US2394071A - Magnetic induction accelerator - Google Patents
Magnetic induction accelerator Download PDFInfo
- Publication number
- US2394071A US2394071A US447372A US44737242A US2394071A US 2394071 A US2394071 A US 2394071A US 447372 A US447372 A US 447372A US 44737242 A US44737242 A US 44737242A US 2394071 A US2394071 A US 2394071A
- Authority
- US
- United States
- Prior art keywords
- magnetic
- electrons
- orbit
- chamber
- magnetic field
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H11/00—Magnetic induction accelerators, e.g. betatrons
Definitions
- H is Attorn ey.
- the present invention relates to apparatus for accelerating charged particles, such as electrons, by means of magnetic induction effects and is especially useful in connection with apparatus of the general character described in United States Patent No. 2,297,305, patented September 29, 1942, in the name of Donald W. Kerst, said patent being assigned to the General Electric Company, a corporation of New York.
- Apparatus of the character referred to typically includes a closed vessel and a magnetic system for producing a time-varying magnetic field of such space distribution as to confine charged particles projected within the vessel to a closed orbit along which th particles are continuously accelerated as the field increases in magnitude. When the particles have been accelerated to a desired velocity, they are diverted from the accelerating orbit and used for the production of useful biological or other efiects.
- a major problem consists in the provision of suitable means for introducing charged particles into the orbital path in which acceleration is to occur, this problem being mainly one of correlating the action of the in- ;iecting means with the variations of the magnetic eld.
- the time-varying magnetic field upon which the acceleration of particles depends is conveniently provided by the action of a cyclically varying electrical current and when it is so produced, acceleration in the desired direction occurs only during alternate half-cycles. Under these conditions, most satisfactory operation is realized it the particles to be accelerated are introduced into the accelerating orbit only at times when the magnetic field is starting to build up in the direction favorable to the desired acceleration.
- this result is obtained in the present invention by providing in connection with the magnetic structure by which the accelerating field is produced a magnetic path which is adapted to change abruptly and reversibly from a saturated to an unsaturated condition in accordance with the variations of the magnetic field.
- Fig. 1 is a partially sectionalized elevation of an accelerator suitably embodying the invention
- F18. 2 is a cross section taken on line 2-2 of Fig. 1
- Fig. 3 is a schematic diagram illustrating means for energizing the magnetic structure of Fig. 1
- Figs. 4 and 5 are enlarged views of certain electrode structures shown in Fig. 1
- Fig. 6 is an enlarged detail view illustrating a feature of the construction of Fig. 1 with which the present invention is primarily concerned
- Fig. 7 is a graphical representation useful in explainin the invention
- Fig. 8 is a circuit diagram illustrating the electrical interrelation of the various components embodied in the invention.
- a closed, rotationally symmetrical glass vessel it which defines within its interior anannular chamber I I.
- the vessel I0 provides a circular orbit in which electrons may be accelerated to a high energy, say on the order of several million electron volts.
- the vessel is preferably highly evacuated and a. high resistance coating, such as an extremely thin layer Of silver (not shown) may advantageously be applied to the interior surface of the vessel to prevent wallh r ing.
- the accelerating mechanism comprises a magnetic structure having generally circular pole pieces M and I5 which are coaxial with the annular vessel in. These pole pieces are constituted of laminated iron and have central portions ii and i8, respectively, which are of essentially planar character. Near their outer edges the poles are of tapered configuration, as indicated at 20 and 2
- the magnetic structure is excited by means of a pair of series-connected coils 32 and 33 which surround the pole pieces i4 and i5 and which are energized in such a manner as to provide a cyclically varying fiux in the magnetic circuit.
- the energizing means may appropriately be of the character shown in Fig. 3, which illustrates diagrammatically a portion of the structure of Fig. 1
- the coils 32 and 33 are shown connected in series with one another and with a condenser 35 which is assumed to be of such capacity as to resonate with the inductance of the coils at a frequency corresponding to the desired frequency of (This may be, for example, on the order of six hundred cycles per second although frequencies dillering widely from this value are also usable.)
- the coils 32 and 33 may be coupled to primary coils 31 and 38 which are directly energized from an A. C. power source 39 of the desired frequency. A relatively small amount of power supplied by the source 39 will serve to maintain the resonant system in excited condition.
