US2422191A - Impedance transformer for wave guides - Google Patents

Impedance transformer for wave guides Download PDF

Info

Publication number
US2422191A
US2422191A US612681A US61268145A US2422191A US 2422191 A US2422191 A US 2422191A US 612681 A US612681 A US 612681A US 61268145 A US61268145 A US 61268145A US 2422191 A US2422191 A US 2422191A
Authority
US
United States
Prior art keywords
core
guide
sheath
wave
filled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US612681A
Inventor
Fox Arthur Gardner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AT&T Corp
Original Assignee
Bell Telephone Laboratories Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US452851A external-priority patent/US2432093A/en
Priority claimed from US610956A external-priority patent/US2607850A/en
Application filed by Bell Telephone Laboratories Inc filed Critical Bell Telephone Laboratories Inc
Priority to US612681A priority Critical patent/US2422191A/en
Application granted granted Critical
Publication of US2422191A publication Critical patent/US2422191A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/08Coupling devices of the waveguide type for linking dissimilar lines or devices
    • H01P5/10Coupling devices of the waveguide type for linking dissimilar lines or devices for coupling balanced with unbalanced lines or devices
    • H01P5/103Hollow-waveguide/coaxial-line transitions

Definitions

  • This invention relates to electromagnetic wave transmission and more particularly to impedance transformers for wave guides.
  • the object of the invention is to interconnect without impedance mismatch an lair-filled wave guide and a solid-cored wave guide.
  • a uniform metallic sheath with or Without a dielectric filler will serve as a guide for suitable electromagnetic waves.
  • the sheath may be circular, rectangular, or of other shape.
  • the guide acts like a transmission line and. has a specific propagation constant and characteristic impedance. For any particular frequency there are an infinite number of cross-sectional sizes and shapes of guide which will have the same characteristic impedance.
  • means are provided for matching an air-filled wave guide and a solid-cored wave guide which differ in characteristic impedance.
  • the sheaths of the guides are connected by an apertured end plate, the solid core extends through the aperture into the air-filled guide, and a metallic annulus is connected to the junction between the end plate and the sheath of the solid-cored guide.
  • the length of the solid core extending into the air-filled guide and a dimension of the annulus are chosen to provide an impedance match at the junction of the guides.
  • the annulus is a, cylinder extending for a distance along the portion of the core within the air-filled guide.
  • the critical dimension is the longitudinal length of the annulus.
  • the annulus is a radial extension of the end plate which fits into an annular groove in the solid core. In this case the critical dimension is the radial length of the annulus.
  • Fig. 1 shows in longitudinal cross-section an impedance transformer for interconnecting an air-filled wave guide and a solid-cored wave guide
  • Fig. 2 is a similar view of a modified form of the transformer shown in Fig. 1.
  • Fig. l is a cross-sectional side view of one form of transformer in accordance with the invention for connecting a wave guide having a cylindrical sheath 55 filled with a solid dielectric core 56 toa wave guide having a cylindrical sheath 5'! filled with a material of lower dielectric constant such, for example, as air.
  • the sheath 55 and core 56 pass through the end plate 52 and extend into the sheath 5'! for a distance H.
  • the core 56 alone extends beyond the sheath 55 for a further distance J.
  • these controls are the distances H and J.
  • the proper adjustment may be determined as follows. One of the guides is terminated in its characteristic impedance and Wave energy is supplied to the transformer in such a way that it passes through a standing wave detector located in the other guide. Then the distances H and J are adjusted alternately to minimize the standing wave. The desired adjustment is attained when the detector indicates an absence of any standing Wave.
  • Fig. 2 is a cross-sectional side view showing an alternative form of the transformer of Fig. 1.
  • the portion H of the sheath 55 internal to the sheath 51 has been omitted and the core 56 has an annular groove 58 with an internal diameter L into which fits the end plate 52 to form a shunt impedance element.
  • the core 56 extends into the sheath 5! for a distance K and, to facilitate assermbly, this internal portion 59 may be a separate part which is attached in some suitable manner to the remainder of the core 56 after the portion having the groove 58 has been inserted into the circular hole in the end plate 52.
  • the two variables in this transformer are the distance K and the diameter L. These are adjusted, as already explained, for no standing wave.
  • Figs. 1 and 2 show wave guide structures of circular cross-section, it is to be understood that, with suitable modification, the transformers may be applied to rectangular or other forms of wave guide-s.
  • a wave guide comprising an air-filled sheath, a second wave guide of different characteristic impedance comprising a second sheath and a solid dielectric core, an end plate having an aperture electrically connecting said sheaths, an end portion of said core extending through said aperture into said air-filled sheath, and a metallic annulus connected to the junction between said end plate and said second sheath, the length of said end portion of core and a dimension of said annulus being chosen to provide 3 an impedance match at the junction of said guides.
  • longitudinal length of said cylinder being thedimension chosen for impedance matching.
  • an air-filled wave guide In a wave-guide system, an air-filled wave guide, a second wave guide of dififerent characteristic impedance comprising a sheath and a solid dielectric core, and impedance-matching means for interconnecting said guides comprising an end portion of said core and an end portion of said sheath both extending into the end of said air-filled guide.
  • an air-filled wave guide comprising a sheath and a solid dielectric core, and impedance-matching means for interconnecting said guides comprising an end portion of said core extending into the end of said air-filled guide, said core having an annular groove and said air-filled guide including an end plate apertured to fit into said groove.

