US2363415A - Hardware and screen cloth machine - Google Patents
Hardware and screen cloth machine Download PDFInfo
- Publication number
- US2363415A US2363415A US234853A US23485338A US2363415A US 2363415 A US2363415 A US 2363415A US 234853 A US234853 A US 234853A US 23485338 A US23485338 A US 23485338A US 2363415 A US2363415 A US 2363415A
- Authority
- US
- United States
- Prior art keywords
- hardware
- wires
- screen cloth
- weft
- fabric
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21F—WORKING OR PROCESSING OF METAL WIRE
- B21F27/00—Making wire network, i.e. wire nets
- B21F27/12—Making special types or portions of network by methods or means specially adapted therefor
- B21F27/14—Specially bending or deforming free wire ends
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21F—WORKING OR PROCESSING OF METAL WIRE
- B21F11/00—Cutting wire
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21F—WORKING OR PROCESSING OF METAL WIRE
- B21F27/00—Making wire network, i.e. wire nets
- B21F27/08—Making wire network, i.e. wire nets with additional connecting elements or material at crossings
- B21F27/10—Making wire network, i.e. wire nets with additional connecting elements or material at crossings with soldered or welded crossings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21F—WORKING OR PROCESSING OF METAL WIRE
- B21F27/00—Making wire network, i.e. wire nets
- B21F27/12—Making special types or portions of network by methods or means specially adapted therefor
- B21F27/18—Making special types or portions of network by methods or means specially adapted therefor of meshed work for filters or sieves
-
- D—TEXTILES; PAPER
- D03—WEAVING
- D03D—WOVEN FABRICS; METHODS OF WEAVING; LOOMS
- D03D41/00—Looms not otherwise provided for, e.g. for weaving chenille yarn; Details peculiar to these looms
Definitions
- This invention relates to machines for making wire into fabrics, and, more particularly, relates to looms, and to novel processes and instrumentalities inherent therein, for making hardware and screen cloth fabrics; more especially, fabrics of the type shown in United States Patent No. 2,024,796, issued to me on December 17, 1935.
- machines of the class to which the present invention pertains heretofore provided for the continuous feed of warp Wires through heddles and for the interweaving of weft wires with the warp wires by feeding the weft on bobbins and shuttles back and forth between alternate warp wires during the operation of the heddles to effect the warp shed.
- weft wires were positioned in the bite of the warp shed by means of a beater frame carrying a reed through which the warp wires passed, that served to push the weft wires, which were laid thereagainst, into proper position.
- weft wires in such a machine were introduced in the warp shed by means of a shuttle arrangement carried by the beater frame in close proximity to the reed thereof.
- the weft Wire supply was spooled on a bobbin which was arranged to be transferred back and forth to the opposite ends of the beater frame each time the heddles shifted t change the warp shed.
- a retractable finger was disposed in the path of the wire adjacent the selvage of the fabric being formed which served to retain the wire at this point, and upon the return movement of the bobbin, permitted the wire being paid therefrom, to be laid in parallelism with the preceding weft wire, and joined to the latter by a hair-pin curve at the selvage.
- This operation was carried on to lay the weft Wire in endless serpentine form back and forth between the warp Wires until the weft wire supply on the bobbin was exhausted.
- an object of the present invention to provide a loom of the class described of greatly simplified construction, wherein the weft wires are introduced to the warp wires from a stationary supply depot, separate and apart from the moving elements of the loom.
- warp wires are fed through suitable guides and tensioning devices to heddles, comprising the usual pair of verticall reciprocable frames, each of which has means for engaging alternate warp wires respectively.
- the heddles are actuated to provide the warp shed so that the weft wire may be interwoven with the warp wires to form the completed fabric.
- the present in vention contemplates the introduction of the weft wire to the warp wires from a stationary supplydepot from which it is pulled by suitable means; the same means also being effective to push the weft wire, in conjunction with suitable guides adjacent to, and on the beater frame, into proper association with the warp wires at the shed of the latter.
