratron.
  • a circuit comprising a source of oscillations, a resistor decreasable in equal steps between its maximum and minimum values and rapidly restorable to its maximum value in a single step, the said resistor being interposable into memori with the said source, whereby the amplitude of the oscillations increases stepwise inversely with the resistance, and means for insertin; the said resistor into the circuit at an instant that its resistance is a maximum, the said means comprising a relay and a switch controlled in synchronism with the said resistor, the said switch serving to actuate the relay at the proper instant.

Description

Oct. 25, 1949., F. L. TALBOTT ET AL 2,485,938
VOLTAGE GENERATOR HYPERBOLIC WAVE FORM Filed July 8, 1947 OSCILLATOR gnaw Mow FHA/V575 L TELEQTZ" .RQLPH 0. ROBIN-$0M Jr.
Patented Oct. 25, 1949 UNITED STATES PATENT OFFICE VOLTAGE GENERATOR, HYPERBOLIC WAVE FORM Application July 8, 1947, Serial No. 759,640
6 Claims. (Cl. 17197) The object of this invention is to provide a method of and means for generating an oscillating or other fluctuating voltage having a hyperbolic envelope.
More specifically it relates to a system for producing an oscillating voltage of uniform amplitude, and for modulating this voltage hyperbolically, usually in the sense that the maxima of successive oscillations increase with elapsed time according to the desired hyperbolic variation.
A further object is to provide automatic means for varying the impedance of a circuit at a substantially uniform rate, while applying an oscillating voltage of constant amplitude to the impedance, whereby the current through the circuit, which varies inversely as the impedance, will grow at an ever-increasing rate, closely approximating the manner in which the ordinates of an equilateral hyperbola increase as the corresponding abscissas decrease.
While it is clear that many ways may be used to produce this result, the present disclosure will be confined to a single preferred embodiment of the invention, for purposes of illustration.
In the accompanying drawings, which are purely diagrammatic:
Fig. 1 shows one circuit that may be used in practicing the invention.
Fig. 2 shows mechanical details of the rotating elements of this circuit.
With reference to Fig. 1, there is shown an oscillator I that may be of any desired kind, the oscillator includes an adjusting dial such as 2 for varying the generated frequency. The output of this oscillator is fed to the input terminals of a transformer 3, here shown as an auto-transformer of the iron-core type.
Connected as shown, the member 3 will act as a step-down transformer, feeding to two conductom 4 and 5 a voltage lower than that generated in the oscillator I. Inasmuch as the circuit does not require the highest voltage output of the oscillator, this step-down transformation is a very desirable feature, as it diminishes the current drain of the oscillator and has much less tendency to disturb its constancy of voltage and/or frequency. The conductor 5 may be grounded, as shown, to stabilize the circuit, although this is not always requisite.
A conductor 6 leads from a shiftable contact l of the transformer 3 to one end of a resistor 8, here shown as approximately 10,000 ohms in value. This resistor 8 however is preferably variable as shown, its slider being connected to a :r
conductor 9. Another resistor l0, also nominally 10,000 ohms, is connected to the other end of the conductor 9 by a conductor H, a common conductor |2 leading from the junction of the conducting wires 9 and to a movable-contact arm |3 of a relay Id. The relay M has a winding IS. A wire |6 leads from the upper contact of the relay M to the other end of the resistor l0, and also is connected to one wire I 1 of the output wires I1 and Hi.
The conductor 4, connected through the wire 6 to one end of the resistor 8, leads to the lower contact of the relay M. The wire 5 continues as the output wire I8, a variable resistor l3 being bridged across the wires I! and I8 to control manually the voltage delivered at the output end of the device.
The relay winding I5 has one end thereof connected to the positive terminal of a battery or other current source 20, the negative terminal of which is connected to the cathode 2| of a gascontaining thermionic tube 23, here shown as of the three-electrode type. The specific tube illustrated is the 884 type, often called a thyratron. The plate 24 of the tube is connected to the other end of the winding l5 through a wire 25 and a switch 26, the latter being manually actuable. Another switch 2! is provided to control a con ductor connecting the cathode 2| and the grid 28 of the tube 23.
A relatively high negative potential is applied to the grid 28 by a battery 29, with a protective or current limiting resistance 30 in series therewith, between the grid 28 and cathode 2|. The
- switch 21 is connected directly across the grid 28 and the cathode 2|, and when closed will bring the grid 28 to the same potential as the cathode 2|.
The resistor I0 preferably is of the type shown in Fig. 2, namely, one in which the resistance element is arranged in substantially a full circle. This resistor is so constructed that the resistance thereof varies uniformly with the angular position of a radial arm 3|. This arm 3| is preferably continuously rotatable, by means of a motor 32 and shaft 33. The arm of the switch 2'! in the grid circuit is also carried by the shaft 33, so as to rotate in synchronism with the arm 3|, and so as to close the switch 2'! at the same instant that the radial arm 3| delivers the maximum value of the resistor Hi.