Description

June 17 1947. 1 A. G. FOX 2,422,191
' I IMPEDANCE TRANSFORMER FOR WAVE GUIDES Original Filed July 50, 1942 //v VEN TOR A. 6. FOX
ATTORNEY Patented June 17, 1947 IMPEDANCE TRANSFORMER FOR WAVE GUIDES Arthur Gardner Fox, Red Bank, N. J., assignor to Bell Telephone Laboratories, Incorporated, New York, N. Y., a corporation of New York Original application July 30, 1942, Serial No. 452,851. Divided and this application August 25, 1945, Serial No. 612,681
13 Claims. 1
This invention relates to electromagnetic wave transmission and more particularly to impedance transformers for wave guides.
The object of the invention is to interconnect without impedance mismatch an lair-filled wave guide and a solid-cored wave guide.
A uniform metallic sheath with or Without a dielectric filler will serve as a guide for suitable electromagnetic waves. In cross-section the sheath may be circular, rectangular, or of other shape. For all frequencies above a minimum, known as the cut-off frequency, the guide acts like a transmission line and. has a specific propagation constant and characteristic impedance. For any particular frequency there are an infinite number of cross-sectional sizes and shapes of guide which will have the same characteristic impedance.
In accordance with the present invention, means are provided for matching an air-filled wave guide and a solid-cored wave guide which differ in characteristic impedance. The sheaths of the guides are connected by an apertured end plate, the solid core extends through the aperture into the air-filled guide, and a metallic annulus is connected to the junction between the end plate and the sheath of the solid-cored guide. The length of the solid core extending into the air-filled guide and a dimension of the annulus are chosen to provide an impedance match at the junction of the guides. In one form the annulus is a, cylinder extending for a distance along the portion of the core within the air-filled guide. In this case the critical dimension is the longitudinal length of the annulus. In another form the annulus is a radial extension of the end plate which fits into an annular groove in the solid core. In this case the critical dimension is the radial length of the annulus.
The nature of the invention will be more fully understood from the following detailed description and by reference to the accompanying drawing, in which like reference characters refer to similar parts and in which:
Fig. 1 shows in longitudinal cross-section an impedance transformer for interconnecting an air-filled wave guide and a solid-cored wave guide; and
Fig. 2 is a similar view of a modified form of the transformer shown in Fig. 1.
Fig. l is a cross-sectional side view of one form of transformer in accordance with the invention for connecting a wave guide having a cylindrical sheath 55 filled with a solid dielectric core 56 toa wave guide having a cylindrical sheath 5'! filled with a material of lower dielectric constant such, for example, as air. The sheath 55 and core 56 pass through the end plate 52 and extend into the sheath 5'! for a distance H. The core 56 alone extends beyond the sheath 55 for a further distance J.
In order to match one wave guide to another one, or to any other wave medium, it is, in general, necessary to have two independent tuning controls. In the system shown in Fig. 1 these controls are the distances H and J. The proper adjustment may be determined as follows. One of the guides is terminated in its characteristic impedance and Wave energy is supplied to the transformer in such a way that it passes through a standing wave detector located in the other guide. Then the distances H and J are adjusted alternately to minimize the standing wave. The desired adjustment is attained when the detector indicates an absence of any standing Wave.
