US2414716A - Mechanical toy - Google Patents

Mechanical toy Download PDF

Info

Publication number
US2414716A
US2414716A US568261A US56826144A US2414716A US 2414716 A US2414716 A US 2414716A US 568261 A US568261 A US 568261A US 56826144 A US56826144 A US 56826144A US 2414716 A US2414716 A US 2414716A
Authority
US
United States
Prior art keywords
pieces
tongues
piece
assemblage
tubing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US568261A
Inventor
Lawrence E Carson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RIGAGIG TOY Co
Original Assignee
RIGAGIG TOY Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RIGAGIG TOY Co filed Critical RIGAGIG TOY Co
Priority to US568261A priority Critical patent/US2414716A/en
Application granted granted Critical
Publication of US2414716A publication Critical patent/US2414716A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63HTOYS, e.g. TOPS, DOLLS, HOOPS OR BUILDING BLOCKS
    • A63H33/00Other toys
    • A63H33/04Building blocks, strips, or similar building parts
    • A63H33/10Building blocks, strips, or similar building parts to be assembled by means of additional non-adhesive elements
    • A63H33/105Building blocks, strips, or similar building parts to be assembled by means of additional non-adhesive elements with grooves, e.g. dovetails

Definitions

  • This invention relates to mechanical toys of the type in which various forms and structures are assembled with preformed pieces of different shapes and sizes; and the general purpose of the invention is to provide a combination of pieces and connectors of maximum simplicity and capable of easy and simple assemblage in a large variety of forms. More specifically, the invention relates particularly, among other things, to connective formations and members, to provide a connective unit which is extremely simple and capable of assembly in a large varietyof relative arrangements so as to allow assembly of adjacent pieces in a great variety of relative positions.
  • FIG. 1 is a perspective of a typical assemblage utilizing my connective unit
  • Fig. 2 is a perspective of another typical assemblage
  • Fig. 3 is a detail section taken as indicated by line 33 on Fig. 1;
  • Fig. 4 is a perspective illustrating a fragment of another typical assemblage
  • Fig. 5 is a detail section as indicated by line 55 on Fig. 4;
  • Fig. 6 is a perspective illustrating another typical assemblage
  • Fig. '7 is a fragmentary perspective illustrating a modified connector formation.
  • the assemblage elements which I here term pieces may be provided in a great varietyof forms and in any suitable number.
  • the number of different forms, and the number of pieces of each of those forms which go to make up a building set may be greatly varied.
  • each of the pieces include the following:
  • the pieces, for instance the pieces designated H), 'll, 12 in Fig. 3, are made from a relatively flat thin piece of any suitable material; for instance, of wood or composition material, fibrous material or molded plastic.
  • each piece has assembly tongues it which are typically formed between two slots N that may be formed by slotting or sawing or molding operations.
  • the tongues Preferably the tongues have their outer corners beveled as illustrated at 5 to facilitate assemblage operations; Likewise the tongues may be tapered from their bases to their tips if desired.
  • the tongues have a width dimension (as seen in the aspect of the left-hand piece I! in Fig. 3) considerably greater than their thickness dimension, which is the thickness of the piece (as seen in the sectional showing of the right-hand piece l2 in Fig. 3).
  • all of the pieces, or most of them have central holes Hi.
  • the described tongues form one element of a connective unit, the other element of which is formed by a flexible tubular member 28, of suitable length, and composed of some relatively flexible and preferably somewhat resilient material, such as a pliable plastic.
  • Pliable tubing of the material known as Tenite (a cellulose acetate) or Vinylite (a vinyl resin) is suitable. It is readily pliable and has a low resiliency and modulus of elasticity. A material of that nature is the preferred material, although a pliable material with high resiliency such as rubber tubing can be used. The primary requisite is pliability, preferably with some resiliency.
  • the tubing is here shown as cylindric, but it may be eliptic, or polygonal (e. g. square or hexagonal) in sectional form. As will be seen, it is deformed and stretched in cross-section when applied to the tongues, so although cylindric tubing is preferable it is not necessary.
  • connective elements 20 comprising short pieces of such tubing are used, the length of the pieces being approximately, or more or less exactly, twice the length dimensions of tongues 13, so that when the parts are assembled, as shown in Fig. 3, the adjacent edges of the pieces will either contact each other or come quite close to each other.
  • the connector 29 shown at the left in Fig. 3 is shown as connecting two adjacent pieces in the same plane and in edge abutting relation.
  • the connecting element 20 is shown as fitted over a tongue l3 at one apex of the triangular piece ll and as extending through the central hole [6 f circular piece 12.
  • tongues l3 are preferably wider than they are thick. In any case they are rectangular in cross-sectional configuration; and their transverse dimensions are such that the flexible "tubing is stretched and deformed from its normal circular form when the tubing element is forced over the tongue. An illustration of this is given in Fig. 7. There the tongue is shown at I3 in the preferred -formconsider-ably wider than it is thick. The flexible tubing element 20a is shown flattened in the plane of the tongue, stretched out in that plane by being forced upon the tongue. In other words, the effective width dimension of the tongue is greater than the internal diameter of the pliable tubing, so that the pliable tubing must be stretched and flattened to fit it over the tongue. Consonantly, if the tongue were relatively thicker but still rectangular in cross sectional configuration, the diagonal dimension of the tongue cross section will be greater than the internal diameter of the pliable tubme, so that the tubing must be distorted in fitting it over the tongue.
