US2460372A - Manufacture of artificial protein filaments - Google Patents

Manufacture of artificial protein filaments Download PDF

Info

Publication number
US2460372A
US2460372A US550487A US55048744A US2460372A US 2460372 A US2460372 A US 2460372A US 550487 A US550487 A US 550487A US 55048744 A US55048744 A US 55048744A US 2460372 A US2460372 A US 2460372A
Authority
US
United States
Prior art keywords
filaments
filament
solution
formaldehyde
protein
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US550487A
Inventor
Robin H K Thomson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Imperial Chemical Industries Ltd
Original Assignee
Imperial Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Imperial Chemical Industries Ltd filed Critical Imperial Chemical Industries Ltd
Application granted granted Critical
Publication of US2460372A publication Critical patent/US2460372A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F4/00Monocomponent artificial filaments or the like of proteins; Manufacture thereof
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/12Stretch-spinning methods
    • D01D5/14Stretch-spinning methods with flowing liquid or gaseous stretching media, e.g. solution-blowing
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/22Formation of filaments, threads, or the like with a crimped or curled structure; with a special structure to simulate wool
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2922Nonlinear [e.g., crimped, coiled, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core
    • Y10T428/2964Artificial fiber or filament

Definitions

  • the present invention relates to the manufacture of filaments of coagulated and insolubilised protein material for textile purposes, and more particularly to a process for the improvement of, filaments obtained by a wet spinning process from solutions of casein or vegetable globulins, which have been subjected in coagulated filamentary form to the action of an acidified aqueous solution of formaldehyde or other aqueous insolubilising bath adapted to render the coagulated protein filament capable of withstanding hot Weakly acid or alkaline solutions such as are used in dyeing and laundering.
  • insolubilised wet spun protein filaments it is usual to apply a stretch to the filament at some part of the process, and to efiect at least a partial stabilisation of the length of the stretched filament by means of the baths through which it passes; so that when the tension is released. it will not shrink excessively in a longitudinal direction.
  • This stretching and length stabilisation may be effected prior to the commencement of the insolubilisation, or in the course of the insolubilisation of the coagulated protein. In either case the insolubilised filaments obtained after the release of any tension upon them are substantially unstrained and exhibit little or no bi-reiringency.
  • textile filaments of various kinds can be improved in strength by steaming them in stretched condition and drying them the said insolubilised filaments, retaining the off while still stretched, but the'improvement so obtained is usually lost when the filaments are subsequently subjected in the untensioned condition to the action of boiling water or steam..
  • the process for the production of improved and crimped filaments from insolubilised filaments obtained by wet-spinning from solutions of casein or vegetable globulins comprises wet-stretching filaments in the stretched condition while subjecting them to raised temperature and treatment with formaldehyde, and thereafter Withdrawing the tension and effecting the shrinkage of the thus treated filaments to the desired degree of crimp.
  • the wet stretched filaments may be dried off under tension at raised temperature before the formaldehyde treatment is commenced. The drying is conducted at'a temperature not less than C., and if desired the filaments may be further heated to a temperature of to C. before commencing the formaldehyde treatment.
  • the Wet stretching is advantageously carried out with hot water or steam, and the extent to which the insolubilised filaments can be stretched without breaking, may depend on the nature of the treatment they have received in their production, but it will usually be possible to apply a stretch of from 50 to 100 per cent.
  • the stretched and if desired dried filaments may then be immersed in commercial formalin solution, i. e. a solution of formaldehyde of a lower acidity than that used in the previous insolubilisation step and left in contact with the solution for several hours if it is used at ordinary temperature.
  • a formaldehyde solution instead of immersing the filaments in a formaldehyde solution they can be subjected to an atmosphere of formaldehyde vapour.
  • the formaldehyde treated filaments may then be washed until their odour is faint and are then dried at a raised temperature not below about 80 C. Preferably the temperature is allowed is to rise somewhat about 100 C.when they havebeen dried. The tension on the filaments may then be released. At this stage they are straight, and silk-like, but on immersion in hot water they shrink, and after drying in untensioned condition have a desirable woolly crimp.
  • Figure 1 shows the three preliminary stages of spinning, insolubilizing and washing of the filaments
  • Figure 2 shows the subsequent steps of' drying and hot drawing of the filaments
  • Figure 3 illustrates the steps of treating the filaments while under tension to insolubilizing, washing and hot drying steps
