US2421158A - Cutting oil base - Google Patents

Cutting oil base Download PDF

Info

Publication number
US2421158A
US2421158A US601923A US60192345A US2421158A US 2421158 A US2421158 A US 2421158A US 601923 A US601923 A US 601923A US 60192345 A US60192345 A US 60192345A US 2421158 A US2421158 A US 2421158A
Authority
US
United States
Prior art keywords
oil
weight
cutting
emulsifying
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US601923A
Inventor
Latimer D Myers
Victor J Muckerheide
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Emery Oleochemicals LLC
Original Assignee
Emery Oleochemicals LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US443842A external-priority patent/US2393927A/en
Application filed by Emery Oleochemicals LLC filed Critical Emery Oleochemicals LLC
Priority to US601923A priority Critical patent/US2421158A/en
Application granted granted Critical
Publication of US2421158A publication Critical patent/US2421158A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M173/00Lubricating compositions containing more than 10% water
    • C10M173/02Lubricating compositions containing more than 10% water not containing mineral or fatty oils
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/02Water
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/20Rosin acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/287Partial esters
    • C10M2207/289Partial esters containing free hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • C10M2209/104Polyethers, i.e. containing di- or higher polyoxyalkylene groups of alkylene oxides containing two carbon atoms only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/04Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions containing sulfur-to-oxygen bonds, i.e. sulfones, sulfoxides
    • C10M2219/044Sulfonic acids, Derivatives thereof, e.g. neutral salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/20Metal working
    • C10N2040/22Metal working with essential removal of material, e.g. cutting, grinding or drilling
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2050/00Form in which the lubricant is applied to the material being lubricated
    • C10N2050/01Emulsions, colloids, or micelles