  • the relation between the dimensions of the tongue and those of the pliable tubing is one of th characteristics which is conducive to ease of assembly, to assembly of adjacent pieces in any desired relation, and particularly conducive to doing away with any great required accuracy in the manufacture of the parts, and with their manufacture from high grade materials.
  • no great accuracy is required in the relation between the dimensions of the tongue and those of the flexible tubing, because of the range through which the tubing can be stretched and flattened in fitting it over the tongue. Consequently, within reasonabl limits, relatively poor materials can be used for the several tongued pieces, and no great accuracy is required in forming the tongues.
  • the material of the tubing element 28, of such materials as described, is not only flexible but also compressible and extensible.
  • holes I6 in the several pieces are made to a size which will diametrally compress the tubing element 20 but at the same time be not difficult to force over that element.
  • no great accuracy is necessary in the dimensioning of holes 16.
  • Fig. 1 shows a typical assemblage of several pieces of different shapes, interconnected by the tubular connector elements 28 in the manners which have been described.
  • the assemblage includes rectangular pieces I0, triangular pieces II, circular pieces I2, square pieces 9, and diamond shaped pieces 8.
  • the general method and manner of assembly will be understood, without further explanation, from what has been said in connection with Fig. 3.
  • Fig. 1 however illustrates one assemblage feature which is inherent in the structure of the connector unit and which is not shown in Fig. 3; namely, that two adjacent pieces which have their connector tongues interconnected by a tubular element 20 may be assembled to lie in any desired relative plane.
  • the diamond pieces 8a which are shown assembled around the circular piece I 211 in Fig.
  • any two adjacent pieces which have their tongues interconnected by a tubular element as can be assembled tolie in any of two relative planes which intersect each other on the axis of the tubular element.
  • the central Fig. 2 illustrates another one of many typical assemblages, in this case to simulate a chair.
  • a square piece 90 forms the seat and two diamond pieces 8c form the sides, with connector elements fitted over side tongues of the seat piece and through the central holes of the side pieces.
  • the lower part of the chair back is formed by a rectangular piece I 00, secured to the back edge of the seat by connector element 30 which fits over a tongue on the back edge of the seat piece and through the central hole of piece I00.
  • the upper part of the back is formed by a hexagonal iece 10 which is aifixed to the upper edge of I00 by a connector element 20 fitted over tongues of the two pieces; and rear brace pieces are formed by triangular pieces IIc connected by other connector elements 20 fitted over tongues of pieces I I0 and 80.
  • Fig. 6 shows a simple assemblage utilizing a tubular connector element 20d longer than those previously described.
  • the assemblage simulates a pair of wheels and an axle; a pair of circular pieces IZd with the long tubular connector element 28d inserted through their two central holes.
  • the longer tubular connector elements may be used not only as connectors but also as long structural elements. See Fig. 4 which illustrates a fragment of an assemblage simulating a framed and braced structure Lower square pieces 9e are connected by a long rectangular piece I06 and two short tubular connectors 206 which fit over tongues on 9e and 20e. Upper square pieces 9e are similarly interconnected. Pairs of upper and lower square pieces 20c are interconnected by long tubular connectors 20] fitted over their tongues. I
  • Diagonal bracing is supplied by a circular piece I2e and diagonally disposed long tubular connectors 28f fitted over corner tongues of the squares and the radial tongues of the circle.
  • the assemblage so far described forms one of say four structural panels which may be arranged in vertical planes to form a hollow cubical structure. Only one complete panel and a part of another are shown in Fig. 4. At the corners of the assembled structure, corner connections may be formed as shown in Figs. 4 and 5, utilizing a special angle piece 25 which has tongues I3e.
  • a pair of short tubular connectors 20 are fitted over tongues I3e and over appropriate tongues i3 on the square pieces 9e.
  • a sub-assemblage is shown consisting of a hexagonal piece 7e, two
  • Fig. 7 illustrates another use of a relatively long tubular connector.
  • the tube being flexible, it can easily be bent, particularly in a plane at right angles to the planes in which it is flattened by fitting over tongues I3.
  • a long connector may be used as an angular connector between tongues I3 which are arranged in such an angular arrangement as is shown in Fig. '7.
  • each connective unit consisting of tongues of non-circular cross-section formed on the edges of two pieces, and a tubular connective element of deformable material and than the internal diameter of the tubular ele ment, the tubular element being of such material vand thickness as to be adapted to be forced over the tongues and thereby deformed in cross section so as to grip the tongues.
  • each connective unit 6 consisting of relatively thin flat tongues formed on the edges of two pieces, and a tubular connec tive element of deformable material and of internal diameter less than the efiective Width of the tongues, the thickness dimension of the tongues being substantially less than the internal diameter of the tubular element, the tubular element being of such material and thickness as to be adapted to be forced over the tongues and thereby deformed in cross-section so as to grip the tongues.

