US2480845A - Electrolytic removal of resin from metal - Google Patents

Electrolytic removal of resin from metal Download PDF

Info

Publication number
US2480845A
US2480845A US734844A US73484447A US2480845A US 2480845 A US2480845 A US 2480845A US 734844 A US734844 A US 734844A US 73484447 A US73484447 A US 73484447A US 2480845 A US2480845 A US 2480845A
Authority
US
United States
Prior art keywords
workpiece
metal
bath
weight
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US734844A
Inventor
Frager Max
Iserson Hyman
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US734844A priority Critical patent/US2480845A/en
Application granted granted Critical
Publication of US2480845A publication Critical patent/US2480845A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F1/00Electrolytic cleaning, degreasing, pickling or descaling
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F5/00Electrolytic stripping of metallic layers or coatings

Definitions

  • This invention relates to the removal of films or thin coatings of resin from metallic articles to which they have been applied.
  • a steel cartridge case three inches in diameter and bearing a cured coating of unmodified phenol-formaldehyde resin to a thickness of from three to six ten thousandths of an inch is immersed in an electrolytic bath comprising a solution of sodium hydroxide (NaOH flake caustic) parts by weight) and tap water (85 parts by weight).
  • the cartridge case is connected as the positive pole or anode to a source of direct current electricity.
  • a direct current is passed at a current density of from 13 to 27 amperes per square foot.
  • the optimum temperature of the bath is from 200 to 220 degrees Fahrenheit. Treatment for fifteen minutes results in complete removal of the film. Thicker films require a longer treatment.
  • the cartridge case is taken out of the bath. The bath fiuid adhering to it is then removed by water rinsing and air drying.
  • the workpiece pr core (which is t be lean and, n wh c e re in fi or oa me is ate m e n m t llic -flee althei e ens nveht eniis Pa ti u a y u ble to ferrous metals and alloys.
  • the coating to be removed may be a synthetic plastic capable of forming a thin film as, for example, unmodified, heat reactive, phenol formaldehyde varnish, or a baked varnish film such as those composed of cured thermosetting plastics.
  • This invention is also useful to remove vinyl resins and alkyd resins.
  • the bath preferably should consist of an alkaline electrolyte, especially one in a higher range of alkalinity.
  • An example of a suitable bath is one containing sodium. orthosilicate with or without the addition of a detergent.
  • ionizable sodium compounds have been preferred by us, it is obvious that other ionizable compounds, e. g., potassium compounds, would be quite satisfactory. In the use of the potassium basic compounds would prove slightly more effective than that of the sodium because of the higher ionic mobility of the former.
  • the temperature can be as low as that of the ambient atmosphere or as high as is dictated by the economic limits of heat and pressure which would be required.
  • thermosetting synthetic plastics in a substantially pure form consisting of unmodified heat reactive resins which method consists of immersing the workpiece in an electrolytic bath consisting of 15 parts by weight of an alkaline metal hydroxide from the group consisting of sodium and potassium hydroxide and 85 parts by weight of water, and passing a, direct current of from 13 to 27 amperes per square foot through said bath and through said workpiece at a temperature of from 200 to 22 degrees Fahrenheit.
  • thermosetting synthetic plastics in a substantially pure form consisting of unmodified heat reactive resins which method consists of immersing the workpiece in an electrolytic bath consisting of 15 parts by weight of sodium hydroxide and 85 parts by weight of water, and
  • stantially pure form consisting of unmodified heat reactive resins, which method consists of immersing the workpiece in an electrolytic bath consisting of 15 parts by weight of potassium hydroxide and 85 parts by weight of water, and passing a direct current of from 13 to 27 amperes per square foot through said bath and through said workpiece at a temperature of from 200 to 220 degrees Fahrenheit.
  • a method for removing from a metal surface cured unmodified heat-reactive phenol formaldehyde coatings which method consists of immersing the workpiece in an electrolytic bath consisting of 15 parts by weight of an alkaline metal hydroxide from the group consisting of sodium and potassium hydroxide and parts by weight of water, and passing a direct current of from 13 to 27 amperes per square foot through said bath and through said workpiece at a temperature of from 200 to 220 degrees Fahrenheit.
  • a method for removing from a metal surface cured unmodified heat-reactive phenol formaldehyde coatings which method consists of immersing the workpiece in an electrolytic bath consisting of 15 parts by weight of sodium hydroxide and 85 parts by weight of water, and passing a direct current of from 13 to 27 amperes per square foot through said bath and through said workpiece at a temperature of from 200 to 220 degrees Fahrenheit.
  • a method for removing from a metal surface cured unmodified heat-reactive phenol formaldehyde coatings which method consists of immersing the workpiece in an electrolytic bath consisting of 15 parts by weight of potassium hydroxide and 85 parts by weight of water, and passing a direct current of from 13 to 27 amperes per square foot through said bath and through said workpiece at a temperature of from 200 to 220 degrees Fahrenheit.