- a thermionic cathode 40 which, in connection with associated electrodes 4
- the electrodes 40 to 42 are supported by a stem t3 and are supplied with potential and with heating current (in case of the cathode i0) by lead-in wire 4'8 sealed into the stem.
- the electrons provided by the electrodes 40 to M are affected by the magnetic field in two ways. In the first place, since the field is in a direction transverse to the plane of the electron motion, it tends to cause the electrons to follow an inwardly spiralling path. Secondly, the time-varying flux enclosed by the orbit of any particular electron necessarily produces an electric field tending to accelerate the electron. In this latter respect, the apparatus as a whole consists essentially of a transformer with a secondary comprising a circular path along which the various electrons are accelerated. Although, in general, the voltage per turn in such a transformer is low, the electrons can achieve very high energies (e. g. several million electron volts) because of the tremendous number of turns which they execute during a single cycle of the magnetic flux variation.
- the condition just specified may be realized by makin the reluctance of the magnetic path greater by an appropriate amount at the particular orbit than its average reluctance within the orbit.
- the enclosed flux and the guide field i. e. the field Hr
- electrons introduced into the chamber I0 may be expected to be drawn into the particular orbit in which a balance of centripetal and centrifugal forces exists and to be continuously accelerated along such orbit as long as the magnetic field increases in value.
- a total energy on the order of several million electron volts may be acquired by the accelerated electrons in a small fraction of a second.
- each orbital gyration of a given electron produces an increase in its energy of 70 electron volts, and that as many as 400,000 gyrations may be completed within the period'of a single accelerating cycle.
- Expansion of the electron orbit may be obtained in one way by means of auxiliary coils provided in connection with the pole pieces l4 and I5 and adapted to be energized in such fashion as to disturb the normally balanced condition of the magnetic field.
- auxiliary coils are indicated at 46 and 56 in Fig. 1. They are more fully described and claimed in D. W. Kerst application, Serial No. 445,465, filed June 2, 1942.
- the present invention is primarily concerned with the provision of suitable means for injecting electrons into the accelerating chamber at a proper time during the cycle of variation of the magnetic field by which acceleration effects are to be obtained. It has been found desirable in this connection to assure that the electrons shall be introduced with a substantial initial velocity, say a velocity corresponding to an acceleration of several thousand (for example, twenty thousand) volts. Moreover, in order to assure that a significant portion of the injected electrons shall be drawn into the accelerating orbit, it is necessary that their injection shall occur at a time when the magnitude of the magnetic field is appropriate to effect the "capture of electrons of the given velocity. This means that the time of energization of the injecting means must, be accurately correlated with the variations of the magnetic field.
- the desired correlation is accomplished in accordance with the present invention by the use of means linked with the main magnetic structure and providing a magnetic path which is adapted to change abruptly from a saturated to an unsaturated condition and thus to produce abrupt pulses of voltage which may be employed to cause equally abrupt energization of the electron injecting means.
- the means employed for this purpose comprises a thin strip 50 of ferromagnetic material (e. g. Permalloy, or some other high permeability *metal) which is bridged between the pole pieces l4 and I5.
- This strip which is shown in enlarged detail in Fig. 6 becomes mag-V netically saturated when the magnetic field existing between the pole pieces is still of relatively low value.
- the variations of magnetic flux in the strip are as indicated by curve A in Fig. 7 in which the cyclical character of the graph corresponds to the cyclical variations of the main magnetic field. Due to the ready saturability of the strip, it is only at points near a region of reversal of the magnetic field, as indicated at a, b, 0, etc., that any substantial change in magnetic flux through the strip can occur. At intermediate points the strip is fully saturated and its flux is substantially constant.
- a coil 5i which is wound on the strip and which, as will be further explained at a later point, serves to control the energization of electron-injecting means for the vessel ill.
- the voltage induced in the coil 5! is in the form of a series of pulses e (curve B of Fig. 7) whose spacing in time corresponds to the spacing of the flux reversals a, b, through strip 50.
- a further coil 52 (Fig. 6) is provided on the strip 50 and is adapted to be connected to a unidirectional power source (see Fig. 8).
- the time of occurrence of saturation of the strip 50 as controlled by the variations of the magnetic field between the pole pieces M and I5, can be advanced or retarded to some degree by the use of a magnetic bias produced by the coil 52.