Landscapes

  • Toys (AREA)

Description

Jan. 21, 1947. t g 2,414,716
MECHANICAL TOY Fileii Dec. 15, 1944 2 Sheets-Sheet 1 Lawrence .E- Ear-5017 WM/MMQ Jan. 21,- 1947. r 1 c s v 2,414,716
7 MECHANICAL TOY' Filed Dec. 15 1944 2 SheetS -Sheet 2 [J7 val-12 271" Laurence 3. 55215017 Patented Jan. 21, 1947 MECHANICAL TOY Lawrence E. Carson, Alhambra, Calif., assignor to Rgagig Toy Company, Chicago, 3111., a corporation of Illinois Application December 15, 1944, Serial No. 568,261 '2 Claims. (01. 46-31) This invention relates to mechanical toys of the type in which various forms and structures are assembled with preformed pieces of different shapes and sizes; and the general purpose of the invention is to provide a combination of pieces and connectors of maximum simplicity and capable of easy and simple assemblage in a large variety of forms. More specifically, the invention relates particularly, among other things, to connective formations and members, to provide a connective unit which is extremely simple and capable of assembly in a large varietyof relative arrangements so as to allow assembly of adjacent pieces in a great variety of relative positions.
The invention will be best understood from the following description and the accompanying illustrations of preferred embodiments, reference being had to the accompanying drawings in which Fig. 1 is a perspective of a typical assemblage utilizing my connective unit;
Fig. 2 is a perspective of another typical assemblage;
Fig. 3 is a detail section taken as indicated by line 33 on Fig. 1;
Fig. 4 is a perspective illustrating a fragment of another typical assemblage;
Fig. 5 is a detail section as indicated by line 55 on Fig. 4;
Fig. 6 is a perspective illustrating another typical assemblage, and
Fig. '7 is a fragmentary perspective illustrating a modified connector formation.
The assemblage elements which I here term pieces may be provided in a great varietyof forms and in any suitable number. The number of different forms, and the number of pieces of each of those forms which go to make up a building set may be greatly varied. In the accompanying drawings I do not attempt to show all of the possible forms which the pieces may take, but only enough to show their general characteristics and to illustrate a few of the possible typical assemblages.
The preferred common characteristics .of each of the pieces include the following: The pieces, for instance the pieces designated H), 'll, 12 in Fig. 3, are made from a relatively flat thin piece of any suitable material; for instance, of wood or composition material, fibrous material or molded plastic. At its side edges, and/or at its ends, each piece has assembly tongues it which are typically formed between two slots N that may be formed by slotting or sawing or molding operations. Preferably the tongues have their outer corners beveled as illustrated at 5 to facilitate assemblage operations; Likewise the tongues may be tapered from their bases to their tips if desired. And preferably, although not necessarily, the tongues have a width dimension (as seen in the aspect of the left-hand piece I!) in Fig. 3) considerably greater than their thickness dimension, which is the thickness of the piece (as seen in the sectional showing of the right-hand piece l2 in Fig. 3). And preferably all of the pieces, or most of them, have central holes Hi.
The described tongues form one element of a connective unit, the other element of which is formed by a flexible tubular member 28, of suitable length, and composed of some relatively flexible and preferably somewhat resilient material, such as a pliable plastic. Pliable tubing of the material known as Tenite (a cellulose acetate) or Vinylite (a vinyl resin) is suitable. It is readily pliable and has a low resiliency and modulus of elasticity. A material of that nature is the preferred material, although a pliable material with high resiliency such as rubber tubing can be used. The primary requisite is pliability, preferably with some resiliency. The tubing is here shown as cylindric, but it may be eliptic, or polygonal (e. g. square or hexagonal) in sectional form. As will be seen, it is deformed and stretched in cross-section when applied to the tongues, so although cylindric tubing is preferable it is not necessary.
