US2362701A - Apparatus for making porous metal parts - Google Patents

Apparatus for making porous metal parts Download PDF

Info

Publication number
US2362701A
US2362701A US415446A US41544641A US2362701A US 2362701 A US2362701 A US 2362701A US 415446 A US415446 A US 415446A US 41544641 A US41544641 A US 41544641A US 2362701 A US2362701 A US 2362701A
Authority
US
United States
Prior art keywords
charge
chamber
heating
piston
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US415446A
Inventor
Roland P Koehring
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Motors Liquidation Co
Original Assignee
Motors Liquidation Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Motors Liquidation Co filed Critical Motors Liquidation Co
Priority to US415446A priority Critical patent/US2362701A/en
Application granted granted Critical
Publication of US2362701A publication Critical patent/US2362701A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B15/00Details of, or accessories for, presses; Auxiliary measures in connection with pressing
    • B30B15/34Heating or cooling presses or parts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B11/00Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses
    • B30B11/02Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses using a ram exerting pressure on the material in a moulding space
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B11/00Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses
    • B30B11/02Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses using a ram exerting pressure on the material in a moulding space
    • B30B11/08Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses using a ram exerting pressure on the material in a moulding space co-operating with moulds carried by a turntable
    • B30B11/10Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses using a ram exerting pressure on the material in a moulding space co-operating with moulds carried by a turntable intermittently rotated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B15/00Details of, or accessories for, presses; Auxiliary measures in connection with pressing
    • B30B15/30Feeding material to presses
    • B30B15/302Feeding material in particulate or plastic state to moulding presses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S425/00Plastic article or earthenware shaping or treating: apparatus
    • Y10S425/123Repress
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49789Obtaining plural product pieces from unitary workpiece
    • Y10T29/49798Dividing sequentially from leading end, e.g., by cutting or breaking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/51Plural diverse manufacturing apparatus including means for metal shaping or assembling
    • Y10T29/5116Plural diverse manufacturing apparatus including means for metal shaping or assembling forging and bending, cutting or punching