Definitions

  • This invention relates to cutting oils. That is, compositions consisting essentially of mineral oil but characterized by their ability to emulsify with water.
  • the emulsions produced from such cutting oils are used in the machining of metals for the purpose of cooling the metal cutting tool and providing lubrication for the chips at the cutting edge.
  • a cutting oil consists, generally speaking. of a mineral oil containing an emulsifying compound capable of producing an emulsion of the oil in water.
  • the objective of the present invention has been to produce cutting oil bases which are at least as inexpensive as the sulphonate bases which we have had available in the past, but better than sulphonate bases, because of their tolerance to variations in oil, their tolerance to variation in water conditions and because-of the strong and powerful emulsifying action they are capable of exerting on a variety of types and grades of oil.
  • the objective in other words, has been to produce a cutting oil base capable of emulsifying the different kinds of oil produced at the different refineries throughout the country, and-of emulsifying such oil with the varying kinds ofwater found at manufacturers plants.
  • a cutting oil base consisting essentially of rosin soap of an alkali metal and a fatty acid mono ester of a poly or dihydric alcohol is capable of giving these desirable results.
  • a typical base of the present invention consists of substantially 1 part of fatty acid mono ester to each 1 to 2 parts of rosin soap. The proportions are quite criti'cal, otherwise the desired universal emulsifying characteristics are not obtained.
  • the fatty acid mono esters are capable of carrying fatty acid soaps into solution in mineral oil and admixtures of glycerol mono oleate and red oil or oleic acid soap are known as emulsifying agents.
  • Such compositions are not suitable as the principal constituents of cutting oils for several reasons. If they are in the proportions in which rosin soap to fatty acid mono ester is present in the compositions of this invention the red oil soap is incapable of dissolving in the oil. And, while more of the fatty acid mono ester is capable of causing the red oil soap to dissolve in mineral oil, the oil then either gels or loses its fiuid characteristics; or does not emulsify in water.
  • Such a material when in the prope proportion to the mono ester, is capable of exerting the required emulsifying action upon a variety of mineral oils and of emulsifying such oils with a variety of different types of water, both acid and alkaline.
  • the base itself is a substantially neutral composition and exerts no corrosive action on metals.
  • the products of the present invention therefore, which are capable of providing the desired emulsifying properties as well as the toleration to variations in both the oil and water with which they subsequently are admixed, consist essentially of an alkali metal soap of rosin and a fatty acid mono ester of a polyhydric or dihydric alcohol.
  • the alkali metal of choice which is used for saponifying the rosin is potassium, the rosin soap thus being, chiefly, potassium abietate.
  • Sodium may be employed as a substitute for potassium in sapom'fying the rosin, though the base is heavier. In this case it is usually desirable to dilute the base with mineral oil in order to make it sufliciently thin to be poured from shipping containers without difficulty.
  • the fatty acids adapted to be employed in the practice of the present invention are preferably liquid fatty acids obtained from natural fats and preferably fatty acid containing from 16 to 18 carbon atoms in chain length as, for example, ol'eic acid, corn oil fatty acids, soybean fatty acids and the like.
  • the solid fatty acids and particularly the mono esters of them are less soluble in mineral oil than the mono esters of the liquid fatty acids and sometimes tend to crystallize out of the oil if the composition becomes chilled.
  • Ethylene glycol, diethylene glycol, glycerol and the like are typical alcohols which may be employed in the preparation of the present compositions.
  • the polyhydric alcohols are preferred inasmuch as, in the present compositions, the polyhydrie alcohol esters are much more effective than the dihydric alcohol esters in promoting emulsifiability and the solubility which is desired.
  • the esters of the dihydric alcohols may be considered as the partial equivalents, not the full equivalent of the polyhydric alcohol esters in the practice of this improvement.
  • wood rosin is preferred to gum rosin in the preparation of the rosin soap employed in the composition
  • the mono ester and the rosin soapare are preferably made independently of one another and then admixed in the proper ratio.