  • Figure 4 shows the steps of rewinding the tensioned filaments into hank formand subsequently treating the untensioned filaments to boiling and drying.
  • the filament 2 is 'formed by extruding a protein solutionthrough the spinneret l into the 'coagulated :bath 6 and thence to the 'hanking device Where hanks 8 are formed.
  • the hanks are then placed in the insolubilizing bath Ill, where the filaments are insolubilized, after'which they are passed into a washing bath i2. Since the drawing is only diagrammatic in nature, only'one washing tank is illustrated but it will be understood that several such tanks may be employed and that pure water or weak alkaline or other washing solutions may be employed.
  • the filaments are passed to a hot air drier M where the filaments are and subjected to the drying action of hot air. Thence, the dried filaments are passed from winding the roll it to tension rollers I8 and '20 through the steam chamber 24 and are wound upon the winding roller 2-6 at a speed in excess of the speed of the tension rollers 18 and 25, so that the filaments are elongated while within the steam chamber 2 3 and subjected to the action of the steam passed through this chamber.
  • the filaments are retained under the tension produced during the winding operation upon the rollers or bobbins 23. In this condition, they are first immersed in an insolubilizing bath from where they are taken and immersedin the washing bath 32, Finally, while still under tension, the filaments are dried in the drying chamber 34 b hot air.
  • the bobbin of tensioned filament 28 is then rewcund onto a roller 36 so that .the filaments may be formed in hanks for further treatment in an untensioned condition.
  • the filaments In the untensioned state, the filaments are immersedin .the boiling water tank .38. Finally, the filament Ihanks are dried in thehot air drying chamber 40.
  • terial' are prepared by coagulating in .a hot :acidi' fied :sodium --sulphate bath :under tension :a viscous aged solution of peanut protein in :dilute' aqueous sodium hydroxide solution, the protein solution being extruded into the coagulating bath through a multiple hole spinneret, and subsequently insolubilising the coagulated filaments in the untensioned condition in a bath consisti-ngcf a :nearlysaturated solution of sodium chloride containing 1 per cent formaldehyde and 1.75 per cent sulphuric acid for a period of 18 hours at 20 C., and then washin the filaments, treating them first, with an aqueous dispersion of Lissapol C, then with a dilute sodium car-' bonate solution, and then drying them 01?
  • the dried filaments are then thoroughly damped in steam andzthe filaments aredrawn ofi from it through the stearn'itol a roller :01! they are wound helically under such tension that their taut length'is increasedabout '7 5 per cent.
  • the rollers carrying "the filaments in the stretched state are then immersed -.for 16 hours in commercial 'formalin'solution;
  • the filaments v are then washed until substantially free from odourand dried in ai-rat 1110 C. under tension, and are then released from the tension.
  • the resulting filaments have ho crimp and have an artificial silk-like appearance. They are relatively strongly bi refringent. Their tensile strength is approximately 12 kilograms per square .millimetre,ias calculated in the manner already referred to. "The resulting :filaments are now rewound sinto'zhank form and are immersed in boilin water in the 'untensioned condition for '10 minutes.
  • the process for obtaining an" improved, crimped, protein filament which comprises wetstretching an inso'lubilized filament previously formed by wet-spinning-a protein solution of the group consisting "of vegetable globulin solutions andcasein-solutions, contacting thejtaut filament with formaldehyde, dryingthe'taut filament at a temperature or at least C., releasing the tension on the filament and thereafter contacting the filament in relaxed condition with boiling water.
  • the process for obtaining an improved, crimped, protein filament which comprises stretching in steam a washed, formaldehyde-insolubilized filament previously formed by wetspinning a sodium hydroxide peanut protein solution, drying the taut filament at a temperature within the range of from 100 C. to 120 C., immersing the taut filament in a formalin solu tion, washing the taut filament, drying the taut filament at a temperature of at least 100 0., releasing the tension on the filament and thereafter immersing the filament in relaxed condition in boiling water.
  • a process for producing crimped, protein filaments of relatively high tensile strength which comprises Wet-spinning a protein solution into a coagulating medium, insolubilizing the resulting filaments in an acidic saline formaldehyde solution, stretching while wet the insolubilized filaments, contacting the taut filaments with formaldehyde, drying the resultingtaut filament at a temperature between 80 C. and 120 (3;, releasing the tension on the filaments and, thereafter, immersing the filament in a relaxed condition in boiling Water.
  • a process for producing crimped, peanut protein filaments of relatively high tensile strength which comprises wet-spinning a solution of peanut protein dissolved in an aqueous sodium hydroxide solution into a coagulating medium, insolubilizing the resulting filaments in an acidic is j saline formaldehyde solution, stretching while strength which comprises wet-spinning a solution of peanut protein dissolved in an aqueous sodium hydroxide solution into a coagulating medium,