- the bias imposed is preferably such as to oppose the main magnetic field as it increases in a sense favorable to accelerating electrons in the desired direction of acceleration. This makes it possible to delay the injection of electrons until the main magnetic field has attained a value great enough to balance the centrifugal tendencies of electrons introduced at a substantial velocity.
- Fig. 8 represents diagrammatically a suitable energizing system for the injecting electrodes 40, M and 62.
- the electrodes 4! and 42 are connected together, although it may be preferable in some cases to provide a negative bias for the electrode 6i Voltage is impressed between the cathode Ml and the electrode 4! by connecting these electrodes across a resistor 60 which is intermittently supplied with current in a manner now to be described.
- the primary power supply comprises an A.-C. line indicated at El. This is connected through an autotransformer 82 and a step-up transformer B3 to a high voltage rectifier 54.
- a condenser 66 which is adapted to be charged through the rectifier, the rate of charging being governed by a current limiting resistor 61.
- a three-element discharge device 10 which is of a discontinuously conductive type (e. g. a thyratron).
- the anode 'II of this device is connected directly to the positively charged terminal of the condenser 66 and the cathode I2 is connected to a terminal of the resistor 60 so that whenever the tube 10 becomes conductive the condenser 66 is, in eifect, connected directly across the resistor.
- the tube I0 may be rendered conductive only at desired intervals, its control grid 13 is connected through a blocking condenser 14 I to the coil 5
- a grid resistor 15 and negative bias source 15 are also provided in connection with the grid 13.
- the timing of the triggering pulse may be controlled to some degree by the use of the biasing coil 52, which is shown connected in series with a D.-C. source I6 through a variable resistor 11 and a fixed reactor 18.
- the resistor has the function of regulating the D.-C. biasing current flowing through the coil 52, while the reactor 18 prevents the D.-C. circuit from loading the coil 5
- a magnetic induction accelerator includin a chamber within which charged particles may follow an orbital path, means including spaced pole Dieces for producing a varying magnetic field of such space distribution as to confine particles within the chamber to a desired orbit while such particles are being accelerated along said orbit.
- means effective when energized to inject charged particles within said chamber means magnetical- 1y linked with said pole pieces and defining a magnetic path which is adapted to change from saturated to unsaturated condition in accordance with the variations of said magnetic field, and means responsive to such change in condition of said magnetic path for producing abrupt intermittent energization of said injecting means.
- a magnetic induction accelerator including a chamber within which charged particles may follow an orbital path, means including spaced magnetic pole pieces adjacent to said chamber for producing a varying magnetic field of such space distribution as to confine particles within the chamber to a desired orbit while such particles are being accelerated along said orbit, means effective when ener ized to inject charged particles within said chamber, means bridging the space between said pole pieces and providing a magnetic path adapted to change from saturated to unsaturated condition in accordance with the variations of said magnetic field, and circuit means linked with said magnetic path for controlling the energization of said injecting means.
- a magnetic induction accelerator including means defining a rotationally symmetrical chamber within which charged particles may follow an orbital path, a pair of spaced pole pieces coaxial with said chamber, means for producing a cyclically varying magnetic field between the said pole pieces, the space distribution of the said magnetic field being such as to confine particles within the chamber to a fixed orbit while they are being continuously accelerated along the said orbit, means effective when energized to inject charged particles within the chamber, a body of magnetic material bridging the space between the said pole pieces and providing a magnetic path capable of abrupt changes from saturated to unsaturated condition, circuit means magnetically linked with the said body of material, and means in circuit with said last-named means for abruptly energizing the said injecting means in response to changes in the condition of saturation of the said magnetic path.
- a magnetic induction accelerator including a chamber within which electrons may follow an orbital path, means including spaced pole pieces adjacent to said chamber for producing a cyclically varying magnetic field of such space distribution as normally to confine electrons within the chamber to a fixed orbit while continuously accelerating them along said orbit, electrodes in said chamber and effective when energized to inject electrons within the chamber, a potential source adapted to be connected to said electrodes to energize the same, a strip of ferromagnetic material connected between the said pole pieces and providing a magnetic path capable of abrupt changes from saturated to unsaturated condition, and circuit means linkin the said path and efiective in response to a change in the condition thereof to connect the said potential source to the said electrodes.