  • the mono ester is made by heating glycerine and fatty acid to a high temperature until the free fatty acid has been reduced to about 2%. While the ester is warm rosin is added in the desired proportion and the ester and the rosin are then admixed.
  • the rosin is more easil saponified and handled when dissolved in the ester than when saponified directly. Potassium hydroxide sufiicient in amount to saponify the rosin is then added and, after saponiflcation is complete, the cutting oil base is ready for use.
  • a typical cutting oil base of the present invention is of the following proximate analysis:
  • oil soluble mineral oil sulphonates may be used as emulsifying adjuncts in the present compositions up to approximately 10 or 15% by weight.
  • a feature of considerable importance in this respect is that the presence of sulphonates in the present cutting oil bases does not disturb or destroy their toleration for variations in the quality of oil which they are capable of emulsifying. This fact enables the manufacturer to include sulphonates in the composition when the price of rosin is high and, conversely, to exclude sulphonates when they are in demand, thereby keeping the cost of the product at a minimum under fluctuating market conditions.
  • Mineral oil sulphonates up to approximately 40% by weight may be employed when desirable.
  • the quality of an emulsion obtained by the bases of the present invention is influenced by the amount of base employed. If a poor emulsion is obtained using a. given amount of base, a good emulsion can readily be made, except under unusual conditions, by using a. larger quantity. This property enables each cutting oil manufacturer to use a minimum quantity of base to produce the necessary emulsion with the particular mineral oil from which the given cutting oil is being made.
  • the preferred cutting oil bases of the present invention contain from 40 to 50 parts by weight of potash rosin soap, 30 to 40 parts by weight of a monoester of a fatty acid of from 16 to 18 carbon atoms in chain length with a di or polyhydric alcohol, for example glyceryl mono oleate, a small quantity up to 5 parts of an alkali metal soap ofoleic acid such as potassium oleate, 5 to 10 parts by weight of water, and also approximately 5 to 10 per cent by weight of oil soluble mineral oil sulphonates, the amount of mineral oil sulphonates not exceeding substantially 40 per cent by weight of the whole composition.
  • a monoester of a fatty acid of from 16 to 18 carbon atoms in chain length with a di or polyhydric alcohol for example glyceryl mono oleate
  • an alkali metal soap ofoleic acid such as potassium oleate
  • oil soluble mineral oil sulphonates the amount of mineral oil sulphonates not exceeding substantially 40 per cent
  • a cutting oil base consisting essentially of approximately 40 to 50 parts by weight of potash rosin soap, 30 to 40 parts by weight of glyceryl mono oleate, an appreciable quantity, up to 5 parts, of potassium oleate for emulsifying purposes and 5 to 10 parts by weight of water, the
  • composition also including from approximately 5 to by weight of oil soluble mineral oil sulphonates.
  • a cutting oil base consisting essentially of approximately 40 to 50 parts by weight of potash rosin soap, 30 to 40 parts by weight of a mono acid ester of a fatty acid of from 16 to 18 carbon atoms in chain length and a poly hydric alcohol, an appreciable quantity, up to 5 parts by weight of potassium oleate for emulsifying purposes and approximately 5 to 10 parts by weight of water,
  • the said composition also including approximate- 1y from 5 to 10% by weight of oil soluble mineral oil sulphonates.
  • a cutting oil base consisting essentially of approximately 40 to 50 parts by weight of potash rosin soap, 30 to 40 parts by weight of a mono acid ester of a fatty acid of from 16 to 18 carbon atoms in chain length and a di hydric alcohol, an appreciable quantity, up to 5 parts by weight of potassium oleate for emulsifying purposes and approximately 5 to 10 parts by weight of water, the said composition also including approximately from 5 to 10% by weight of oil soluble mineral oil sulphonates.
  • a cutting oil base consisting essentially of approximately 40 to 50 parts by weight of alkali metal rosin soap, 30 to 40 parts by weight-of a mono acid ester of a fatty acid of from 16 to 18 carbon atoms in chain length and a poly hydric alcohol, an appreciable quantity, up to 5 parts by weight of potassium oleate for emulsifying parts by weight of an alkali metal soap of oleicacid for emulsifying purposes and approximately 5 to 10 parts by weight of water, the amount of mineral oil sulphonates not exceeding substantially by weight of the whole composition.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Emulsifying, Dispersing, Foam-Producing Or Wetting Agents (AREA)