Description

Feb. 1, 1949.
R. H. K. THOMSON MANUFACTURE OF ARTIFICIAL PROTEIN FILAMENTS Filed Aug. 21, 1944 iWoshing Both coagulating But h Spinneret Insolubilizing Both FIG.
Drawing Chamber [8 Honking Device Winding Roll /7 Steam H oi Air Drier Hot Air Drier Woshing T unk Formaldehyde B ath FIG. 3.
Rewinding H01 Air Drier Boiling Water Tank Inventor ROBIN H. K. THOMSON Attorneys Patented Feb. 1, 1?49 ,MANUFACTURE OF ARTIFICIAL PROTEIN FILAMEN TS Robin H. K. Thomson, Kilwinning, Scotland, as-
signor to Imperial Chemical Industries Limited, a corporation of Great Britain Application August 21, 1944, Serial No. 550,487 In Great Britain October 20, 1943 12 Claims.
The present invention relates to the manufacture of filaments of coagulated and insolubilised protein material for textile purposes, and more particularly to a process for the improvement of, filaments obtained by a wet spinning process from solutions of casein or vegetable globulins, which have been subjected in coagulated filamentary form to the action of an acidified aqueous solution of formaldehyde or other aqueous insolubilising bath adapted to render the coagulated protein filament capable of withstanding hot Weakly acid or alkaline solutions such as are used in dyeing and laundering.
In the production of insolubilised wet spun protein filaments it is usual to apply a stretch to the filament at some part of the process, and to efiect at least a partial stabilisation of the length of the stretched filament by means of the baths through which it passes; so that when the tension is released. it will not shrink excessively in a longitudinal direction. This stretching and length stabilisation may be effected prior to the commencement of the insolubilisation, or in the course of the insolubilisation of the coagulated protein. In either case the insolubilised filaments obtained after the release of any tension upon them are substantially unstrained and exhibit little or no bi-reiringency.
. It is known that textile filaments of various kinds can be improved in strength by steaming them in stretched condition and drying them the said insolubilised filaments, retaining the off while still stretched, but the'improvement so obtained is usually lost when the filaments are subsequently subjected in the untensioned condition to the action of boiling water or steam..
We have now found that when insolubilised, crimped or uncrimped, protein filaments are wet stretched and are subsequently subjected to the action of formaldehyde for a period of time, and set by drying them at high temperature, both of these operations being conducted while they are held stretched, they become markedly birefringent and their untensioned length and strength are increased, and the longitudinal shrinkage and loss of strength when the resulting filaments are subsequently treated for example with boiling water in the untensioned condition is less than when the formaldehyde treatment is omitted, but is sufficient to give thema crimp.
According to the present invention, therefore, the process for the production of improved and crimped filaments from insolubilised filaments obtained by wet-spinning from solutions of casein or vegetable globulins comprises wet-stretching filaments in the stretched condition while subjecting them to raised temperature and treatment with formaldehyde, and thereafter Withdrawing the tension and effecting the shrinkage of the thus treated filaments to the desired degree of crimp.
If desired the wet stretched filaments may be dried off under tension at raised temperature before the formaldehyde treatment is commenced. The drying is conducted at'a temperature not less than C., and if desired the filaments may be further heated to a temperature of to C. before commencing the formaldehyde treatment. l