Definitions

  • This invention relates to an'apparatus for heating metal powder and is particularly concerned with an apparatus wherein articles may be formed from metal powder by hot pressing.
  • An object of the invention is to provide an apparatus for continuously producing agglomerated charges of powdered metals which may be hot pressed to the desired shape.
  • a further object of the invention is to provide an apparatus for progressively heating a portion of the charge of powdered metal to an aggiomerating temperature and then progressively hot pressing said portion while simultaneously causing another portion of said charge to become heated.
  • Fig. 1 is a diagrammatic view of apparatus used to carry out the invention disclosed herein showing the charge of metal powder in the furnace at the start of a cycle of operation.
  • Fig. 2 shows the second step of the process wherein an agglomerated portion of the charge has been ejected from the furnace.
  • Fig. 3 shows the ejectedportion being cut off from the remainder of the charge in the furnace and wherein the portion is ready to fall into the die.
  • Fig. 4 shows the cut-off portion being hot pressed in the die.
  • Fig. 5 shows the formed article after the hot pressing operation.
  • Fig. 6 is a view taken on the line 8-45 of Fig. 5 showing the ejecting means utilized to remove the hot pressed article from the die.
  • Fig. 7 is a fragmentary view of the ejecting.
  • Fig. 1 is a horizontally disposed tube ot-substantial length formed from graphite, alumina, silica or other suitable refractory material.
  • a heating coil 22 which is connected to a suitable current source for supplying an electro-magnetic field within the coil whereb metallic material within the tube is heated inductively within the area covered by said coil.
  • a piston 24 capabl of reciprocation within the limits shown in Figs. 1 and 2.
  • piston 24 Above piston 24 an opening 28 is provided whereby powder 28 from a supply hopper 30 may fall into the chamber within tube 20 and form the charge 32.
  • Piston 24 acts as a slide valve across the opening 28 whereby when the piston .is in the forward position the opening 26 is closed and the charge 32 is pressed under suflicient pressure from piston 24 to cause a portion thereof as 34 in Fig. 2 to be ejected or extruded from the tube 20. Upon the reverse movement of piston 24 additional powder 28 falls through the opening 26 into the chamber to replenish the amount of metal in portion 34 which has been ejected from the tube. Thus upon each reciprocation of piston 24 a measured portion 34 of the charge 32 is ejected from the heating chamber.
  • the powdered metal in charge 32 is heated inductively within the field of the coil 22 to a temperature sufficient to cause the powdered metal particles to at least partially sinter and thereby become agglomerated into a self-sustaining mass whereby the portion 34 ejected from the tube while hot, for example, if iron powder is being used at a temperature of between 1800 and 2100" F. remains attached to the remainder of the.
  • a cut-ofi blade 38 is moved downwardly as shown in Fig. 3 and cuts off the ejected portion of the metal powder 34 which is self-adhering in character. Portion 34 then drops into a cavity 38 in an ejecting means 40. At this point an upper punch 42 moves downwardly and presses the portion 34 under sufficient pressure to cause the lower punch 44 to recede to a stop, thereby forming a die cavity 46. At this point additional pressure on the upper punch 42 causes the charge of agglomerated metal powder to be pressed to the exact size and shape of the cavity and form a strong metal article 48 which has a low degree of porosity. After the formation of the article 48 is complete, punch 42 recedes and punch 44 raises the article into the cavity 38 whereupon the elector rotates and moves the article out of the pressing chamber and into either a cooling chamber (not shown) or into an oil bath.