- weft wires positioned in this manner are then passed by several means which successively act upon the weft wire ends to trim them, bend them into proper form, and weld them, in an automatic manner, without at any time causing the longitudinal feed of the warp wires and fabric to stop or even hesitate. Thereafter the fabric is passed on to a take-up or reel of special design, as will be more fully described hereinafter.
- Figure 1 is a top plan view of a machine or loom embodying one form of my invention showing the entire lay-out except the fabric take-up.
- Figure 2 is a side elevational view thereof.
- Figure 3 is a sectional elevational view taken along line III--III of Figure 1.
- Figure 3a is a sectional elevational view of the fabric take-up which is positioned relative to the machine at the lower left-hand corner of Figure 3; the section of Figure 30. being taken along a leftward extension of line III-III of Figure 1.
- Figure 4 is a side elevational view taken from the opposite side to that shown in Figure 2.
- Figure 5 is a sectional plan View taken along an irregular line V--V of Figure 2.
- Figure 6 is a cross sectional elevational view taken along line VIVI of Figure 2, and looking in the direction of the arrows.
- Figure 7 is a cross sectional elevational view taken along an irregular line VII-VII of Figure 2.
- Figure 8 is an enlarged fragmentary, longitudinal, sectional view showing several details of construction of the beater frame and associated actuating mechanisms.
- Figure 9 is a fragmentary, sectional, elevational view taken along line IXIX of Figure 8.
- Figure 10 is a fragmentary, sectional, plan view taken along line X--X of Figure 9.
- Figure 11 is a fragmentary view showing in sectional elevation, several details of the construction of the warp wire tensioning mechanism.
- Figure 12 is a sectional view taken along line XII-XII in Figure 11 and looking in the direction of the arrows.
- Figure 13 is an enlarged sectional view taken along line XIIIXIII in Figure 11, looking in the direction of the arrows.
- Figure 14 is a detail top plan view of the righthand unit for shearing, bending and welding the weft wires to form the selvage of the fabric.
- Figure 15 is a side elevational view of the unit shown in Figure 14.
- Figure 16 is a sectional view taken along line XVIXVI in Figure 15.
- Figure 1'7 is a sectional view taken along line XV'IIXVII in Figure 15 with parts broken away.
- Figure 18 is a sectional View taken along line XVIII--XVIII of Figure 15.
- Figure 19 is a sectional view taken along line XIX-XIX of Figure 15.
- Figure 20 is a schematic plan view showing a fragmentary portion of the finished fabric, and the various steps comprising its process of manufacture, including its formation and subsequent evolvement.
- Figure 21 is an enlarged fragmentary top plan View of the fabric take-up mechanism which is shown in sectional elevation in Figure 3a.
- Figure 22 is a side elevational View of the device shown in Figure 21.
- Figure 23 is a fragmentary front elevational view of the far end of the device as shown in Figure 22.
- Figure 24 is a broken mid-sectional View of the sprocket drum employed on the take-up device.
- Figure 25 is an end elevational view of the sprocket take-up drum shown in Figure 24.
- Figure 26 is a front elevational View of a reed dent, made according to the invention, shown in enlarged detail.
- Figure 27 is a side elevational view of the device
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Textile Engineering (AREA)
- Woven Fabrics (AREA)
Description
No'v. 21, 1944. N. s. HARTER 2,353,415
HARDWARE AND SCREEN CLOTH MACHINE I Filed Oct. 15, 1938 1a Sheets-Sheet 1 Nov. 21, 1944.
N. s. HARTER HARDWARE AND SCREEN CLOTH MACHINE 7 Filed Oct. 12 1938 18 Sheets-Sheet 2 18 Sheets-Sheet 5 Nov. 21, 1944. N. s. HARTER HARDWARE AND SCREEN CLOTH MACHINE Filed Oct. 13, 1938 Nov. 21, 1944.
N. S. HART ER HARDWARE A'ND SCREEN CLOTH MACHINE File d Oct. 13, 1938 18 Sheets-Sheet 4 Nov. 21, 1944. N. s. HARTER 2,363,415
HARDWARE AND SCREEN c om MACHINE Filed Oct. 13, 1938 l8-Sheets-Sheet 5 Nov. 21, 1944.