The Wet stretching is advantageously carried out with hot water or steam, and the extent to which the insolubilised filaments can be stretched without breaking, may depend on the nature of the treatment they have received in their production, but it will usually be possible to apply a stretch of from 50 to 100 per cent. The stretched and if desired dried filaments may then be immersed in commercial formalin solution, i. e. a solution of formaldehyde of a lower acidity than that used in the previous insolubilisation step and left in contact with the solution for several hours if it is used at ordinary temperature. However, instead of immersing the filaments in a formaldehyde solution they can be subjected to an atmosphere of formaldehyde vapour. The formaldehyde treated filaments may then be washed until their odour is faint and are then dried at a raised temperature not below about 80 C. Preferably the temperature is allowed is to rise somewhat about 100 C.when they havebeen dried. The tension on the filaments may then be released. At this stage they are straight, and silk-like, but on immersion in hot water they shrink, and after drying in untensioned condition have a desirable woolly crimp.
In putting the invention into efiect it is convenient to carry out the wet stretching of the insolubilised filament, and the subsequent steps in which it is maintained in stretched condition, with a continuous length offilament, which implies thatthe whole of the preceding steps in the production of filaments, including the insolubilisation treatment, is also carried out before cutting the filaments.
It is desirable to wash the insolubilised filaments at least substantially free from the insolubilising solution before the wet stretching step is carried out. Before the wet stretching step is carried out it is permissible to relieve the insolubilised filaments of any tension under which they break in the continuity, for the washed insolu bilised filaments, whether or not already under tension, may be directly subjected to the Wet stretching step.
A more complete understanding of the procedures of this invention may be had by refer-- ence to the accompanying drawing which diagrammatically illustrates the procedural steps involved. In the drawing, 7
Figure 1 shows the three preliminary stages of spinning, insolubilizing and washing of the filaments;
Figure 2 shows the subsequent steps of' drying and hot drawing of the filaments;
Figure 3 illustrates the steps of treating the filaments while under tension to insolubilizing, washing and hot drying steps, and
Figure 4 shows the steps of rewinding the tensioned filaments into hank formand subsequently treating the untensioned filaments to boiling and drying.
Referring in detail to the drawings, the filament 2 is 'formed by extruding a protein solutionthrough the spinneret l into the 'coagulated :bath 6 and thence to the 'hanking device Where hanks 8 are formed. The hanks are then placed in the insolubilizing bath Ill, where the filaments are insolubilized, after'which they are passed into a washing bath i2. Since the drawing is only diagrammatic in nature, only'one washing tank is illustrated but it will be understood that several such tanks may be employed and that pure water or weak alkaline or other washing solutions may be employed.
From the washing tank, the filaments are passed to a hot air drier M where the filaments are and subjected to the drying action of hot air. Thence, the dried filaments are passed from winding the roll it to tension rollers I8 and '20 through the steam chamber 24 and are wound upon the winding roller 2-6 at a speed in excess of the speed of the tension rollers 18 and 25, so that the filaments are elongated while within the steam chamber 2 3 and subjected to the action of the steam passed through this chamber.
The filaments are retained under the tension produced during the winding operation upon the rollers or bobbins 23. In this condition, they are first immersed in an insolubilizing bath from where they are taken and immersedin the washing bath 32, Finally, while still under tension, the filaments are dried in the drying chamber 34 b hot air.