- a magnetic induction accelerator including a chamber within which charged particles may follow an orbital path, means including spaced magnetic pole pieces for producing a cyclically varying magnetic field of such space distribution as to confine particles within the chamber to a desired orbit while continuously accelerating them along said orbit, means eflective when energized to inject charged particles within said chamber, means associated with said pole pieces and defining a magnetic path which is adapted to change cyclically from saturated to unsaturated condition in accordance with the variations of said magnetic field, means responsive to such changesin condition of said magnetic path for producing abrupt intermittent ,energization of said injecting means, and means for imparting a magnetic bias to said magnetic path so as to control the time of energization of said injecting means.
- a magnetic induction accelerator including a chamber within which electrons may follow an orbital path, means including spaced magnetic pole pieces for producing a cyclically varying magnetic field of such space distribution as to confine electrons within the chamber to a fixed orbit while continuously accelerating them along said orbit, electrodes in said chamber and'effective when energized to inject electrons within the chamber, a strip of ferromagnetic material connected between said pole pieces and capable of abrupt changes from saturated to unsaturated condition, means including a first winding linking the said strip and effective in response to a change in the condition of the strip to produce energization of the said electrodes, and means including a second winding linking the said strip for imparting a magnetic bias to the strip so as to control the time of ,energization of the said electrodes.
- a magnetic induction accelerator including an evacuated annular chamber within which electrons may follow orbital paths, means including magnetic pole pieces spaced adjacent to said chamber to produce a cyclically varying magnetic field of such space distribution as to confine electrons within said chamber to a substantialiy circular orbit while continuously accelerating them along said orbit, a thermionic electron source effective when energized to introduce electrons into said chamber, a. member of magnetic material magnetically linked to said pole pieces and providing a magnetic path adapted to change cyclically and abruptly from saturated to unsaturated condition in accordance with the variation of said magnetic field, circuit means including an electronic trigger device linked with said magnetic path for controlling the operation of said electron source and a target upon which said electrons may impinge when accelerated.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Particle Accelerators (AREA)
Priority Applications (11)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
BE476283D BE476283A (fr) | 1942-06-17 | ||
BE476282D BE476282A (fr) | 1942-06-17 | ||
US447372A US2394071A (en) | 1942-06-17 | 1942-06-17 | Magnetic induction accelerator |
GB9709/43A GB574812A (en) | 1942-06-17 | 1943-06-16 | Improvements in and relating to magnetic induction accelerators |
US699284A US2535710A (en) | 1942-06-17 | 1946-09-25 | Controller for magnetic induction accelerators |
FR954533D FR954533A (fr) | 1942-06-17 | 1947-09-19 | |
FR57680D FR57680E (fr) | 1942-06-17 | 1947-09-24 | Accélérateur magnétique de particules chargées |
GB25950/47A GB660108A (en) | 1942-06-17 | 1947-09-24 | Improvements in and relating to magnetic induction accelerators |
CH262419D CH262419A (de) | 1942-06-17 | 1947-09-25 | Verfahren zur Beschleunigung von elektrisch geladenen Teilchen und Einrichtung zur Ausführung dieses Verfahrens. |
NL136999A NL72497C (fr) | 1942-06-17 | 1947-12-16 | |
DEI3099A DE870140C (de) | 1942-06-17 | 1950-10-02 | Einrichtung zur Teilchenbeschleunigung mittels magnetischer Induktion |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US447372A US2394071A (en) | 1942-06-17 | 1942-06-17 | Magnetic induction accelerator |
US699284A US2535710A (en) | 1942-06-17 | 1946-09-25 | Controller for magnetic induction accelerators |
Publications (1)