Description

Patented May 27, 1947' CUTTING OIL BASE Latimer D. Myers, Cincinnati, and Victor J.
Muckerheide, Silverton,
Ohio, assignors to Emery Industries, Inc., Cincinnati, Ohio, a corporation of Ohio No Drawing. Original application May 20, 1942, Serial No. 443,842, now Patent No. 2,393,927, dated January 29, 1946. Divided and this application June 2'7, 1945, Serial No. 601,923
5 Claims. (or. 252-333) This invention relates to cutting oils. that is, compositions consisting essentially of mineral oil but characterized by their ability to emulsify with water. The emulsions produced from such cutting oils are used in the machining of metals for the purpose of cooling the metal cutting tool and providing lubrication for the chips at the cutting edge. Thus, a cutting oil consists, generally speaking. of a mineral oil containing an emulsifying compound capable of producing an emulsion of the oil in water.
This invention is addressed, more particularly. to cutting oil bases, that is, compounds adapted to be added to ordinary mineral oils to endow them with emulsifying characteristics. This application is a division of our copending application, Serial No. 443,842, filed May 20, 1942 now U. S. Patent No. 2,393,927 granted January 29, 1946.
When cutting oils first came to be used in the metal trades many years ago they contained a great variety of different materials, the composition of the product of each manufacturer being the nature of a proprietary made up to suit a given machine shop's requirements. Because of the relatively delicate proportioning required to produce emulsions with the compounds then available each batch of cutting oil was adjusted chemically upon the basis of its ability to emulsify the particular grade or type of mineral oil from which the cutting oil was to be produced. There was always substantial variation from batch to batch, and even so, the actual emulsifiability of the oil in water was poor as judged by the specifications of the present day. Most of the original compositions were mineral oils containing a limited quantity of fatty acid soap, sometimes naphthenic acids and sometimes free fatty acids for the purpose of enabling the soaps to dissolve in the mineral oil. The acidity frequently caused corrosion of the metals.
In more recent years oil soluble mineral oil sulphonates have been introduced into mineral oil to endow it with emulsifying properties. The use of mineral oil sulphonates was a substantial advance inasmuch as the cutting oils so produced were neutral or substantially so and the sulphonates were better emulsifying agents than those previously available. Many thousands of pounds of cutting oil base, consisting chiefly of mineral oil sulphonates, have been used in recent years in cutting oil production, the base being added to the oil at the refinery and the resulting cutting oil then being shipped to the consumer.
The chief difficulty with the use of mineral oil sulphonate cutting oil bases has been their intolerance to variations in the type or quality of oil they were to emulsify. Each time a batch of cutting oil was made up adjustments in chemical composition would have to be made and emulsifying assistants would have to be added to the compositions in order that their emulsifying characteristics would conform to prescribed standards. The problem was not merely one of adding more of the emulsifying base; if a suitable emulsion could not be obtained by using 10% of base sulphonate, it was theexperience, always unexpected and disappointing, that a suitable emulsion could still not be obtained by using l2, 15 or 20%. In order to obtain a satisfactory emulsion under such circumstances some extraneous material such as diethylene glycol would have to be added. Obviously, the procedure of making chemical adjustments each time a batch of cutting oil base was to be made was both tedious and expensive. Moreover, a base suitable for' emulsifying the oil produced at one refinery would not be capable of producing a suitable cutting oil upon admixture with the oil from a different refinery.
With the more widespread use. of cutting oil in all machine trades, this necessity of making chemical adjustments has become a problem of serious importance and, to avoid it, the objective of the present invention has been to produce cutting oil bases which are at least as inexpensive as the sulphonate bases which we have had available in the past, but better than sulphonate bases, because of their tolerance to variations in oil, their tolerance to variation in water conditions and because-of the strong and powerful emulsifying action they are capable of exerting on a variety of types and grades of oil. The objective, in other words, has been to produce a cutting oil base capable of emulsifying the different kinds of oil produced at the different refineries throughout the country, and-of emulsifying such oil with the varying kinds ofwater found at manufacturers plants.
We have discovered that a cutting oil base consisting essentially of rosin soap of an alkali metal and a fatty acid mono ester of a poly or dihydric alcohol is capable of giving these desirable results. A typical base of the present invention consists of substantially 1 part of fatty acid mono ester to each 1 to 2 parts of rosin soap. The proportions are quite criti'cal, otherwise the desired universal emulsifying characteristics are not obtained.
It has been appreciated in the past that the fatty acid mono esters are capable of carrying fatty acid soaps into solution in mineral oil and admixtures of glycerol mono oleate and red oil or oleic acid soap are known as emulsifying agents. Such compositions, however, are not suitable as the principal constituents of cutting oils for several reasons. If they are in the proportions in which rosin soap to fatty acid mono ester is present in the compositions of this invention the red oil soap is incapable of dissolving in the oil. And, while more of the fatty acid mono ester is capable of causing the red oil soap to dissolve in mineral oil, the oil then either gels or loses its fiuid characteristics; or does not emulsify in water.
In the same manner that a soap of a fatty acid does not giv satisfactory results when combined with a mono ester of a fatty acid, had results also are obtained when the effort is made to combine a rosin soap with a rosin mono ester; the resulting product is insoluble in oil.
In contrast with these results, there is a peculiar and very desirable response to fatty acid mono esters by the rosin soap. Such a material, when in the prope proportion to the mono ester, is capable of exerting the required emulsifying action upon a variety of mineral oils and of emulsifying such oils with a variety of different types of water, both acid and alkaline. The base itself is a substantially neutral composition and exerts no corrosive action on metals.
The products of the present invention therefore, which are capable of providing the desired emulsifying properties as well as the toleration to variations in both the oil and water with which they subsequently are admixed, consist essentially of an alkali metal soap of rosin and a fatty acid mono ester of a polyhydric or dihydric alcohol.