For making such connections as are shown in Fig. 3 connective elements 20 comprising short pieces of such tubing are used, the length of the pieces being approximately, or more or less exactly, twice the length dimensions of tongues 13, so that when the parts are assembled, as shown in Fig. 3, the adjacent edges of the pieces will either contact each other or come quite close to each other. The connector 29 shown at the left in Fig. 3 is shown as connecting two adjacent pieces in the same plane and in edge abutting relation. At the right hand side of Fig. 3 the connecting element 20 is shown as fitted over a tongue l3 at one apex of the triangular piece ll and as extending through the central hole [6 f circular piece 12.
As I have stated, tongues l3 are preferably wider than they are thick. In any case they are rectangular in cross-sectional configuration; and their transverse dimensions are such that the flexible "tubing is stretched and deformed from its normal circular form when the tubing element is forced over the tongue. An illustration of this is given in Fig. 7. There the tongue is shown at I3 in the preferred -formconsider-ably wider than it is thick. The flexible tubing element 20a is shown flattened in the plane of the tongue, stretched out in that plane by being forced upon the tongue. In other words, the effective width dimension of the tongue is greater than the internal diameter of the pliable tubing, so that the pliable tubing must be stretched and flattened to fit it over the tongue. Consonantly, if the tongue were relatively thicker but still rectangular in cross sectional configuration, the diagonal dimension of the tongue cross section will be greater than the internal diameter of the pliable tubme, so that the tubing must be distorted in fitting it over the tongue.
The foregoing provisions, the relation between the dimensions of the tongue and those of the pliable tubing, is one of th characteristics which is conducive to ease of assembly, to assembly of adjacent pieces in any desired relation, and particularly conducive to doing away with any great required accuracy in the manufacture of the parts, and with their manufacture from high grade materials. As will be readily understood, no great accuracy is required in the relation between the dimensions of the tongue and those of the flexible tubing, because of the range through which the tubing can be stretched and flattened in fitting it over the tongue. Consequently, within reasonabl limits, relatively poor materials can be used for the several tongued pieces, and no great accuracy is required in forming the tongues.
The material of the tubing element 28, of such materials as described, is not only flexible but also compressible and extensible. holes I6 in the several pieces are made to a size which will diametrally compress the tubing element 20 but at the same time be not difficult to force over that element. Here again, no great accuracy is necessary in the dimensioning of holes 16.
Fig. 1 shows a typical assemblage of several pieces of different shapes, interconnected by the tubular connector elements 28 in the manners which have been described. The assemblage includes rectangular pieces I0, triangular pieces II, circular pieces I2, square pieces 9, and diamond shaped pieces 8. The general method and manner of assembly will be understood, without further explanation, from what has been said in connection with Fig. 3. Fig. 1 however illustrates one assemblage feature which is inherent in the structure of the connector unit and which is not shown in Fig. 3; namely, that two adjacent pieces which have their connector tongues interconnected by a tubular element 20 may be assembled to lie in any desired relative plane. For instance the diamond pieces 8a which are shown assembled around the circular piece I 211 in Fig. 1, are assembled in planes which are at right angles to the plane of H11. And the square pieces 9a which are assembled directly adjacent diamond pieces 8a are in relatively right-angled planes. The two diamond pieces 8b which are assembled adjacent the rectangular piece Iilb are shown as lying in planes somewhat oblique to the plane of piece Iiib; and the square pieces 9b which are shown as assembled around the central circular piece I2 (in representation of a windmill) are shown assembled in planes oblique to the plane of circular piece I2. In general, any two adjacent pieces which have their tongues interconnected by a tubular element as can be assembled tolie in any of two relative planes which intersect each other on the axis of the tubular element.