Description

Patented Sept. 6, 1949 NITED ST TES ieTENT oFFICE ELECTROLYTIC REMOVAL OF RESIN. FROM METAL Max Frager and Hyman Iserson,
Philadelphia, Pa.
N Drawing. Application March 14', 9 .7 Serial No. 734,8 4
e ol ims. (o1. ge -14,1)
(Granted 4 under a mended Ap il The invention described and claimed herein may be practiced and used by .or for the United -States Government for governmental purposes, vwithout payment? to us of any royalty therefor.
This invention relates to the removal of films or thin coatings of resin from metallic articles to which they have been applied.
' and hardened on the metal for a long time andat elevated temperatures) by treating the cartridge case or other workpiece in an electrolytic bath in which the workpiece forms the positive pole or anode. I
Pri r o th s nven i n sandb n wa the most positive method known for removing such films. Sand-blasting isobiectiona e, w because of the resulting surface roughness which occurs and because only a few industrial establishments are equippedto sand -blast work on a I production basis at areasonable cost.
The most satisfactory chemical methods .to date have required the use of hot caustic solutions sometimes containing cresylic acid. This type of procedure, however, is not effective with all the phenolic varnish films which are encountered in practice. Other chemical methods have been used by which the use of combinations of caustic solutions and acid treatments has had better success in some cases.
One example of our invention which has been found to be operative in practice is the following:
A steel cartridge case three inches in diameter and bearing a cured coating of unmodified phenol-formaldehyde resin to a thickness of from three to six ten thousandths of an inch is immersed in an electrolytic bath comprising a solution of sodium hydroxide (NaOH flake caustic) parts by weight) and tap water (85 parts by weight). The cartridge case is connected as the positive pole or anode to a source of direct current electricity. As an optimum, a direct current is passed at a current density of from 13 to 27 amperes per square foot. The optimum temperature of the bath is from 200 to 220 degrees Fahrenheit. Treatment for fifteen minutes results in complete removal of the film. Thicker films require a longer treatment. Upon removal of the film, the cartridge case is taken out of the bath. The bath fiuid adhering to it is then removed by water rinsing and air drying.
ct of March a, 1883 as me; an r "Th meme me 9? crea on 9? th pmcess o th s in ent n arrea s to b The caus ic attacks er w ake s e ei fi. so e xt t Th new lm m y a e e ceed eslrmi r hqles h u it The elect curren passes hr l heahle Be i 1 smooth, clean 1 ly metal.- thi au es an e i n of a ,Thegas .inturn peelsor strips the residue ofthe esin filmfreni th f actal" sl i aee e n a a1 surface which, if it has an 1 4. it he a e t 'Q med treatment) I iseasilycleaned by ordinary chemica cleanin me ods; such as P c in Obvigusly su h a euriaeei memeh e i e fu p a i s. .of. ei treatm nt seful en n som mea e The Beam coating is of corrosion hand in or m l ins der-lee emcee ayup .invd ed beiet the. wo is i en edd t me! t a ment- It wi l re eee r eo mzee t a h x s a more or less wide range of eduivalents for each 55 t ee ement o .ste 'g the s o hi i vention.
For example, the workpiece pr core (which is t be lean and, n wh c e re in fi or oa me is ate m e n m t llic -flee althei e ens nveht eniis Pa ti u a y u ble to ferrous metals and alloys.
Similarly, the coating to be removed may be a synthetic plastic capable of forming a thin film as, for example, unmodified, heat reactive, phenol formaldehyde varnish, or a baked varnish film such as those composed of cured thermosetting plastics.
This invention is also useful to remove vinyl resins and alkyd resins.
The bath preferably should consist of an alkaline electrolyte, especially one in a higher range of alkalinity. An example of a suitable bath is one containing sodium. orthosilicate with or without the addition of a detergent. Although ionizable sodium compounds have been preferred by us, it is obvious that other ionizable compounds, e. g., potassium compounds, would be quite satisfactory. In the use of the potassium basic compounds would prove slightly more effective than that of the sodium because of the higher ionic mobility of the former.