The operation of the circuit is as follows:
When the switch 26 is closed manually, the plate circuit of the tube 23 is completed through the winding 5 of the relay l4 and the battery 20, but practically no current will flow in this circuit,
due to the blocking of the grid 28 by the high negative potential due to the battery 29.
At this time, the oscillations from the oscillator I will pass through the transformer l, and some of their energy will produce an output at the wires i1 and it that is attenuated by the resistor 8 and the resistor It. This energy will flow through the wires 9 and H, the movable element It of the relay l4, and the wires 18 and I1.
when the switch 21 closes the grid circuit the grid potential falls to that of the cathode II, and arelatively large current will flow in the plate circuit. This will magnetize the core of the relay I4, and cause the movable contact I: to leave the upper fixed contact and rest against the lower contact instead. The relay I4 is of a very quick-acting type, so that the shift takes place almost instantaneously.
When the contact It is thus depressed, the resistor 8 will be short-circuited, so that energy may flow through the wires 4, II, and I2 to one end of the resistor 10, which is thus substituted in the circuit for the resistor 8.
In order to create no disturbance due to this substitution, the resistor 8 is preferably high enough to be adjustable to equality with the maximum value of the resistor Hi.
The effect of rotation of the radial arm 3! is to decrease thevalue of the'resistance in the rheostat II at a uniform rate, down nearly to zero. During this decrease, the current flowing through the rheostat ID will increase inversely as the resistance left in the circuit, thus giving the desired hyperbolic rate of increase of amplitude of the oscillations appearing at the output end of the circuit, at the terminals i1 and II.
While the specific example used for illustrating the invention employs a source of oscillations of harmonic type and of uniform amplitude, it is clear that the invention is broad enough to include other varying current of voltages, of any desired wave form, even non-periodic. The invention, therefore, is to be construed as limited solely by the following claims.
We claim:
1. A circuit for modulating oscillations, comprising a variable resistor, means for varying the value thereof from maximum to minimum at a uniform rate, a substantially constant resistor the value of which is approximately equal to the maximum of the variable resistor, a source of oscillations, the said substantially constant resistor normally being connected in series with the said source of oscillations, and means for substituting the said uniformly varying resistor in place of the said substantially constant resistor.
2. A circuit, including a resistor the value of which periodically changes continuously from maximumto minimum, means for normally short-circuiting the said resistor, and means for removing the said short circuit at the instant that the said resistor is ata maximum value, the said last named means being mechanically actuated by the same means that produces the periodic variations in the said resistor.
3. A circuit as defined in claim 2, with a sec- Jcircuit, and wherein the said second resistor will be removed from the circuit at the same instant that the short circuit is removed from the said variable resistor.
4. A circuit, including a series resistor, means for normally short circuiting the said resistor, a second resistor, means for normally maintaining the second resistor in series with the circuit, a switch co-acting with the said two means which will short circuit the second resistor and simultaneously remove the short circuit from the first one, and a thyratron-controlled circuit for actuating the said switch.
5. A circuit as defined in claim 4, wherein the switch that co-acts with the said two means is a relay having a winding operable by the plate current of the thyratron.
6. A circuit, comprising a source of oscillations, a resistor decreasable in equal steps between its maximum and minimum values and rapidly restorable to its maximum value in a single step, the said resistor being interposable into serie with the said source, whereby the amplitude of the oscillations increases stepwise inversely with the resistance, and means for insertin; the said resistor into the circuit at an instant that its resistance is a maximum, the said means comprising a relay and a switch controlled in synchronism with the said resistor, the said switch serving to actuate the relay at the proper instant.
FRANCIS LEO TALBO'I'I. RALPH O. ROBINSON, JR.
REFERENCES CITED The following references are of record in the file of this patent:
UNITED STATES PATENTS Number Name Date 647,175 Bedeli Apr. 10, 1900 1,682,566 Hunter et a1. Aug. 28, 1928 1,764,347 Pullwitt June 17, 1930 1,801,385 Rose Apr. 21, 1931 2,004,751 Fischer et al. June 11, 1935
US759640A 1947-07-08 1947-07-08 Voltage generator, hyperbolic wave form Expired - Lifetime US2485938A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US759640A US2485938A (en) 1947-07-08 1947-07-08 Voltage generator, hyperbolic wave form