The central Fig. 2 illustrates another one of many typical assemblages, in this case to simulate a chair. A square piece 90 forms the seat and two diamond pieces 8c form the sides, with connector elements fitted over side tongues of the seat piece and through the central holes of the side pieces. The lower part of the chair back is formed by a rectangular piece I 00, secured to the back edge of the seat by connector element 30 which fits over a tongue on the back edge of the seat piece and through the central hole of piece I00. The upper part of the back is formed by a hexagonal iece 10 which is aifixed to the upper edge of I00 by a connector element 20 fitted over tongues of the two pieces; and rear brace pieces are formed by triangular pieces IIc connected by other connector elements 20 fitted over tongues of pieces I I0 and 80.
Fig. 6 shows a simple assemblage utilizing a tubular connector element 20d longer than those previously described. Here the assemblage simulates a pair of wheels and an axle; a pair of circular pieces IZd with the long tubular connector element 28d inserted through their two central holes.
The longer tubular connector elements may be used not only as connectors but also as long structural elements. See Fig. 4 which illustrates a fragment of an assemblage simulating a framed and braced structure Lower square pieces 9e are connected by a long rectangular piece I06 and two short tubular connectors 206 which fit over tongues on 9e and 20e. Upper square pieces 9e are similarly interconnected. Pairs of upper and lower square pieces 20c are interconnected by long tubular connectors 20] fitted over their tongues. I
Diagonal bracing is supplied by a circular piece I2e and diagonally disposed long tubular connectors 28f fitted over corner tongues of the squares and the radial tongues of the circle. The assemblage so far described forms one of say four structural panels which may be arranged in vertical planes to form a hollow cubical structure. Only one complete panel and a part of another are shown in Fig. 4. At the corners of the assembled structure, corner connections may be formed as shown in Figs. 4 and 5, utilizing a special angle piece 25 which has tongues I3e. A pair of short tubular connectors 20 are fitted over tongues I3e and over appropriate tongues i3 on the square pieces 9e.
In the upper part of Fig. 4 a sub-assemblage is shown consisting of a hexagonal piece 7e, two
long tubular connectors 20 two special pieces 26 and two short tubular connectors 29, assembled as illustrated. Special pieces 20 have tongues I31 at their ends, the axes of the two tongues of each piece making a mutual angle of about 45.
Fig. 7 illustrates another use of a relatively long tubular connector. The tube being flexible, it can easily be bent, particularly in a plane at right angles to the planes in which it is flattened by fitting over tongues I3. Thus such a long connector may be used as an angular connector between tongues I3 which are arranged in such an angular arrangement as is shown in Fig. '7.
I claim:
1. A mechanical toy of the assemblage type,
comprising a plurality of pieces of predetermined shapes, and connective units for connectively assembling the pieces, each connective unit consisting of tongues of non-circular cross-section formed on the edges of two pieces, and a tubular connective element of deformable material and than the internal diameter of the tubular ele ment, the tubular element being of such material vand thickness as to be adapted to be forced over the tongues and thereby deformed in cross section so as to grip the tongues.
2. A mechanical toy of the assemblage type,
comprising a plurality of fiat pieces of predetermined shapes, and connective units for connectively assembling the pieces, each connective unit 6 consisting of relatively thin flat tongues formed on the edges of two pieces, and a tubular connec tive element of deformable material and of internal diameter less than the efiective Width of the tongues, the thickness dimension of the tongues being substantially less than the internal diameter of the tubular element, the tubular element being of such material and thickness as to be adapted to be forced over the tongues and thereby deformed in cross-section so as to grip the tongues.
LAWRENCE E. CARSON.
US568261A 1944-12-15 1944-12-15 Mechanical toy Expired - Lifetime US2414716A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US568261A US2414716A (en) 1944-12-15 1944-12-15 Mechanical toy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US568261A US2414716A (en) 1944-12-15 1944-12-15 Mechanical toy