The bobbin of tensioned filament 28 is then rewcund onto a roller 36 so that .the filaments may be formed in hanks for further treatment in an untensioned condition. In the untensioned state, the filaments are immersedin .the boiling water tank .38. Finally, the filament Ihanks are dried in thehot air drying chamber 40.
The invention is illustrated ;by the .following example 7 Example The filaments employed as the -starting :ma-
terial' are prepared by coagulating in .a hot :acidi' fied :sodium --sulphate bath :under tension :a viscous aged solution of peanut protein in :dilute' aqueous sodium hydroxide solution, the protein solution being extruded into the coagulating bath through a multiple hole spinneret, and subsequently insolubilising the coagulated filaments in the untensioned condition in a bath consisti-ngcf a :nearlysaturated solution of sodium chloride containing 1 per cent formaldehyde and 1.75 per cent sulphuric acid for a period of 18 hours at 20 C., and then washin the filaments, treating them first, with an aqueous dispersion of Lissapol C, then with a dilute sodium car-' bonate solution, and then drying them 01? in hank "form. The use of the hot coagulating bath effects a sufficient stabilisation of their length to enable the insolubilisation treatment with the acidified saline formaldehyde solution to be car- :ried out in the untensioned condition. The treatment with the Lissapol dispersion confers a somewhat softer handle on the filaments, and the treatment with dilute sodium carbonate solution is intended to raise the pH of the filaments to a value of about 7, which is frequently -de-- sirable for dyeing purposes. The drying of :the filaments is carried out in hot air at 100 C. The resulting filaments have a considerable crimp, and exhibit little birefringence. Their tensile strength is approximately 8 kilograms per square millimetre, 'as calculated on their average thickness from the breaking stress in .an atmosphere of 5G-per cent. relative humidityat 20 C.
The dried filaments are then thoroughly damped in steam andzthe filaments aredrawn ofi from it through the stearn'itol a roller :01! they are wound helically under such tension that their taut length'is increasedabout '7 5 per cent.
The rollers carrying "the filaments in the stretched state are then immersed -.for 16 hours in commercial 'formalin'solution; The filaments v are then washed until substantially free from odourand dried in ai-rat 1110 C. under tension, and are then released from the tension. The resulting filaments have ho crimp and have an artificial silk-like appearance. They are relatively strongly bi refringent. Their tensile strength is approximately 12 kilograms per square .millimetre,ias calculated in the manner already referred to. "The resulting :filaments are now rewound sinto'zhank form and are immersed in boilin water in the 'untensioned condition for '10 minutes. They are then dried off in atliiil Cmwithout tension; as .a result of this treatment they acquire a useful degree of crimp and a wool-like appearance. They are then rehumidified. Their tensile strength .is approximately 9.7 kilograms per square millimetre, as -:calculated in the manner already referred to. They are intermediate in 'bi-refringency between the insolubilised filaments employed as thestarting material and the artificial sills-like filaments already'referred'to. I V "I claim:
'l. The process for obtaining an" improved, crimped, protein filament, which comprises wetstretching an inso'lubilized filament previously formed by wet-spinning-a protein solution of the group consisting "of vegetable globulin solutions andcasein-solutions, contacting thejtaut filament with formaldehyde, dryingthe'taut filament at a temperature or at least C., releasing the tension on the filament and thereafter contacting the filament in relaxed condition with boiling water. V