  • the pressing chamber designated at 50 and the cooling chamber are both maintained under non-oxidizing condition since the article 48 which is formed from the cutoff portion 34 of metal powder is maintained at a high temperature in the chamber 58, and if any oxidizing gases are present therein, oxidation of the metal would occur, which is usually undesirable.
  • a baflle 52 may be provided within the chamber 50, shielding the upper punch from the heat of the furnace.
  • the punch may be water-cooled to prevent over-heating thereof and in any event should be made from heat-resistlng steel.
  • Another embodiment of the invention comprehends the formation of annuli from the same type of apparatus wherein a core may be placed within the heating chamber which extends past the heated portion thereof slightly so that the powder, divides as it passes the core and the annulus portions are cut off and fall into the die.
  • a pilot on one of the punch members which has the desired diameter for the finished annulus.
  • the core should have a larger diameter than the desired finished diameter so that when hot pressing occurs the charge of agglomerated powder may be pressed to shape.
  • the charge which is ejected from the furnace consists of a measured quantity of metal powder which is agglomerated and has been elevated to the desired pressing temperature.
  • This charge does not necessarily have to be the exact shape or size of the finished article and therefore it is preferable to make the charge of less diameter than the finished articl in most cases.
  • resistance heating may be resorted to or the chamber may be heated externally by gas or other conventional heating mediums.
  • the action of the furnace is slowed down considerably since it is necessary to bring the charge of metal powder to be ejected to a predetermined temperature prior to ejecting and it is apparent that the charge must be held in the heating zone a suflicient length of time to accomplish this end. It is for this reason that induction heating is preferred since it is the most rapid, as only short time need elapse to cause the metal powder to reach the desired temperature.
  • the temperature to which the metal powder is heated is well known to those skilled in the art and varies in accordance with the particular metal powder being heated.
  • Apparatus for forming strong, highly compressed articles from metal powders comprising in combination an elongated heating chamber of uniform cross section including adjacent an open end thereof an induction heating coil capable of agglomerating a portion only of the metal powder charge into said chamber, a piston disposed at the other end of said chamber and capable of reciprocation for ejecting a predetermined portion only of the hot agglomerated metal pow der from said chamber upon each inward stroke thereof, supply means for supplying additional metal powder to the chamber on each outward stroke of said piston whereby the portion.
  • out 01f means disposed externally of the heating end of said chamber for cutting off the ejected metal powder, said out off means being synchronized to operate on the outward stroke of said piston
  • a die having a desired configuration of the article to be formed, means for conveying the hot agglomerated portion cut off by the cut off means to said die, compressingmeans for compacting the cut oil portion While hot in said die to form an article of high density, strength and of the desired shape, ejecting means for ejecting the compacted article from said die,
  • said compressing meahs and ejecting means being synchronized to operate upon each cycle of operation of the piston and cut oil means, and supply means for supplying a controlled atmosphere around the heating end of said chamber and around the die, compressing means and ejecting means whereby the portion of metal powder ejected from the chamber is at no time subjected to the action of the air until after the compacting step has been completed.