Publications (1)

Publication Number Publication Date
US2414716A true US2414716A (en) 1947-01-21

Family

ID=24270590

Family Applications (1)

Application Number Title Priority Date Filing Date
US568261A Expired - Lifetime US2414716A (en) 1944-12-15 1944-12-15 Mechanical toy

Country Status (1)

Country Link
US (1) US2414716A (en)

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2577702A (en) * 1947-06-03 1951-12-04 Illinois Tool Works Toy construction element
US2751706A (en) * 1953-05-25 1956-06-26 Metal Martin Child's construction toy
US2833082A (en) * 1954-08-05 1958-05-06 Rig A Jig Toy Co Inc Construction toy
US3126667A (en) * 1964-03-31 Play set for making space craft figurettes
US3241833A (en) * 1963-04-05 1966-03-22 Luchland Company Balancing game
US3422564A (en) * 1964-05-26 1969-01-21 John Y Izumi Interconnectable modular connectors for tubular elements
US3477188A (en) * 1968-02-19 1969-11-11 Omniversal Design Modular structure
US3554382A (en) * 1968-06-24 1971-01-12 Karlis E Grinbergs Construction product with slotted panels and annular connectors
US3577660A (en) * 1968-10-28 1971-05-04 Malcolm E Kenney Linkage for model-forming discs
US3648404A (en) * 1969-04-14 1972-03-14 Charles S Ogsbury Connector unit having radial arms for straight or angular connections
US4764143A (en) * 1985-09-19 1988-08-16 Daniel Low Assembly toys for joining cylindrical objects
US5183430A (en) * 1986-04-28 1993-02-02 James Swann Geometric toy construction system
US5472365A (en) * 1993-05-17 1995-12-05 Engel; Richard J. Polygon attachment system for constructing polyhedra
US5733168A (en) * 1990-12-04 1998-03-31 Interlego Ag Coupling mechanism for a toy building set
US6179681B1 (en) * 1998-02-13 2001-01-30 Jose R. Matos Universal connector toy
US6475060B1 (en) * 2001-09-14 2002-11-05 Liu Kuo-Ching Three-dimensional built-up toy train
US6478650B1 (en) * 2001-09-28 2002-11-12 3E Enterprise Ltd. Toy construction kit having movable members
US6676474B2 (en) 2002-01-07 2004-01-13 Connector Set Limited Partnership Rod and connector toy construction set
US20040144041A1 (en) * 2002-12-20 2004-07-29 Fleishman Gregg R. Joining system for polyhedric modules
US6772986B1 (en) * 2003-07-02 2004-08-10 Edward D. Bennett Coaster clip
US20180021689A1 (en) * 2015-01-06 2018-01-25 Building Creative Kids, Llc Toy Building Systems Including Adjustable Connector Clips, Building Planks, and Panels
US20180214786A1 (en) * 2017-01-27 2018-08-02 Traxart Toys LLC Interactive Construction Toy System
US20180256999A1 (en) * 2017-03-13 2018-09-13 Yush Gupta Block-based construction system
USD863601S1 (en) * 2018-03-27 2019-10-15 Cersai Building Material Co., Ltd. Mosaic tile with notch
US10549505B2 (en) * 2017-01-12 2020-02-04 Massachusetts Institute Of Technology Active lattices
USD877263S1 (en) 2011-10-13 2020-03-03 Building Creative Kids, Llc Toy coupler
US10633772B2 (en) 2017-01-12 2020-04-28 Massachusetts Institute Of Technology Active woven materials
US10953605B2 (en) 2017-04-04 2021-03-23 Massachusetts Institute of Technology, Cambridge, Massachusetts and Steeicase Incorporated Additive manufacturing in gel-supported environment
EP3638388A4 (en) * 2017-06-12 2021-05-05 Ole Vestergaard Poulsen Self-supporting weaving-module building system
US11052597B2 (en) 2016-05-16 2021-07-06 Massachusetts Institute Of Technology Additive manufacturing of viscoelastic materials
US11155025B2 (en) 2013-12-05 2021-10-26 Massachusetts Institute Of Technology Methods for additive manufacturing of an object
US11312071B2 (en) 2018-11-12 2022-04-26 Ossur Iceland Ehf Additive manufacturing system, method and corresponding components for making elastomeric structures
US20230241526A1 (en) * 2020-08-31 2023-08-03 Shmuel LANDAU Modular toy construction system
US11883306B2 (en) 2019-11-12 2024-01-30 Ossur Iceland Ehf Ventilated prosthetic liner