:2. The process for V obtaining an improved, crimped, :protein filament,- =which comprises stretching in steam ran insolubilized filament previously formed by Wet-spinning a vegetable globulin solution, contacting the taut filament with formaldehyde, drying the taut filament at a temperature of at least 80 C., releasing the tension on the filament and thereafter immersing the filament in relaxed condition in boiling water. 3. The process for obtaining an improved, crimped, protein filament which comprises stretching in steam a formaldehyde-insolubilized filament previously formed by wet-spinnin a vegetable globulin solution, drying the taut filament at a temperature within the range of from 80 C. to 120 C., immersing the taut filament in an aqueous formaldehyde solution, washing the -taut filament, drying the taut filament at a temperature of at least 80 C., releasing the tension on the filament and thereafter immersing the filament in relaxed condition in boiling water.
4. The process for obtaining an improved, crimped, protein filament, which comprises stretching in steam a washed, formaldehyde-insolubilized filament previously formed by wetspinning a sodium hydroxide peanut protein solution, drying the taut filament at a temperature within the range of from 100 C. to 120 C., immersing the taut filament in a formalin solu tion, washing the taut filament, drying the taut filament at a temperature of at least 100 0., releasing the tension on the filament and thereafter immersing the filament in relaxed condition in boiling water.
5. A crimped protein filament formed according to the process set forth in claim 1.
6. A crimped protein filament formed according to the process set forth in claim 3.
7. A process for producing crimped, protein filaments of relatively high tensile strength which comprises Wet-spinning a protein solution into a coagulating medium, insolubilizing the resulting filaments in an acidic saline formaldehyde solution, stretching while wet the insolubilized filaments, contacting the taut filaments with formaldehyde, drying the resultingtaut filament at a temperature between 80 C. and 120 (3;, releasing the tension on the filaments and, thereafter, immersing the filament in a relaxed condition in boiling Water.
8. A crimped protein filament formed according to the process set forth in claim 7. r
9. A process for producing crimped, peanut protein filaments of relatively high tensile strength which comprises wet-spinning a solution of peanut protein dissolved in an aqueous sodium hydroxide solution into a coagulating medium, insolubilizing the resulting filaments in an acidic is j saline formaldehyde solution, stretching while strength which comprises wet-spinning a solution of peanut protein dissolved in an aqueous sodium hydroxide solution into a coagulating medium,
treating the resulting filaments in an acidic saline formaldehyde solution for a suificient length of 7 time to make the filaments completely resistant to the action of boiling water and hot dilute acid, stretching the insolubilized filaments in steam, immersing the taut filaments in an aqueous formaldehyde solution, drying the resulting taut filament at a temperature between 80 and 120 C.,
releasing the tension on the filaments and, thereafter, immersing the filament in a relaxed condition in boiling water.
11. The process of claim 10 wherein said treatment with acid saline formaldehyde is carried out ROBIN H. K. THOMSON.
REFERENCES CITED The following references are of record in the file of this patent:
UNITED STATES PATENTS
US550487A 1943-10-20 1944-08-21 Manufacture of artificial protein filaments Expired - Lifetime US2460372A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB17241/43A GB570631A (en) 1943-10-20 1943-10-20 Improvements in or relating to the manufacture of artificial protein filaments