The alkali metal of choice which is used for saponifying the rosin is potassium, the rosin soap thus being, chiefly, potassium abietate. Sodium may be employed as a substitute for potassium in sapom'fying the rosin, though the base is heavier. In this case it is usually desirable to dilute the base with mineral oil in order to make it sufliciently thin to be poured from shipping containers without difficulty.
The fatty acids adapted to be employed in the practice of the present invention are preferably liquid fatty acids obtained from natural fats and preferably fatty acid containing from 16 to 18 carbon atoms in chain length as, for example, ol'eic acid, corn oil fatty acids, soybean fatty acids and the like. The solid fatty acids and particularly the mono esters of them are less soluble in mineral oil than the mono esters of the liquid fatty acids and sometimes tend to crystallize out of the oil if the composition becomes chilled.
Ethylene glycol, diethylene glycol, glycerol and the like are typical alcohols which may be employed in the preparation of the present compositions. However, as between the poly and dihydric alcohols, the polyhydric alcohols are preferred inasmuch as, in the present compositions, the polyhydrie alcohol esters are much more effective than the dihydric alcohol esters in promoting emulsifiability and the solubility which is desired. For these reasons the esters of the dihydric alcohols may be considered as the partial equivalents, not the full equivalent of the polyhydric alcohol esters in the practice of this improvement. In general, wood rosin is preferred to gum rosin in the preparation of the rosin soap employed in the composition In the manufacture of the present cutting oil base the mono ester and the rosin soapare preferably made independently of one another and then admixed in the proper ratio. The mono ester is made by heating glycerine and fatty acid to a high temperature until the free fatty acid has been reduced to about 2%. While the ester is warm rosin is added in the desired proportion and the ester and the rosin are then admixed. The rosin is more easil saponified and handled when dissolved in the ester than when saponified directly. Potassium hydroxide sufiicient in amount to saponify the rosin is then added and, after saponiflcation is complete, the cutting oil base is ready for use.
A typical cutting oil base of the present invention is of the following proximate analysis:
If desirable, oil soluble mineral oil sulphonates may be used as emulsifying adjuncts in the present compositions up to approximately 10 or 15% by weight. A feature of considerable importance in this respect is that the presence of sulphonates in the present cutting oil bases does not disturb or destroy their toleration for variations in the quality of oil which they are capable of emulsifying. This fact enables the manufacturer to include sulphonates in the composition when the price of rosin is high and, conversely, to exclude sulphonates when they are in demand, thereby keeping the cost of the product at a minimum under fluctuating market conditions. Mineral oil sulphonates up to approximately 40% by weight may be employed when desirable.
In the manufacture of cutting oils from these bases the proportion utilized ordinarily resides in the range of 12 to 20 parts of base to each parts of mineral oil.
In contrast with the mahogany sulphonate type cutting oil bases that have been available in the past, the quality of an emulsion obtained by the bases of the present invention is influenced by the amount of base employed. If a poor emulsion is obtained using a. given amount of base, a good emulsion can readily be made, except under unusual conditions, by using a. larger quantity. This property enables each cutting oil manufacturer to use a minimum quantity of base to produce the necessary emulsion with the particular mineral oil from which the given cutting oil is being made.
The preferred cutting oil bases of the present invention contain from 40 to 50 parts by weight of potash rosin soap, 30 to 40 parts by weight of a monoester of a fatty acid of from 16 to 18 carbon atoms in chain length with a di or polyhydric alcohol, for example glyceryl mono oleate, a small quantity up to 5 parts of an alkali metal soap ofoleic acid such as potassium oleate, 5 to 10 parts by weight of water, and also approximately 5 to 10 per cent by weight of oil soluble mineral oil sulphonates, the amount of mineral oil sulphonates not exceeding substantially 40 per cent by weight of the whole composition.
Having described our invention, we claim:
1. A cutting oil base consisting essentially of approximately 40 to 50 parts by weight of potash rosin soap, 30 to 40 parts by weight of glyceryl mono oleate, an appreciable quantity, up to 5 parts, of potassium oleate for emulsifying purposes and 5 to 10 parts by weight of water, the
said composition also including from approximately 5 to by weight of oil soluble mineral oil sulphonates.
2. A cutting oil base consisting essentially of approximately 40 to 50 parts by weight of potash rosin soap, 30 to 40 parts by weight of a mono acid ester of a fatty acid of from 16 to 18 carbon atoms in chain length and a poly hydric alcohol, an appreciable quantity, up to 5 parts by weight of potassium oleate for emulsifying purposes and approximately 5 to 10 parts by weight of water,
the said composition also including approximate- 1y from 5 to 10% by weight of oil soluble mineral oil sulphonates.
3. A cutting oil base consisting essentially of approximately 40 to 50 parts by weight of potash rosin soap, 30 to 40 parts by weight of a mono acid ester of a fatty acid of from 16 to 18 carbon atoms in chain length and a di hydric alcohol, an appreciable quantity, up to 5 parts by weight of potassium oleate for emulsifying purposes and approximately 5 to 10 parts by weight of water, the said composition also including approximately from 5 to 10% by weight of oil soluble mineral oil sulphonates.
4. A cutting oil base consisting essentially of approximately 40 to 50 parts by weight of alkali metal rosin soap, 30 to 40 parts by weight-of a mono acid ester of a fatty acid of from 16 to 18 carbon atoms in chain length and a poly hydric alcohol, an appreciable quantity, up to 5 parts by weight of potassium oleate for emulsifying parts by weight of an alkali metal soap of oleicacid for emulsifying purposes and approximately 5 to 10 parts by weight of water, the amount of mineral oil sulphonates not exceeding substantially by weight of the whole composition.
LATIMER D. MYERS. VICTOR J. MUCKERHEIDE.
REFERENCES CITED The following references are of record in the file of this patent:
UNITED STATES PATENTS Number Name Date 2,198,851 Wiezevich Apr; 30, 1940 1,463,092 Peliy July 24, 1923 1,872,617 Brown Aug. 16, 1932 2,097,085 Fabran Oct. 26, 1937 2,328,727 Langer Sept. 7, 1943 2,039,377 Adams May 5, 1936
US601923A 1942-05-20 1945-06-27 Cutting oil base Expired - Lifetime US2421158A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US601923A US2421158A (en) 1942-05-20 1945-06-27 Cutting oil base