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Cited By (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3126667A (en) * 1964-03-31 Play set for making space craft figurettes
US2577702A (en) * 1947-06-03 1951-12-04 Illinois Tool Works Toy construction element
US2751706A (en) * 1953-05-25 1956-06-26 Metal Martin Child's construction toy
US2833082A (en) * 1954-08-05 1958-05-06 Rig A Jig Toy Co Inc Construction toy
US3241833A (en) * 1963-04-05 1966-03-22 Luchland Company Balancing game
US3422564A (en) * 1964-05-26 1969-01-21 John Y Izumi Interconnectable modular connectors for tubular elements
US3477188A (en) * 1968-02-19 1969-11-11 Omniversal Design Modular structure
US3554382A (en) * 1968-06-24 1971-01-12 Karlis E Grinbergs Construction product with slotted panels and annular connectors
US3577660A (en) * 1968-10-28 1971-05-04 Malcolm E Kenney Linkage for model-forming discs
US3648404A (en) * 1969-04-14 1972-03-14 Charles S Ogsbury Connector unit having radial arms for straight or angular connections
US4764143A (en) * 1985-09-19 1988-08-16 Daniel Low Assembly toys for joining cylindrical objects
US5183430A (en) * 1986-04-28 1993-02-02 James Swann Geometric toy construction system
US5733168A (en) * 1990-12-04 1998-03-31 Interlego Ag Coupling mechanism for a toy building set
US5472365A (en) * 1993-05-17 1995-12-05 Engel; Richard J. Polygon attachment system for constructing polyhedra
US6179681B1 (en) * 1998-02-13 2001-01-30 Jose R. Matos Universal connector toy
US6475060B1 (en) * 2001-09-14 2002-11-05 Liu Kuo-Ching Three-dimensional built-up toy train
US6478650B1 (en) * 2001-09-28 2002-11-12 3E Enterprise Ltd. Toy construction kit having movable members
US6676474B2 (en) 2002-01-07 2004-01-13 Connector Set Limited Partnership Rod and connector toy construction set
US20040198142A1 (en) * 2002-01-07 2004-10-07 Glickman Joel I. Rod and connector toy construction set
US6843700B2 (en) 2002-01-07 2005-01-18 Connector Set Limited Partnership Rod and connector toy construction set
US7662014B2 (en) * 2002-12-20 2010-02-16 Fleishman Gregg R Joining system for polyhedric modules
US20040144041A1 (en) * 2002-12-20 2004-07-29 Fleishman Gregg R. Joining system for polyhedric modules
US6772986B1 (en) * 2003-07-02 2004-08-10 Edward D. Bennett Coaster clip
USD877263S1 (en) 2011-10-13 2020-03-03 Building Creative Kids, Llc Toy coupler
US11155025B2 (en) 2013-12-05 2021-10-26 Massachusetts Institute Of Technology Methods for additive manufacturing of an object
US20180021689A1 (en) * 2015-01-06 2018-01-25 Building Creative Kids, Llc Toy Building Systems Including Adjustable Connector Clips, Building Planks, and Panels
US11229854B2 (en) 2015-01-06 2022-01-25 Building Creative Kids, Llc Toy building systems including adjustable connector clips, building planks, and panels
US10493371B2 (en) * 2015-01-06 2019-12-03 Building Creative Kids, Llc Toy building systems including adjustable connector clips, building planks, and panels
US11052597B2 (en) 2016-05-16 2021-07-06 Massachusetts Institute Of Technology Additive manufacturing of viscoelastic materials
US10549505B2 (en) * 2017-01-12 2020-02-04 Massachusetts Institute Of Technology Active lattices
US10633772B2 (en) 2017-01-12 2020-04-28 Massachusetts Institute Of Technology Active woven materials
US20180214786A1 (en) * 2017-01-27 2018-08-02 Traxart Toys LLC Interactive Construction Toy System
US10682580B2 (en) * 2017-01-27 2020-06-16 Traxart Toys LLC Interactive construction toy system
US20180256999A1 (en) * 2017-03-13 2018-09-13 Yush Gupta Block-based construction system
US10953605B2 (en) 2017-04-04 2021-03-23 Massachusetts Institute of Technology, Cambridge, Massachusetts and Steeicase Incorporated Additive manufacturing in gel-supported environment
US12042999B2 (en) 2017-04-04 2024-07-23 Massachusetts Institute Of Technology Additive manufacturing in gel-supported environment
EP3638388A4 (en) * 2017-06-12 2021-05-05 Ole Vestergaard Poulsen Self-supporting weaving-module building system
USD864422S1 (en) * 2018-03-27 2019-10-22 Cersai Building Material Co., Ltd. Mosaic tile with notch
USD863601S1 (en) * 2018-03-27 2019-10-15 Cersai Building Material Co., Ltd. Mosaic tile with notch
US11312071B2 (en) 2018-11-12 2022-04-26 Ossur Iceland Ehf Additive manufacturing system, method and corresponding components for making elastomeric structures
US11390025B2 (en) 2018-11-12 2022-07-19 Ossur Iceland Ehf Medical device including a structure based on filaments
US11883306B2 (en) 2019-11-12 2024-01-30 Ossur Iceland Ehf Ventilated prosthetic liner
US20230241526A1 (en) * 2020-08-31 2023-08-03 Shmuel LANDAU Modular toy construction system
US11833444B2 (en) * 2020-08-31 2023-12-05 Shmuel LANDAU Modular toy construction system
IL300985B1 (en) * 2020-08-31 2024-04-01 Landau Shmuel Modular toy construction system
IL300985B2 (en) * 2020-08-31 2024-08-01 Landau Shmuel Modular toy construction system