The temperature can be as low as that of the ambient atmosphere or as high as is dictated by the economic limits of heat and pressure which would be required.
Although making the workpiece anodic has been found to be more effective than cathodic electrolysis, the latter is, probably because of the N'AWM higher volume of gas evolution, of considerable value in removing the resin films. In the case of cathodic treatment, the film is sumciently loosened so that it can be readily removed by a strong stream or spray of water or steam or by additional mechanical treatment such as wiping or brushing.
The invention claimed herein is:
1. A method for removing from a, metal surface cured thermosetting synthetic plastics in a substantially pure form consisting of unmodified heat reactive resins, which method consists of immersing the workpiece in an electrolytic bath consisting of 15 parts by weight of an alkaline metal hydroxide from the group consisting of sodium and potassium hydroxide and 85 parts by weight of water, and passing a, direct current of from 13 to 27 amperes per square foot through said bath and through said workpiece at a temperature of from 200 to 22 degrees Fahrenheit.
2. A method for removing from a metal surface cured thermosetting synthetic plastics in a substantially pure form consisting of unmodified heat reactive resins, which method consists of immersing the workpiece in an electrolytic bath consisting of 15 parts by weight of sodium hydroxide and 85 parts by weight of water, and
passing a direct current of from 13 to 27 amperes 7 per square foot through said bath and through said workpiece at a temperature of from 200 to 220 degrees Fahrenheit.
3. A method for removing from a metal surface cured thermosetting synthetic plastics in a SlJ-b'.
stantially pure form consisting of unmodified heat reactive resins, which method consists of immersing the workpiece in an electrolytic bath consisting of 15 parts by weight of potassium hydroxide and 85 parts by weight of water, and passing a direct current of from 13 to 27 amperes per square foot through said bath and through said workpiece at a temperature of from 200 to 220 degrees Fahrenheit.
4. A method for removing from a metal surface cured unmodified heat-reactive phenol formaldehyde coatings, which method consists of immersing the workpiece in an electrolytic bath consisting of 15 parts by weight of an alkaline metal hydroxide from the group consisting of sodium and potassium hydroxide and parts by weight of water, and passing a direct current of from 13 to 27 amperes per square foot through said bath and through said workpiece at a temperature of from 200 to 220 degrees Fahrenheit.
5. A method for removing from a metal surface cured unmodified heat-reactive phenol formaldehyde coatings, which method consists of immersing the workpiece in an electrolytic bath consisting of 15 parts by weight of sodium hydroxide and 85 parts by weight of water, and passing a direct current of from 13 to 27 amperes per square foot through said bath and through said workpiece at a temperature of from 200 to 220 degrees Fahrenheit.
6. A method for removing from a metal surface cured unmodified heat-reactive phenol formaldehyde coatings, which method consists of immersing the workpiece in an electrolytic bath consisting of 15 parts by weight of potassium hydroxide and 85 parts by weight of water, and passing a direct current of from 13 to 27 amperes per square foot through said bath and through said workpiece at a temperature of from 200 to 220 degrees Fahrenheit.
MAX FRAGER. HYMAN ISERSON.
REFERENCES CITED The following references are of record in the file of this patent:
UNITED STATES PATENTS Number Name Date 827,802 Hollis Aug. 7, 1906 1,457,688 Bohnhardt June 5, 1923 OTHER REFERENCES The Cleaning of Metal, by Mitchell (Magnus Chemical 00.), 1930, page 56.
Metal Industry, July 7, 1944, page 8.
"Modern Plastics Catalogue, Oct. 1938, table following page 172; Dec. 1941, pages 59, 60, 61.
US734844A 1947-03-14 1947-03-14 Electrolytic removal of resin from metal Expired - Lifetime US2480845A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US734844A US2480845A (en) 1947-03-14 1947-03-14 Electrolytic removal of resin from metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US734844A US2480845A (en) 1947-03-14 1947-03-14 Electrolytic removal of resin from metal