Description

Nov. 14, 1944. R. P. KOEHRING APPARATUS FOR MAKING POROUS METAL PARTS 2 Sheets-Sheet 1 Filed Oct. 17. 1941 INVENTOR I Mafia Enemy HIS ATTORN S Nov- 1 194 R. P. KOEHRING APPARATUS FOR MAKING POROUS METAL PARTS Filed Oct. 17, 1941 2 Sheets$heet 2 INVENTOR Rafa/m f? flaabnizzq Hl ATTORNEYfi Patented Nov. 14, 1944 APPARATUS FOR MAKING POROUS 1 METAL PARTS Roland P. Koehring, Dayton, Ohio, assignor to General Motors Corporation, Detroit, Mich., a
"corporation of Delaware Application October 17, 1941, Serial No. 415,446
1 Claim.
This invention relates to an'apparatus for heating metal powder and is particularly concerned with an apparatus wherein articles may be formed from metal powder by hot pressing.
An object of the invention is to provide an apparatus for continuously producing agglomerated charges of powdered metals which may be hot pressed to the desired shape.
A further object of the invention is to provide an apparatus for progressively heating a portion of the charge of powdered metal to an aggiomerating temperature and then progressively hot pressing said portion while simultaneously causing another portion of said charge to become heated.
Further objects and advantages of the present invention will be apparent from the following description, reference being bad to the accompanying drawings wherein a preferred embodiment of the present invention is clearly shown.
In the drawings:
Fig. 1 is a diagrammatic view of apparatus used to carry out the invention disclosed herein showing the charge of metal powder in the furnace at the start of a cycle of operation.
Fig. 2 shows the second step of the process wherein an agglomerated portion of the charge has been ejected from the furnace.
Fig. 3 shows the ejectedportion being cut off from the remainder of the charge in the furnace and wherein the portion is ready to fall into the die.
Fig. 4 shows the cut-off portion being hot pressed in the die.
Fig. 5 shows the formed article after the hot pressing operation.
Fig. 6 is a view taken on the line 8-45 of Fig. 5 showing the ejecting means utilized to remove the hot pressed article from the die.
Fig. 7 is a fragmentary view of the ejecting.
means showing the finished article dropping therefrom. 3
Referring to the drawings and particularly'to Fig. 1, is a horizontally disposed tube ot-substantial length formed from graphite, alumina, silica or other suitable refractory material. Around one end of the tube 20 is disposed a heating coil 22 which is connected to a suitable current source for supplying an electro-magnetic field within the coil whereb metallic material within the tube is heated inductively within the area covered by said coil. In the opposite end of the tube 20 is disposed a piston 24 capabl of reciprocation within the limits shown in Figs. 1 and 2. Above piston 24 an opening 28 is provided whereby powder 28 from a supply hopper 30 may fall into the chamber within tube 20 and form the charge 32. Piston 24 acts as a slide valve across the opening 28 whereby when the piston .is in the forward position the opening 26 is closed and the charge 32 is pressed under suflicient pressure from piston 24 to cause a portion thereof as 34 in Fig. 2 to be ejected or extruded from the tube 20. Upon the reverse movement of piston 24 additional powder 28 falls through the opening 26 into the chamber to replenish the amount of metal in portion 34 which has been ejected from the tube. Thus upon each reciprocation of piston 24 a measured portion 34 of the charge 32 is ejected from the heating chamber.
The powdered metal in charge 32 is heated inductively within the field of the coil 22 to a temperature sufficient to cause the powdered metal particles to at least partially sinter and thereby become agglomerated into a self-sustaining mass whereby the portion 34 ejected from the tube while hot, for example, if iron powder is being used at a temperature of between 1800 and 2100" F. remains attached to the remainder of the.
charge in the tube. After the inward limit of reciprocation of piston 24 has been reached, a cut-ofi blade 38 is moved downwardly as shown in Fig. 3 and cuts off the ejected portion of the metal powder 34 which is self-adhering in character. Portion 34 then drops into a cavity 38 in an ejecting means 40. At this point an upper punch 42 moves downwardly and presses the portion 34 under sufficient pressure to cause the lower punch 44 to recede to a stop, thereby forming a die cavity 46. At this point additional pressure on the upper punch 42 causes the charge of agglomerated metal powder to be pressed to the exact size and shape of the cavity and form a strong metal article 48 which has a low degree of porosity. After the formation of the article 48 is complete, punch 42 recedes and punch 44 raises the article into the cavity 38 whereupon the elector rotates and moves the article out of the pressing chamber and into either a cooling chamber (not shown) or into an oil bath.
It is preferred that the pressing chamber designated at 50 and the cooling chamber, if used, are both maintained under non-oxidizing condition since the article 48 which is formed from the cutoff portion 34 of metal powder is maintained at a high temperature in the chamber 58, and if any oxidizing gases are present therein, oxidation of the metal would occur, which is usually undesirable.
If desired, a baflle 52 may be provided within the chamber 50, shielding the upper punch from the heat of the furnace. Likewise the punch may be water-cooled to prevent over-heating thereof and in any event should be made from heat-resistlng steel.