Similar Documents

Publication Publication Date Title
US2414716A (en) Mechanical toy
US3711133A (en) Expandable and contractible tubing support structure
JP2771035B2 (en) Assembling set, especially for assembling toy kit
US3389666A (en) Furniture element
US3521421A (en) Geodesic structure
DE1975132U (en) COMPOSITION GAME.
US3405479A (en) Toy building block
US2577702A (en) Toy construction element
KR950003254B1 (en) Base panel for toy construction system
GB569377A (en) Improvements in constructional toys
US4285609A (en) Hinge joint assembly
US2576439A (en) Toy chain
US4143481A (en) Educational toy
US2465005A (en) Building toy
US3563834A (en) Construction devices for holding flat plates of decorative material within a framework
US1810421A (en) Model for geometry instruction
DE1168306B (en) Construction element for toy building sets for connecting rods
GB1381507A (en) Corner joint for tubular materials
DE3031551A1 (en) Profiled bar nodal junction component - has bars forming right-angle corners of structure adjustable for angle
GB1185011A (en) Improvements in or relating to Display Devices
US2668992A (en) Structural unit
CN212369564U (en) Dead type building blocks of lock
JPS6124314Y2 (en)
IE20899L (en) Resilient torsion joints
DE1168305B (en) Connecting element for plate-like building play elements