Fig. 2 is a cross-sectional side view showing an alternative form of the transformer of Fig. 1. The portion H of the sheath 55 internal to the sheath 51 has been omitted and the core 56 has an annular groove 58 with an internal diameter L into which fits the end plate 52 to form a shunt impedance element. The core 56 extends into the sheath 5! for a distance K and, to facilitate assermbly, this internal portion 59 may be a separate part which is attached in some suitable manner to the remainder of the core 56 after the portion having the groove 58 has been inserted into the circular hole in the end plate 52. The two variables in this transformer are the distance K and the diameter L. These are adjusted, as already explained, for no standing wave.
Although Figs. 1 and 2 show wave guide structures of circular cross-section, it is to be understood that, with suitable modification, the transformers may be applied to rectangular or other forms of wave guide-s.
This is :a division of my copending application Serial No. 452,851, filed July 30, 1942.
What is claimed is:
1. In combination, a wave guide comprising an air-filled sheath, a second wave guide of different characteristic impedance comprising a second sheath and a solid dielectric core, an end plate having an aperture electrically connecting said sheaths, an end portion of said core extending through said aperture into said air-filled sheath, and a metallic annulus connected to the junction between said end plate and said second sheath, the length of said end portion of core and a dimension of said annulus being chosen to provide 3 an impedance match at the junction of said guides.
2. The combination in accordance with claim 1 in which said core completely fills said second sheath.
3. The combination in accordance with claim 1 in which said annulus is a cylinder extending for a distance along said end portion of core.
4. The combination in accordance with claim l in which said annulus is a cylinder extending for a distance along said end portion of core, the
longitudinal length of said cylinder being thedimension chosen for impedance matching.
5. The combination in accordance with claim 1 in which said core has an annular groove and said annulus is a radial extension of said end plate fitting into said groove.
6. The combination in accordance with claim 1 in which said core has an annular groove and said annulus is a radial extension of said end plate fitting into said groove, the radial length of said annulus being the dimension chosen for impedance matching.
'7. In a wave-guide system, an air-filled wave guide, a second wave guide of dififerent characteristic impedance comprising a sheath and a solid dielectric core, and impedance-matching means for interconnecting said guides comprising an end portion of said core and an end portion of said sheath both extending into the end of said air-filled guide.
4 8. The combination in accordance with claim 7 in which said core completely fills said sheath. 9. The combination in accordance with claim '7 in which said sheath extends into said air-filled guide for a distance less than the length of said end portion of said core. 7
10. The combination in accordance Withclaim '7 in which said sheath extends into said air-filled guide for a certain distance and said core extends into said air-filled guide for a certain distance beyond the end of said sheath, said distances being adjusted to minimize the standing wave in said guide in the vicinity of their junction.
11. In a wave-guide system, an air-filled wave guide, a second wave guide of different characteristic impedance comprising a sheath and a solid dielectric core, and impedance-matching means for interconnecting said guides comprising an end portion of said core extending into the end of said air-filled guide, said core having an annular groove and said air-filled guide including an end plate apertured to fit into said groove.
12. The combination in accordance with claim 11 in which said core completely fills said sheath.
13. The combination in accordance with claim 11 in which the internal diameter of said groove and the length of said end portion of said core are adjusted to minimize the standing wave in said guides in the vicinity of their junction.
ARTHUR GARDNER Fox.
US612681A 1942-07-30 1945-08-25 Impedance transformer for wave guides Expired - Lifetime US2422191A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US612681A US2422191A (en) 1942-07-30 1945-08-25 Impedance transformer for wave guides