Another embodiment of the invention comprehends the formation of annuli from the same type of apparatus wherein a core may be placed within the heating chamber which extends past the heated portion thereof slightly so that the powder, divides as it passes the core and the annulus portions are cut off and fall into the die. In this instance, it is preferable to have a pilot on one of the punch members which has the desired diameter for the finished annulus. Likewise the core should have a larger diameter than the desired finished diameter so that when hot pressing occurs the charge of agglomerated powder may be pressed to shape.
It is apparent that other shapes may be made in apparatus of this character wherein the shape of the heating chamber can be varied together with the shape of the piston which reciprocates therein; for example, hexagons, Us, squares or any other type of cross section may be formed either with or without apertures therein.
In each instance the charge which is ejected from the furnace consists of a measured quantity of metal powder which is agglomerated and has been elevated to the desired pressing temperature. This charge does not necessarily have to be the exact shape or size of the finished article and therefore it is preferable to make the charge of less diameter than the finished articl in most cases.
Instead of inductively heating the charge, resistance heating may be resorted to or the chamber may be heated externally by gas or other conventional heating mediums. However, in these latter cases the action of the furnace is slowed down considerably since it is necessary to bring the charge of metal powder to be ejected to a predetermined temperature prior to ejecting and it is apparent that the charge must be held in the heating zone a suflicient length of time to accomplish this end. It is for this reason that induction heating is preferred since it is the most rapid, as only short time need elapse to cause the metal powder to reach the desired temperature. The temperature to which the metal powder is heated is well known to those skilled in the art and varies in accordance with the particular metal powder being heated. In this instance it is only necessary to heat the powder to a temperature sufiicient to cause the powder to coalesce and to become self-sustaining, likewise the pressures used for hot pressing may vary in accordance with the result desired. If a high porosity piece is desired the pressure may be re-' duced to accomplish this end; likewise if a highly compressed piece of considerable strength is required this'pressure may be increased; therefore it is best to arrive at the exact heating temperature and hot pressing pressures by trial for the particular piece required.
Attention is directed to copending application. Serial No. 393,610, Method and apparatus for making articles from metal, filed May 15, 1941, filed by John T, Marvin, which discloses another method for hot-pressing articles wherein measured increments'of a charge of powder are utilized to form the article so that the process is a continuous one.
While the embodiments of the present invention as herein disclosed, constitute preferred forms, it is to be understood that other forms might be adopted, all coming within the scope of the claim which follows.
What is claimed is as follows:
Apparatus for forming strong, highly compressed articles from metal powders, comprising in combination an elongated heating chamber of uniform cross section including adjacent an open end thereof an induction heating coil capable of agglomerating a portion only of the metal powder charge into said chamber, a piston disposed at the other end of said chamber and capable of reciprocation for ejecting a predetermined portion only of the hot agglomerated metal pow der from said chamber upon each inward stroke thereof, supply means for supplying additional metal powder to the chamber on each outward stroke of said piston whereby the portion. of agglomerated metal powder ejected from the chamher by the inward stroke of the piston is replenished, out 01f means disposed externally of the heating end of said chamber for cutting off the ejected metal powder, said out off means being synchronized to operate on the outward stroke of said piston, a die having a desired configuration of the article to be formed, means for conveying the hot agglomerated portion cut off by the cut off means to said die, compressingmeans for compacting the cut oil portion While hot in said die to form an article of high density, strength and of the desired shape, ejecting means for ejecting the compacted article from said die,
said compressing meahs and ejecting means being synchronized to operate upon each cycle of operation of the piston and cut oil means, and supply means for supplying a controlled atmosphere around the heating end of said chamber and around the die, compressing means and ejecting means whereby the portion of metal powder ejected from the chamber is at no time subjected to the action of the air until after the compacting step has been completed.
' ROLAND P. KOEI-IRING.
US415446A 1941-10-17 1941-10-17 Apparatus for making porous metal parts Expired - Lifetime US2362701A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US415446A US2362701A (en) 1941-10-17 1941-10-17 Apparatus for making porous metal parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US415446A US2362701A (en) 1941-10-17 1941-10-17 Apparatus for making porous metal parts