Publications (1)

Publication Number Publication Date
US2460372A true US2460372A (en) 1949-02-01

Family

ID=10091737

Family Applications (1)

Application Number Title Priority Date Filing Date
US550487A Expired - Lifetime US2460372A (en) 1943-10-20 1944-08-21 Manufacture of artificial protein filaments

Country Status (6)

Country Link
US (1) US2460372A (en)
BE (1) BE458874A (en)
DE (1) DE832318C (en)
FR (1) FR910839A (en)
GB (1) GB570631A (en)
NL (1) NL62182C (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2541803A (en) * 1948-12-24 1951-02-13 Courtaulds Ltd Production of artificial protein threads, filaments, and the like
US2685497A (en) * 1948-05-12 1954-08-03 Celanese Corp Treatment of polymeric materials
JPWO2019151436A1 (en) * 2018-01-31 2021-01-14 Spiber株式会社 Method for manufacturing protein crimped staples

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US379672A (en) * 1888-03-20 Art of making dry-sand cores
GB502710A (en) * 1937-11-18 1939-03-23 Courtaulds Ltd Improvements in the manufacture and production of artificial filaments, threads and the like
US2211961A (en) * 1937-04-08 1940-08-20 Du Pont Artificial product and method for producing same
US2293989A (en) * 1938-08-08 1942-08-25 American Enka Corp Manufacture of artificial wool
US2338916A (en) * 1937-03-02 1944-01-11 Ferretti Antonio Embodiment in the process for manufacturing artificial textile fibers from animal casein
US2340909A (en) * 1939-01-21 1944-02-08 Ici Ltd Manufacture of artificial fibers from protein material
US2358427A (en) * 1940-08-29 1944-09-19 Ici Ltd Manufacture of filaments from vegetable globulin

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US379672A (en) * 1888-03-20 Art of making dry-sand cores
US2338916A (en) * 1937-03-02 1944-01-11 Ferretti Antonio Embodiment in the process for manufacturing artificial textile fibers from animal casein
US2211961A (en) * 1937-04-08 1940-08-20 Du Pont Artificial product and method for producing same
GB502710A (en) * 1937-11-18 1939-03-23 Courtaulds Ltd Improvements in the manufacture and production of artificial filaments, threads and the like
US2290789A (en) * 1937-11-18 1942-07-21 Courtaulds Ltd Manufacture and production of artificial filaments, threads, and the like
US2293989A (en) * 1938-08-08 1942-08-25 American Enka Corp Manufacture of artificial wool
US2340909A (en) * 1939-01-21 1944-02-08 Ici Ltd Manufacture of artificial fibers from protein material
US2358427A (en) * 1940-08-29 1944-09-19 Ici Ltd Manufacture of filaments from vegetable globulin

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2685497A (en) * 1948-05-12 1954-08-03 Celanese Corp Treatment of polymeric materials
US2541803A (en) * 1948-12-24 1951-02-13 Courtaulds Ltd Production of artificial protein threads, filaments, and the like
JPWO2019151436A1 (en) * 2018-01-31 2021-01-14 Spiber株式会社 Method for manufacturing protein crimped staples
EP3748066A4 (en) * 2018-01-31 2021-12-15 Spiber Inc. Manufacturing method for protein crimped staple

Also Published As

Publication number Publication date
DE832318C (en) 1952-02-25
FR910839A (en) 1946-06-19
NL62182C (en)
GB570631A (en) 1945-07-16
BE458874A (en)

Similar Documents

Publication Publication Date Title
US2572936A (en) Process for making crimped artificial filaments
US5403530A (en) Elongate member production method
US2312152A (en) Rayon and method of manufacturing same
US2174878A (en) Yarn and method of producing same
US2290789A (en) Manufacture and production of artificial filaments, threads, and the like
US2460372A (en) Manufacture of artificial protein filaments
GB1037381A (en) Producing artificial filamentary material from condensation polymers
US3751547A (en) Process for producing high modulus polyvinyl alcohol synthetic fibers
US1989101A (en) Process for improving artificial fibers or fabrics
US1986945A (en) Wool substitutes and process of spinning short filaments of cellulose derivatives
US2491938A (en) Method of producing viscose filaments
US2636804A (en) Process of treating polyvinyl alcohol fibers
US2519978A (en) Generated proteins and process for preparation thereof
US2098981A (en) Yarn manufacture
US2004271A (en) Production of artificial filaments, threads, ribbons, films, and the like
US1921426A (en) Method of treating artificial silk
JPS5881606A (en) Preparation of soft raw silk
US1959350A (en) Manufacture or treatment of textile or other material
US2515889A (en) Process for producing artificial filaments
US1554801A (en) Manufacture and application of fibers and fabrics
US2888317A (en) Production of polyacrylonitrile filaments of high uniform density
US2347883A (en) Production of cellulosic structures
US3318658A (en) Polypyrrolidone fibers and process
US2533297A (en) Production of insolubilized protein artificial filamentary products
US2990235A (en) Process of improving the heat and water resistance of polyvinyl alcohol fibers with lower aliphatic alcohol vapors or superheated steam and optionally acetalizing said fibers