Publication Number | Publication Date |
---|---|
US2394071A true US2394071A (en) | 1946-02-05 |
Family
ID=40457334
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US447372A Expired - Lifetime US2394071A (en) | 1942-06-17 | 1942-06-17 | Magnetic induction accelerator |
US699284A Expired - Lifetime US2535710A (en) | 1942-06-17 | 1946-09-25 | Controller for magnetic induction accelerators |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US699284A Expired - Lifetime US2535710A (en) | 1942-06-17 | 1946-09-25 | Controller for magnetic induction accelerators |
Country Status (7)
Country | Link |
---|---|
US (2) | US2394071A (fr) |
BE (2) | BE476282A (fr) |
CH (1) | CH262419A (fr) |
DE (1) | DE870140C (fr) |
FR (2) | FR954533A (fr) |
GB (2) | GB574812A (fr) |
NL (1) | NL72497C (fr) |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2484549A (en) * | 1947-07-30 | 1949-10-11 | Gen Electric | Electron injection apparatus |
US2485409A (en) * | 1946-01-05 | 1949-10-18 | Gen Electric | Imparting high energy to charged particles |
US2528525A (en) * | 1947-05-22 | 1950-11-07 | Gen Electric | Electron accelerator provided with starting auxiliary |
US2528526A (en) * | 1947-05-22 | 1950-11-07 | Gen Electric | Electron accelerator having direct current starting circuit |
US2538718A (en) * | 1946-08-06 | 1951-01-16 | Bbc Brown Boveri & Cie | Magnetic induction device for accelerating electrons |
US2546484A (en) * | 1947-09-23 | 1951-03-27 | Bbc Brown Boveri & Cie | Circuit for periodic introduction of electrons into an electron accelerator |
US2553305A (en) * | 1949-05-12 | 1951-05-15 | Gen Electric | Injection compensation in highenergy particle acceleration |
US2567904A (en) * | 1946-06-22 | 1951-09-11 | Christofilos Nicolas | Magnetic resonance particle accelerator |
US2624841A (en) * | 1946-05-03 | 1953-01-06 | Edwin M Mcmillan | Method of and apparatus for accelerating to high energy electrically charged particles |
US2626351A (en) * | 1948-08-17 | 1953-01-20 | Wilson M Powell | Beam extractor |
US2815450A (en) * | 1954-03-31 | 1957-12-03 | Gen Electric | Apparatus for synchronizing the output of a particle accelerator with a moving object |
US2964627A (en) * | 1957-07-01 | 1960-12-13 | Trub Tauber & Co A G | Double-focussing spectrometer for electrically charged particles |
US3374356A (en) * | 1946-03-01 | 1968-03-19 | Atomic Energy Commission Usa | Magnetic induction accelerator with means to deflect accelerated electrons to an x-ray target |
US3374355A (en) * | 1946-02-21 | 1968-03-19 | Atomic Energy Commission Usa | Magnetic focusing of x-ray tubes and system for operating |
US3614638A (en) * | 1969-05-07 | 1971-10-19 | Lev Martemianovich Ananiev | Betatron |
US20100148705A1 (en) * | 2008-12-14 | 2010-06-17 | Schlumberger Technology Corporation | Method of driving an injector in an internal injection betatron |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL75180C (fr) * | 1948-07-28 | |||
NL87569C (fr) * | 1951-06-29 | |||
NL93826C (fr) * | 1952-08-19 | |||
US2719630A (en) * | 1954-02-12 | 1955-10-04 | Dings Magnetic Separator Co | Permanent magnetic pulley |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2139238A (en) * | 1935-08-20 | 1938-12-06 | Rca Corp | Modulator for high frequency oscillators |
BE477724A (fr) * | 1940-11-13 | |||
US2331788A (en) * | 1942-01-20 | 1943-10-12 | Gen Electric | Magnetic induction accelerator |
US2394072A (en) * | 1943-09-10 | 1946-02-05 | Gen Electric | Electron accelerator control system |
US2447255A (en) * | 1944-05-04 | 1948-08-17 | Univ Illinois | Magnetic induction accelerator with small X-ray source |
-
0
- BE BE476283D patent/BE476283A/xx unknown
- BE BE476282D patent/BE476282A/xx unknown
-
1942
- 1942-06-17 US US447372A patent/US2394071A/en not_active Expired - Lifetime
-
1943
- 1943-06-16 GB GB9709/43A patent/GB574812A/en not_active Expired
-
1946
- 1946-09-25 US US699284A patent/US2535710A/en not_active Expired - Lifetime
-
1947
- 1947-09-19 FR FR954533D patent/FR954533A/fr not_active Expired
- 1947-09-24 FR FR57680D patent/FR57680E/fr not_active Expired
- 1947-09-24 GB GB25950/47A patent/GB660108A/en not_active Expired
- 1947-09-25 CH CH262419D patent/CH262419A/de unknown