Publications (1)

Publication Number Publication Date
US2480845A true US2480845A (en) 1949-09-06

Family

ID=24953313

Family Applications (1)

Application Number Title Priority Date Filing Date
US734844A Expired - Lifetime US2480845A (en) 1947-03-14 1947-03-14 Electrolytic removal of resin from metal

Country Status (1)

Country Link
US (1) US2480845A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2722511A (en) * 1952-11-28 1955-11-01 Sylvania Electric Prod Method of removing conductive coating
DE937209C (en) * 1952-04-10 1955-12-29 Richard Dr Springer Process for the electrolytic derusting, descaling and browning of metals in alkaline solutions
DE939659C (en) * 1952-06-28 1956-03-01 Richard Dr Springer Process for the electrolytic descaling of metal surfaces in alkaline solutions
US2765267A (en) * 1953-11-19 1956-10-02 Sprague Electric Co Insulation films
US3900376A (en) * 1972-11-08 1975-08-19 Electricity Council Cleaning of metal surfaces
EP0073445A2 (en) * 1981-08-28 1983-03-09 Hoechst Aktiengesellschaft Electrochemical developing process for recording layers
US20050155205A1 (en) * 2002-05-16 2005-07-21 Tetsuo Nanno Method and apparatus for releasing metal-resin joint
US10400350B1 (en) * 2016-04-20 2019-09-03 IBC Materials & Technologies, Inc. Method and apparatus for removing paint on metallic components

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US827802A (en) * 1905-07-07 1906-08-07 Henry L Hollis Process of treating iron or steel objects.
US1457688A (en) * 1919-03-08 1923-06-05 Crown Cork & Seal Co Process of and apparatus for renovating coated metal sheets

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US827802A (en) * 1905-07-07 1906-08-07 Henry L Hollis Process of treating iron or steel objects.
US1457688A (en) * 1919-03-08 1923-06-05 Crown Cork & Seal Co Process of and apparatus for renovating coated metal sheets

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE937209C (en) * 1952-04-10 1955-12-29 Richard Dr Springer Process for the electrolytic derusting, descaling and browning of metals in alkaline solutions
DE939659C (en) * 1952-06-28 1956-03-01 Richard Dr Springer Process for the electrolytic descaling of metal surfaces in alkaline solutions
US2722511A (en) * 1952-11-28 1955-11-01 Sylvania Electric Prod Method of removing conductive coating
US2765267A (en) * 1953-11-19 1956-10-02 Sprague Electric Co Insulation films
US3900376A (en) * 1972-11-08 1975-08-19 Electricity Council Cleaning of metal surfaces
EP0073445A2 (en) * 1981-08-28 1983-03-09 Hoechst Aktiengesellschaft Electrochemical developing process for recording layers
EP0073445A3 (en) * 1981-08-28 1983-04-06 Hoechst Aktiengesellschaft Electrochemical developing process for recording layers
US4549944A (en) * 1981-08-28 1985-10-29 Hoechst Aktiengesellschaft Electrochemical developing process for reproduction layers
US20050155205A1 (en) * 2002-05-16 2005-07-21 Tetsuo Nanno Method and apparatus for releasing metal-resin joint
US7431819B2 (en) * 2002-05-16 2008-10-07 Matsushita Electric Industrial Co., Ltd. Method and apparatus for releasing metal-resin joint
US10400350B1 (en) * 2016-04-20 2019-09-03 IBC Materials & Technologies, Inc. Method and apparatus for removing paint on metallic components

Similar Documents

Publication Publication Date Title
CN107254683B (en) A kind of the strength rust remover and its application method of steelwork
JP5145083B2 (en) Method for electrolytic polishing of titanium
CN102453444A (en) Polishing solution used for amorphous alloy and polishing method of amorphous alloy
US2480845A (en) Electrolytic removal of resin from metal
US2880148A (en) Method and bath for electrolytically coating magnesium
CN106868508A (en) A kind of vacuum equipment processing chamber wallboard regeneration treating method
US4793903A (en) Method of cleaning aluminum surfaces
US2780594A (en) Electrolytic descaling
JP5733671B2 (en) Pretreatment process for aluminum and high etch cleaner used therein
JP6926121B2 (en) Non-aqueous peeling composition and method of stripping the organic coating from the substrate
CN107815710A (en) A kind of process for improving chromium coating adhesion
KR101536514B1 (en) Passivation treatment method for imporving corrosion of stainless steel produts
CN103952711A (en) Continuous online treatment technique for metal surface
CN102888607B (en) Scavenging agent composite for quickly scavenging nickel-cadmium diffusion coating and deplating method of scavenging agent composite
US3349014A (en) Method and composition for the treatment of an aluminum surface
US2171545A (en) Protective coating for aluminum and its alloys
US3617456A (en) Bath for the electrolytic stripping of galvanic coatings made of nickel, chromium or gold from base bodies made of copper, copper alloys, silver, zinc or titanium
KR102174256B1 (en) the roof rack for the vehicles and surface processing method of the aluminium alloy
US2371529A (en) Removal of electrodeposited metals
US4244792A (en) Method for stripping anodized aluminum and aluminum alloys
US2408220A (en) Stripping of copper from zinc
US2258520A (en) Engraving plate
GB2116215A (en) Improvements in or relating to flame sprayed coatings
CN104988562B (en) A kind of cast member electrophoretic process method
US2476413A (en) Method of regraining aluminum plates