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US759640A US2485938A (en) 1947-07-08 1947-07-08 Voltage generator, hyperbolic wave form

Publications (1)

Publication Number Publication Date
US2485938A true US2485938A (en) 1949-10-25

Family

ID=25056407

Family Applications (1)

Application Number Title Priority Date Filing Date
US759640A Expired - Lifetime US2485938A (en) 1947-07-08 1947-07-08 Voltage generator, hyperbolic wave form

Country Status (1)

Country Link
US (1) US2485938A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2662197A (en) * 1948-04-06 1953-12-08 Hartford Nat Bank & Trust Co Saw tooth voltage generator

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US647175A (en) * 1899-05-22 1900-04-10 Frederick Bedell Transmission of electrical impulses.
US1682566A (en) * 1924-01-17 1928-08-28 Cutler Hammer Mfg Co Method of and apparatus for control of electrical conditions of circuits
US1764347A (en) * 1928-10-26 1930-06-17 Mcintosh Electrical Corp Electrotherapeutic machine
US1801385A (en) * 1929-10-14 1931-04-21 Edgar J Rose Electrical apparatus for therapeutic and other purposes
US2004751A (en) * 1931-03-23 1935-06-11 H G Fischer & Company Low voltage generator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US647175A (en) * 1899-05-22 1900-04-10 Frederick Bedell Transmission of electrical impulses.
US1682566A (en) * 1924-01-17 1928-08-28 Cutler Hammer Mfg Co Method of and apparatus for control of electrical conditions of circuits
US1764347A (en) * 1928-10-26 1930-06-17 Mcintosh Electrical Corp Electrotherapeutic machine
US1801385A (en) * 1929-10-14 1931-04-21 Edgar J Rose Electrical apparatus for therapeutic and other purposes
US2004751A (en) * 1931-03-23 1935-06-11 H G Fischer & Company Low voltage generator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2662197A (en) * 1948-04-06 1953-12-08 Hartford Nat Bank & Trust Co Saw tooth voltage generator

Similar Documents

Publication Publication Date Title
US2405843A (en) Signal responsive control system
US2284101A (en) Impulse generator
US2222943A (en) Electron switching circuit
US2684448A (en) Controllable pulse generator
US2139489A (en) Frequency responsive relay
US2413182A (en) Radio communication system
US2485938A (en) Voltage generator, hyperbolic wave form
US2508879A (en) Sweep voltage generator
US1733614A (en) Subharmonic frequency producer
US2272998A (en) Slow-operate electrical circuit
US2514935A (en) Variable impedance apparatus
US2469837A (en) Wave translating system
US2977506A (en) Electronic ignition system
US2341396A (en) Electric discharge circuit
US2547523A (en) Electronic pulse generator
US2661420A (en) Linear sawtooth generator
US2008855A (en) Regulating system for dynamo-electric machines
US2644094A (en) Pulse generator
US2462897A (en) Electronic pulse shaping circuit
US3233157A (en) Electric field motor
US2456743A (en) short
US2549654A (en) Gas tube control
US2716211A (en) Thyratron trigger circuit for discharging a capacitor
US3320435A (en) Average power regulated power supply for controlling the input power to non-linear utilization means
US2870328A (en) Proportional amplitude discriminator