N. S. HARTER HARDWARE AND SCREEN CLOTH MACHINE Filed Oct. 15; 1958 18 Sheets-Sheet 6 hwenlaz- No H 5. H4 TEE,
i/swdm Nov. 21, 1944. N. s. HARTER 2,363,415
HARDWARE AND SCREEN CLOTH MACHINE Filed Oct. 13, 1938 18 Sheets-Sheet 7 Nov: 21, 1944.
N. s. HARTER HARDWARE AND SCREEN CLOTH MACHINE Filed Oct. 15, 1938 18 Sheets-Sheet 8 N. s. HARTER 2,363,415
Filed Oct. 13, 1938 18 Sheets-Sheet 9 .KN law 5 HIHHHHHH Hl I I PH IHH H w ah Mm NM HARDWARE AND SCREEN CLOTH MACHINE Q I v 7 r I w o om W fi s I 1. 3 .F o o l l r K, WOT". n I I". u j w h kw @w r g Hu||||ll|fl|11||||u II I 15L; II I H14 2 1 I I wv Nov. 21, 1944.
Nov. 21, 1944.
N5. HARTER HARDWARE AND SCREEN CLOTH MACHINE l8 Sheets-Sheet 10 Filed Oct. 15, 1938 Nov. 21, 1944.
N. S. HARTER HARDWARE AND SCREEN CLOTH MACHINE Filed Oct. 13, 1958 1a Sheets-Sheeii 11 N s. HARTER HARDWARE AND SCREEN CLOTH MACHINE Filed Oct. 15, 1958 18 Sheets-Sheet 12 Nov. 21, 1944.
Nov. 21, 1944. N. s. HARTER 2,363,415
I HARDWARE AND SCREEN CLOTH MACHINE Filed Oct. 13, 1938 18 Sheets-Sheet l3 .99 FIG. 15.
Nov. 21, 1944. s HARTER 2,363,415
HARDWARE AND SCREEN CLOTH MACHINE Filed Oct. l3, 1938 l8 Sheets-Sheet l4 fl lyev eniam' v, 5. f/flETEE,
jaw
HARDWARE AND SCREEN CLOTH MACHINE wfi/m 1/ F F I lfi Nov. 21, 1944.
r N. s. HARTER HARDWARE AND SCREEN CLOTH MACHINE Filed Oct. 15, 1958 18 Sheets-Sheet 17 172002110 Na /1 3. HFIETEE,
Patented Nov. 21, 1944 HARDWARE AND SCREEN CLOTH MAC'HINE Noah S. Hatter, Waukegan, Ill., assignor to The American Steel and Wire Company of New Jersey, a corporation of New Jersey Application October 13, 1938, Serial No. 234,853
13 Claims.
This invention relates to machines for making wire into fabrics, and, more particularly, relates to looms, and to novel processes and instrumentalities inherent therein, for making hardware and screen cloth fabrics; more especially, fabrics of the type shown in United States Patent No. 2,024,796, issued to me on December 17, 1935.
As was pointed out in my previous patent, above identified, machines of the class to which the present invention pertains, heretofore provided for the continuous feed of warp Wires through heddles and for the interweaving of weft wires with the warp wires by feeding the weft on bobbins and shuttles back and forth between alternate warp wires during the operation of the heddles to effect the warp shed.
In such machines of the prior art the weft wires were positioned in the bite of the warp shed by means of a beater frame carrying a reed through which the warp wires passed, that served to push the weft wires, which were laid thereagainst, into proper position.
As is now well known, the Weft wires in such a machine were introduced in the warp shed by means of a shuttle arrangement carried by the beater frame in close proximity to the reed thereof. The weft Wire supply Was spooled on a bobbin which was arranged to be transferred back and forth to the opposite ends of the beater frame each time the heddles shifted t change the warp shed. Before the return of the bobbin, during the next cycle of operation, a retractable finger was disposed in the path of the wire adjacent the selvage of the fabric being formed which served to retain the wire at this point, and upon the return movement of the bobbin, permitted the wire being paid therefrom, to be laid in parallelism with the preceding weft wire, and joined to the latter by a hair-pin curve at the selvage. This operation was carried on to lay the weft Wire in endless serpentine form back and forth between the warp Wires until the weft wire supply on the bobbin was exhausted.