- 1947-12-16 NL NL136999A patent/NL72497C/xx active
-
1950
- 1950-10-02 DE DEI3099A patent/DE870140C/de not_active Expired
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2485409A (en) * | 1946-01-05 | 1949-10-18 | Gen Electric | Imparting high energy to charged particles |
US3374355A (en) * | 1946-02-21 | 1968-03-19 | Atomic Energy Commission Usa | Magnetic focusing of x-ray tubes and system for operating |
US3374356A (en) * | 1946-03-01 | 1968-03-19 | Atomic Energy Commission Usa | Magnetic induction accelerator with means to deflect accelerated electrons to an x-ray target |
US2624841A (en) * | 1946-05-03 | 1953-01-06 | Edwin M Mcmillan | Method of and apparatus for accelerating to high energy electrically charged particles |
US2567904A (en) * | 1946-06-22 | 1951-09-11 | Christofilos Nicolas | Magnetic resonance particle accelerator |
US2538718A (en) * | 1946-08-06 | 1951-01-16 | Bbc Brown Boveri & Cie | Magnetic induction device for accelerating electrons |
US2528525A (en) * | 1947-05-22 | 1950-11-07 | Gen Electric | Electron accelerator provided with starting auxiliary |
US2528526A (en) * | 1947-05-22 | 1950-11-07 | Gen Electric | Electron accelerator having direct current starting circuit |
US2484549A (en) * | 1947-07-30 | 1949-10-11 | Gen Electric | Electron injection apparatus |
US2546484A (en) * | 1947-09-23 | 1951-03-27 | Bbc Brown Boveri & Cie | Circuit for periodic introduction of electrons into an electron accelerator |
US2626351A (en) * | 1948-08-17 | 1953-01-20 | Wilson M Powell | Beam extractor |
US2553305A (en) * | 1949-05-12 | 1951-05-15 | Gen Electric | Injection compensation in highenergy particle acceleration |
US2815450A (en) * | 1954-03-31 | 1957-12-03 | Gen Electric | Apparatus for synchronizing the output of a particle accelerator with a moving object |
US2964627A (en) * | 1957-07-01 | 1960-12-13 | Trub Tauber & Co A G | Double-focussing spectrometer for electrically charged particles |
US3614638A (en) * | 1969-05-07 | 1971-10-19 | Lev Martemianovich Ananiev | Betatron |
US20100148705A1 (en) * | 2008-12-14 | 2010-06-17 | Schlumberger Technology Corporation | Method of driving an injector in an internal injection betatron |
US8362717B2 (en) | 2008-12-14 | 2013-01-29 | Schlumberger Technology Corporation | Method of driving an injector in an internal injection betatron |
Also Published As
Publication number | Publication date |
---|---|
FR57680E (fr) | 1953-05-04 |
BE476283A (fr) | |
GB660108A (en) | 1951-10-31 |
CH262419A (de) | 1949-06-30 |
FR954533A (fr) | 1950-01-03 |
DE870140C (de) | 1953-03-09 |
BE476282A (fr) | |
US2535710A (en) | 1950-12-26 |
NL72497C (fr) | 1953-01-15 |
GB574812A (en) | 1946-01-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US2394071A (en) | Magnetic induction accelerator | |
US2297305A (en) | Magnetic induction accelerator | |
US2331788A (en) | Magnetic induction accelerator | |
US2394070A (en) | Magnetic induction accelerator | |
US2193602A (en) | Device for accelerating electrons to very high velocities | |
US2480169A (en) | Apparatus for imparting high energy to charged particles | |
US2675470A (en) | Electron accelerator | |
US2466028A (en) | Controlled peaking transformer | |
US3014857A (en) | Plasma device | |
US2548225A (en) | Method of and means for generating and/or controlling electrical energy | |
US2394072A (en) | Electron accelerator control system | |
US3461033A (en) | Electrical apparatus for electromagnetic control of plasmoids | |
US2335014A (en) | Magnetic induction accelerator | |
US2412772A (en) | Electron discharge device generator | |
Kerst | The betatron | |
US2579315A (en) | Resonator structure | |
US2576601A (en) | Method of accelerating ions | |
US2754419A (en) | Magnetic induction accelerator | |
US2697167A (en) | Induction accelerator | |
US2640923A (en) | System and apparatus for obtaining a beam of high energy electrons from charged particle accelerators | |
US2943265A (en) | Electron cyclotron | |
US2465786A (en) | Accelerating apparatus for charged particles | |
US2546484A (en) | Circuit for periodic introduction of electrons into an electron accelerator | |
US2485409A (en) | Imparting high energy to charged particles | |
US2326677A (en) | Ionic tube circuits |