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
US452851A US2432093A (en) 1942-07-30 1942-07-30 Wave transmission network
US610956A US2607850A (en) 1942-07-30 1945-08-17 Wave guide impedance element
US612680A US2503549A (en) 1942-07-30 1945-08-25 Impedance matching in wave guides
US612681A US2422191A (en) 1942-07-30 1945-08-25 Impedance transformer for wave guides
US614936A US2530691A (en) 1942-07-30 1945-09-07 Wave filter
US614937A US2434646A (en) 1942-07-30 1945-09-07 Wave guide branching arrangement
US789811A US2588226A (en) 1942-07-30 1947-12-05 Wave filter
US266179A US2740094A (en) 1942-07-30 1952-01-12 Wave-guide impedance elements

Publications (1)

Publication Number Publication Date
US2422191A true US2422191A (en) 1947-06-17

Family

ID=27575310

Family Applications (1)

Application Number Title Priority Date Filing Date
US612681A Expired - Lifetime US2422191A (en) 1942-07-30 1945-08-25 Impedance transformer for wave guides

Country Status (1)

Country Link
US (1) US2422191A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2496643A (en) * 1944-10-14 1950-02-07 Bell Telephone Labor Inc Impedance matching system
US2595078A (en) * 1948-05-28 1952-04-29 Rca Corp Dielectric wave guide
US3145356A (en) * 1960-10-11 1964-08-18 Nat Res Dev Different sized waveguides coupled by a narrow tapered dielectric rod

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2496643A (en) * 1944-10-14 1950-02-07 Bell Telephone Labor Inc Impedance matching system
US2595078A (en) * 1948-05-28 1952-04-29 Rca Corp Dielectric wave guide
US3145356A (en) * 1960-10-11 1964-08-18 Nat Res Dev Different sized waveguides coupled by a narrow tapered dielectric rod

Similar Documents

Publication Publication Date Title
US2503549A (en) Impedance matching in wave guides
US2207845A (en) Propagation of waves in a wave guide
US2411534A (en) Impedance transformer
US2432093A (en) Wave transmission network
US2232179A (en) Transmission of guided waves
GB715359A (en) Improvements in or relating to electrical conductors
GB751153A (en) Improvements in or relating to apparatus for guiding electromagnetic wave energy
US2258261A (en) Coil with line properties
US3614694A (en) Coaxial cable high-voltage pulse isolation transformer
US3970969A (en) Device for the electrical protection of a coaxial cable by two connected circuits
US2332952A (en) Means to suppress radio frequency waves upon the inside of tubular conductors
US2514544A (en) High-frequency attenuating device
US2567210A (en) Ultra-high-frequency attenuator
GB591667A (en) Improvements in or relating to impedance transformers for wave guides
US2292496A (en) Transmission line circuit
US2670461A (en) Electromagnetic wave attenuator
US2432094A (en) Impedance transformer for wave guides
US2422191A (en) Impedance transformer for wave guides
US3766499A (en) Directional broadband coupler arrangement
US3609613A (en) Low loss transmission-line transformer
US2774944A (en) Spacer disk arrangement for coaxial cables or the like
US2419577A (en) Antenna system
US3716806A (en) Signal coupling apparatus utilizing hybrid transformer
US2443921A (en) Coupling arrangement
US2567718A (en) Tapered corrugated line