It then became necessary for a full bobbin to be substituted for the exhausted bobbin, and this, in turn, required that the machine be shut down and that the end of the new supply be spliced or welded to the end of the weft wire of the old supply. This operation, in addition to causing an unsightly defect at the joint of the weft wires in the fabric, was particularly undesirable in view of the number of times it had to be done during any substantial operating period of the machines. The frequency with which bobbins had to be re placed was directly proportional to the size of the fabric being made; the larger the fabric mesh, the heavier the component wires thereof, and a corresponding diminution of the linear length of the weft wire supply that could be accommodated on an ordinary bobbin. Machines made of larger and heavier construction so as to admit of the use of larger bobbins, proved to be impracticable because they were slow, cumbersome, and expensive.
As was also mentioned in my patent, above identified, the limitations imposed upon the amount of weft wire that could be supplied by the bobbin and shuttle method of feed could not be circumvented until the source of supply was disassociated from moving parts of the machine, and placed in stationary relation to the moving parts, whereby much larger supplies could be accommodated, and replenished from time to time, without requiring that the operation of the machine be interrupted.
Such an arrangement for feeding weft wire would oifer the same conveniences in continuity of operation and perfection of finished fabric as are now derived from the method of feeding warp Wires to such looms. Even more desirable does such an arrangement become in view of the fact that it would tend to eliminate the bobbin and shuttle arrangement, which has hitherto been the seat of many structural elements and mechanical movements. Bobbin and. shuttle mechanisms, though having been in use on looms for time immemorial, bespeak their antiquity by the slow, relatively inefficient, and costly manner in which they operate, and by their initial expense which their special, highly complex, structure entails.
Fabrics made by the bobbin and shuttle method were often imperfect, not only because of the prevalence of weft wire joints appearing at random throughout the weave of the fabric, but because the looms on which they were made were frequently incapable of manufacturing a fabric of uniform mesh having the wires arranged in symmetrical association.
It is, therefore, an object of the present invention to provide a loom of the class described of greatly simplified construction, wherein the weft wires are introduced to the warp wires from a stationary supply depot, separate and apart from the moving elements of the loom.
It is another object to introduce weft wires into association with warp wires in a loom mechanism without employing bobbins and shuttles for this purpose.
It is still another object to provide a loom having means for receiving, holding and delivering Weft wires into accurate association with warp wires, and for retaining the weft wires in proper position until they are locked permanently in the fabric.
It is a further'object to provide a loom having means for introducing weft wires from an endless source of supply and for cutting and arranging each weft wire in proper relation to the warp wires so that each is separate and distinct from the others in the finished fabric.
It is a further object to provide a loom for making wire fabric of the class described with welded selvages thereon.
It is a further object to provide a loom that is adapted to supply weft wires from an endless supply; for cutting the wire from the supply into exact predetermined length, and for automatically forming the ends of such cut wires into a desired selvage configuration.
It is a further object to provide a machine of greatly simplified construction which will manufacture fabrics of this type efliciently, economically, and with great uniformity of mesh, symmetry of design, and with fidelity of reproduction.
It is a further object to provide a machine for automatically assembling, cutting to size, forming and welding wires into hardware or screen cloth fabrics.
It is a further object to provide novel instrumentalities, methods of operation and methods of processing wires into fabric to achieve the desired ends hereinbefore and hereinafter set forth.
With the foregoing, and ancillary objects in view, I propose to effect one embodiment of my invention as follows:
In my prior patents, Nos. 2,056,851 and 2,091,229, dated October 6, 1936, and August 24, 1937, respectively, I have disclosed looms of the same general type to which the present invention pertains. However, the present invention has many features of improvement over the machines disclosed in my prior patents, as will be readily apparent when the drawings appended hereto are considered in the light of the following specification.