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US443842A US2393927A (en) 1942-05-20 1942-05-20 Cutting oil base
US601923A US2421158A (en) 1942-05-20 1945-06-27 Cutting oil base

Publications (1)

Publication Number Publication Date
US2421158A true US2421158A (en) 1947-05-27

Family

ID=27033681

Family Applications (1)

Application Number Title Priority Date Filing Date
US601923A Expired - Lifetime US2421158A (en) 1942-05-20 1945-06-27 Cutting oil base

Country Status (1)

Country Link
US (1) US2421158A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2516838A (en) * 1947-04-18 1950-08-01 Sheil Dev Company Soluble oil base

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1463092A (en) * 1921-07-07 1923-07-24 Technical Res Works Ltd Lubricant and process of preparing same
US1872617A (en) * 1927-02-21 1932-08-16 Westinghouse Electric & Mfg Co Emulsified fluid lubricant
US2039377A (en) * 1933-05-20 1936-05-05 Standard Oil Co Hard water soluble oil
US2097085A (en) * 1936-03-27 1937-10-26 Standard Oil Co Soluble oils
US2198851A (en) * 1936-11-06 1940-04-30 Standard Oil Dev Co Compounded lubricating oil
US2328727A (en) * 1940-08-09 1943-09-07 Texas Co Soluble oil

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1463092A (en) * 1921-07-07 1923-07-24 Technical Res Works Ltd Lubricant and process of preparing same
US1872617A (en) * 1927-02-21 1932-08-16 Westinghouse Electric & Mfg Co Emulsified fluid lubricant
US2039377A (en) * 1933-05-20 1936-05-05 Standard Oil Co Hard water soluble oil
US2097085A (en) * 1936-03-27 1937-10-26 Standard Oil Co Soluble oils
US2198851A (en) * 1936-11-06 1940-04-30 Standard Oil Dev Co Compounded lubricating oil
US2328727A (en) * 1940-08-09 1943-09-07 Texas Co Soluble oil

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2516838A (en) * 1947-04-18 1950-08-01 Sheil Dev Company Soluble oil base

Similar Documents

Publication Publication Date Title
US2245649A (en) Lubricant and method of making same
US2345199A (en) Emulsifiable lubricant
US2182137A (en) Soda soap grease
US4138348A (en) Lubricant for use in non-chip metal forming
US2238478A (en) Lubricant and process for making the same
US2967831A (en) Hydraulic fluid and its preparation
US2291066A (en) Lubricant
US2421158A (en) Cutting oil base
US2258309A (en) Lubricant
US2062652A (en) Cutting oil
US2393927A (en) Cutting oil base
US2403104A (en) Lithium greases
US2421159A (en) Cutting oil base
US2198567A (en) Driving journal lubricant
US3024193A (en) Stabilized metal-working lubricant
US2792348A (en) Soap composition
US2443833A (en) Cutting oil base
US1773123A (en) Emulsion
US1872617A (en) Emulsified fluid lubricant
US2159218A (en) Wax
US2303558A (en) Premium cup grease of improved heat and texture stability
US2398075A (en) Grease manufacture
US2450321A (en) Rust-inhibiting greases
US2626240A (en) Noncorrosive soluble oil containing active sulfur
US2576031A (en) Lubricating grease containing soaps of tall oil