Publications (1)

Publication Number Publication Date
US2362701A true US2362701A (en) 1944-11-14

Family

ID=23645716

Family Applications (1)

Application Number Title Priority Date Filing Date
US415446A Expired - Lifetime US2362701A (en) 1941-10-17 1941-10-17 Apparatus for making porous metal parts

Country Status (1)

Country Link
US (1) US2362701A (en)

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2431095A (en) * 1944-11-06 1947-11-18 Hpm Dev Corp Apparatus for hot pressing powdered metal
US2524057A (en) * 1946-07-18 1950-10-03 Thoger G Jungersen Precision forming of metal
US2654038A (en) * 1950-11-25 1953-09-29 Speer Carbon Company Molded-in shunt electrical contact member
US2766512A (en) * 1952-06-09 1956-10-16 Hatebur Friedrich Bernhard Method for the production of ballbearing races and similar parts
US2810187A (en) * 1952-07-31 1957-10-22 Nat Steel Corp Apparatus for cutting metal bundles
US2888739A (en) * 1955-06-28 1959-06-02 Armour Res Found Bearing composition
US2901583A (en) * 1956-08-17 1959-08-25 Holo Krome Screw Corp Forging apparatus and stock warming means therefor
US2935402A (en) * 1954-04-15 1960-05-03 Mannesmann Ag Hot rolling of metal powder
US3049988A (en) * 1956-04-20 1962-08-21 Lindemann Scrap shearing machine
US3141401A (en) * 1957-05-11 1964-07-21 Lindemann Machine for preparing scrap metal
US3171195A (en) * 1962-06-11 1965-03-02 Johnson Matthey Co Ltd Production of composite metal strip
US3187421A (en) * 1960-09-08 1965-06-08 Internat Cold Forging Corp Method for the production of metallic pre-forms
US3367019A (en) * 1965-11-17 1968-02-06 Soule Steel Company Method and apparatus for making scrap bundles
US3413401A (en) * 1966-02-02 1968-11-26 Northwestern Steel & Wire Co Method and apparatus for melting metals by induction heating
US3452392A (en) * 1968-08-05 1969-07-01 Lorillard Co P Apparatus for making cigarette filters
US3625138A (en) * 1969-06-16 1971-12-07 Electronic Assistance Corp Waste disposal
US3654854A (en) * 1970-02-04 1972-04-11 Uhrden Inc Refuse packer
US3921545A (en) * 1973-08-24 1975-11-25 Walter Ruegsegger Conveyor installation with a screw conveyor
US4208367A (en) * 1975-08-22 1980-06-17 Wuenning Joachim Process and apparatus for making rod-shaped bodies from sinterable granular material
US4343233A (en) * 1980-03-31 1982-08-10 Burgin Kermit H Apparatus for producing and collecting a liquid extract and a dry by-product from a mash
US4389928A (en) * 1980-03-31 1983-06-28 Burgin Kermit H Method for producing and collecting a liquid extract and a dry by-product from a mash
US4421022A (en) * 1980-03-31 1983-12-20 Burgin Kermit H Apparatus for producing and collecting a liquid extract and a dry by-product from a mash
US4557190A (en) * 1983-03-31 1985-12-10 Officine Vezzani S.P.A. Apparatus for compacting scrap materials, such as relatively comminuted scrap metal, waste, and the like
US20040237809A1 (en) * 2001-08-29 2004-12-02 Mcintosh Malcolm John Coal dewatering system and method
US20060144980A1 (en) * 2004-12-30 2006-07-06 Bouldin Corporation System and method for processing waste on a continuous basis
US20070017390A1 (en) * 2005-07-20 2007-01-25 Kim Won K Apparatus for removing foreign matters from construction waste
US20120107434A1 (en) * 2010-10-29 2012-05-03 Hitachi Powdered Metals Co., Ltd. Forming die assembly for microcomponents
WO2013113299A1 (en) * 2012-02-03 2013-08-08 Technische Universität Dortmund Device and method for producing non-porous profiles from separation residues by means of extrusion
US11268843B2 (en) * 2020-06-30 2022-03-08 K2R2 Llc Powder dispensing fixture
US11931677B2 (en) * 2020-01-31 2024-03-19 Hydra Water Ab Separation device and method to separate contaminants from contaminated water