As in the case of my prior patents, warp wires are fed through suitable guides and tensioning devices to heddles, comprising the usual pair of verticall reciprocable frames, each of which has means for engaging alternate warp wires respectively. The heddles are actuated to provide the warp shed so that the weft wire may be interwoven with the warp wires to form the completed fabric. However, instead of the bobbin and shuttle means employed in the looms disclosed in my prior patents, above referred to, the present in vention contemplates the introduction of the weft wire to the warp wires from a stationary supplydepot from which it is pulled by suitable means; the same means also being effective to push the weft wire, in conjunction with suitable guides adjacent to, and on the beater frame, into proper association with the warp wires at the shed of the latter. As will hereinafter be fully described, weft wires positioned in this manner are then passed by several means which successively act upon the weft wire ends to trim them, bend them into proper form, and weld them, in an automatic manner, without at any time causing the longitudinal feed of the warp wires and fabric to stop or even hesitate. Thereafter the fabric is passed on to a take-up or reel of special design, as will be more fully described hereinafter.
The refinements of construction and detail of operation characterizing the present invention,
though not touched upon in the foregoing general outline, will be clearly understood from the following description when read in conjunction with the accompanying drawings, in which:
Figure 1 is a top plan view of a machine or loom embodying one form of my invention showing the entire lay-out except the fabric take-up.
Figure 2 is a side elevational view thereof.
Figure 3 is a sectional elevational view taken along line III--III of Figure 1.
Figure 3a is a sectional elevational view of the fabric take-up which is positioned relative to the machine at the lower left-hand corner of Figure 3; the section of Figure 30. being taken along a leftward extension of line III-III of Figure 1.
Figure 4 is a side elevational view taken from the opposite side to that shown in Figure 2.
Figure 5 is a sectional plan View taken along an irregular line V--V of Figure 2.
Figure 6 is a cross sectional elevational view taken along line VIVI of Figure 2, and looking in the direction of the arrows.
Figure 7 is a cross sectional elevational view taken along an irregular line VII-VII of Figure 2.
Figure 8 is an enlarged fragmentary, longitudinal, sectional view showing several details of construction of the beater frame and associated actuating mechanisms.
Figure 9 is a fragmentary, sectional, elevational view taken along line IXIX of Figure 8.
Figure 10 is a fragmentary, sectional, plan view taken along line X--X of Figure 9.
Figure 11 is a fragmentary view showing in sectional elevation, several details of the construction of the warp wire tensioning mechanism.
Figure 12 is a sectional view taken along line XII-XII in Figure 11 and looking in the direction of the arrows.
Figure 13 is an enlarged sectional view taken along line XIIIXIII in Figure 11, looking in the direction of the arrows.
Figure 14 is a detail top plan view of the righthand unit for shearing, bending and welding the weft wires to form the selvage of the fabric.
Figure 15 is a side elevational view of the unit shown in Figure 14.
Figure 16 is a sectional view taken along line XVIXVI in Figure 15.
Figure 1'7 is a sectional view taken along line XV'IIXVII in Figure 15 with parts broken away.
Figure 18 is a sectional View taken along line XVIII--XVIII of Figure 15.
Figure 19 is a sectional view taken along line XIX-XIX of Figure 15.
Figure 20 is a schematic plan view showing a fragmentary portion of the finished fabric, and the various steps comprising its process of manufacture, including its formation and subsequent evolvement.
Figure 21 is an enlarged fragmentary top plan View of the fabric take-up mechanism which is shown in sectional elevation in Figure 3a.
Figure 22 is a side elevational View of the device shown in Figure 21.
Figure 23 is a fragmentary front elevational view of the far end of the device as shown in Figure 22.
Figure 24 is a broken mid-sectional View of the sprocket drum employed on the take-up device.
Figure 25 is an end elevational view of the sprocket take-up drum shown in Figure 24.
Figure 26 is a front elevational View of a reed dent, made according to the invention, shown in enlarged detail.
Figure 27 is a side elevational view of the device
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US234853A US2363415A (en) | 1938-10-13 | 1938-10-13 | Hardware and screen cloth machine |
US366758A US2294369A (en) | 1938-10-13 | 1940-11-22 | Hardware and screen cloth machine |
US366759A US2278104A (en) | 1938-10-13 | 1940-11-22 | Wire fabric device |
US555346A US2421261A (en) | 1938-10-13 | 1944-09-22 | Hardware and screen cloth machine |
US555345A US2401070A (en) | 1938-10-13 | 1944-09-22 | Hardware and screen cloth machine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US234853A US2363415A (en) | 1938-10-13 | 1938-10-13 | Hardware and screen cloth machine |
Publications (1)
Publication Number | Publication Date |
---|---|
US2363415A true US2363415A (en) | 1944-11-21 |
Family
ID=22883086
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US234853A Expired - Lifetime US2363415A (en) | 1938-10-13 | 1938-10-13 | Hardware and screen cloth machine |
Country Status (1)
Country | Link |
---|---|
US (1) | US2363415A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2445600A (en) * | 1944-12-28 | 1948-07-20 | Borg Warner | Tension device |
US2480395A (en) * | 1947-03-29 | 1949-08-30 | Ventilated Porch Shade Company | Weaving machine |
US2624372A (en) * | 1949-04-18 | 1953-01-06 | Draper Corp | Lay motion for looms |
DE1013585B (en) * | 1952-10-31 | 1957-08-08 | Emil Jaeger K G | Device on wire looms for the production of wire mesh strips with closed edges |
US2805686A (en) * | 1953-06-01 | 1957-09-10 | Adrian T Godschalx | Automatic looms |
DE1535810B1 (en) * | 1962-04-13 | 1971-06-03 | Wafios Maschinen Wagner | Wire loom with the weft wire holding the weft wire and introducing it into the compartment |
-
1938
- 1938-10-13 US US234853A patent/US2363415A/en not_active Expired - Lifetime
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2445600A (en) * | 1944-12-28 | 1948-07-20 | Borg Warner | Tension device |
US2480395A (en) * | 1947-03-29 | 1949-08-30 | Ventilated Porch Shade Company | Weaving machine |
US2624372A (en) * | 1949-04-18 | 1953-01-06 | Draper Corp | Lay motion for looms |
DE1013585B (en) * | 1952-10-31 | 1957-08-08 | Emil Jaeger K G | Device on wire looms for the production of wire mesh strips with closed edges |
US2805686A (en) * | 1953-06-01 | 1957-09-10 | Adrian T Godschalx | Automatic looms |
DE1535810B1 (en) * | 1962-04-13 | 1971-06-03 | Wafios Maschinen Wagner | Wire loom with the weft wire holding the weft wire and introducing it into the compartment |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3799209A (en) | Machine for forming triaxial fabrics | |
US3653230A (en) | Process for manufacturing fringe headings provided with fringe tassels | |
NO142844B (en) | PROCEDURE AND NAILBAAND LIBRARY FOR MANUFACTURING GURTBAAND | |
US2363415A (en) | Hardware and screen cloth machine | |
US2294369A (en) | Hardware and screen cloth machine | |
US4034579A (en) | Continuous production of fringed textile articles | |
US3881326A (en) | Device for and method of making a knitted band having a spiral zipper incorporated therein | |
US1998041A (en) | Fabric | |
US2042146A (en) | Milanese warp knitting machine | |
US2013230A (en) | Method and apparatus for making textile product | |
US2041841A (en) | Method of producing fabrics of multiple loom width | |
US1164137A (en) | Needle-loom. | |
US2401070A (en) | Hardware and screen cloth machine | |
US1296025A (en) | Needle-loom. | |
US3095910A (en) | Method and apparatus for weft projection | |
US2355159A (en) | Wire fabric loom | |
US2304195A (en) | Thread control for axminster needle motion | |
US1804008A (en) | Rug or carpet weaving loom | |
US2740601A (en) | Woven wire fabric | |
US3133560A (en) | Apparatus for forming selvages in wire screen cloth | |
US2918944A (en) | Method of weaving high pile fabric | |
US3238975A (en) | Method and apparatus for weaving with a flat wire | |
US1512287A (en) | Method of making collars and like articles | |
US2272456A (en) | Loom | |
US3103954A (en) | Lay beam assembly |