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2431095A (en) * 1944-11-06 1947-11-18 Hpm Dev Corp Apparatus for hot pressing powdered metal
US2524057A (en) * 1946-07-18 1950-10-03 Thoger G Jungersen Precision forming of metal
US2654038A (en) * 1950-11-25 1953-09-29 Speer Carbon Company Molded-in shunt electrical contact member
US2766512A (en) * 1952-06-09 1956-10-16 Hatebur Friedrich Bernhard Method for the production of ballbearing races and similar parts
US2810187A (en) * 1952-07-31 1957-10-22 Nat Steel Corp Apparatus for cutting metal bundles
US2935402A (en) * 1954-04-15 1960-05-03 Mannesmann Ag Hot rolling of metal powder
US2888739A (en) * 1955-06-28 1959-06-02 Armour Res Found Bearing composition
US3049988A (en) * 1956-04-20 1962-08-21 Lindemann Scrap shearing machine
US2901583A (en) * 1956-08-17 1959-08-25 Holo Krome Screw Corp Forging apparatus and stock warming means therefor
US3141401A (en) * 1957-05-11 1964-07-21 Lindemann Machine for preparing scrap metal
US3187421A (en) * 1960-09-08 1965-06-08 Internat Cold Forging Corp Method for the production of metallic pre-forms
US3171195A (en) * 1962-06-11 1965-03-02 Johnson Matthey Co Ltd Production of composite metal strip
US3367019A (en) * 1965-11-17 1968-02-06 Soule Steel Company Method and apparatus for making scrap bundles
US3413401A (en) * 1966-02-02 1968-11-26 Northwestern Steel & Wire Co Method and apparatus for melting metals by induction heating
US3452392A (en) * 1968-08-05 1969-07-01 Lorillard Co P Apparatus for making cigarette filters
US3625138A (en) * 1969-06-16 1971-12-07 Electronic Assistance Corp Waste disposal
US3654854A (en) * 1970-02-04 1972-04-11 Uhrden Inc Refuse packer
US3921545A (en) * 1973-08-24 1975-11-25 Walter Ruegsegger Conveyor installation with a screw conveyor
US4208367A (en) * 1975-08-22 1980-06-17 Wuenning Joachim Process and apparatus for making rod-shaped bodies from sinterable granular material
US4343233A (en) * 1980-03-31 1982-08-10 Burgin Kermit H Apparatus for producing and collecting a liquid extract and a dry by-product from a mash
US4389928A (en) * 1980-03-31 1983-06-28 Burgin Kermit H Method for producing and collecting a liquid extract and a dry by-product from a mash
US4421022A (en) * 1980-03-31 1983-12-20 Burgin Kermit H Apparatus for producing and collecting a liquid extract and a dry by-product from a mash
US4557190A (en) * 1983-03-31 1985-12-10 Officine Vezzani S.P.A. Apparatus for compacting scrap materials, such as relatively comminuted scrap metal, waste, and the like
US7383766B2 (en) * 2001-08-29 2008-06-10 Mte Research Pty Ltd Coal dewatering system and method
US20040237809A1 (en) * 2001-08-29 2004-12-02 Mcintosh Malcolm John Coal dewatering system and method
US20060144980A1 (en) * 2004-12-30 2006-07-06 Bouldin Corporation System and method for processing waste on a continuous basis
US7303160B2 (en) * 2004-12-30 2007-12-04 Bouldin Corporation System and method for processing waste on a continuous basis
US20080048059A1 (en) * 2004-12-30 2008-02-28 Bouldin Corporation System and Method for Processing Waste on a Continuous Basis
US20070017390A1 (en) * 2005-07-20 2007-01-25 Kim Won K Apparatus for removing foreign matters from construction waste
US7430960B2 (en) * 2005-07-20 2008-10-07 Won-Keuk Kim Apparatus for removing foreign matters from construction waste
US20120107434A1 (en) * 2010-10-29 2012-05-03 Hitachi Powdered Metals Co., Ltd. Forming die assembly for microcomponents
US9492867B2 (en) * 2010-10-29 2016-11-15 Hitachi Powdered Metals Co., Ltd. Forming die assembly for microcomponents
WO2013113299A1 (en) * 2012-02-03 2013-08-08 Technische Universität Dortmund Device and method for producing non-porous profiles from separation residues by means of extrusion
US11931677B2 (en) * 2020-01-31 2024-03-19 Hydra Water Ab Separation device and method to separate contaminants from contaminated water
US11268843B2 (en) * 2020-06-30 2022-03-08 K2R2 Llc Powder dispensing fixture

Similar Documents

Publication Publication Date Title
US2362701A (en) Apparatus for making porous metal parts
US2097502A (en) Method of and apparatus for producing rods and the like of comminuted material
US2393130A (en) Powder metallurgy
US4040162A (en) Method of producing composite extruded aluminum products from aluminum swarf
US2123416A (en) graham
CA1117763A (en) Fluid cooling for glass molds
US3631583A (en) Method for producing substantially solid extrusions from powdered metal
US2598016A (en) Apparatus for hot pressing powdered metals
US2751293A (en) Process of making perforated powdered metal article
US3705509A (en) Fluid-conducting hot-forging die and method of making the same
US2706693A (en) Process of impregnating metal bearings
CN105441881A (en) Making method of chromium target and making method of combination of chromium target
JPS6123257B2 (en)
US2341860A (en) Method of making chambered metallic articles
US2353693A (en) Rotating band
US2319373A (en) Method of making metal articles
US2728134A (en) Process of making perforated composite oil well bearings
US3611546A (en) Method of highly-densifying powdered metal
GB1087400A (en) Method and apparatus for consolidation of powdered materials and articles of manufacture produced therefrom
US2255238A (en) Method of making multicellular glass
US2964400A (en) Method of and apparatus for making articles from powdered metal briquets
US2191936A (en) Manufacture of porous iron articles
US2398719A (en) Method of making porous metal articles
US2216652A (en) Method of making wire-drawing dies
US2536689A (en) Method of making small metal bodies