US2346955A - Thermistor - Google Patents
Thermistor Download PDFInfo
- Publication number
- US2346955A US2346955A US449352A US44935242A US2346955A US 2346955 A US2346955 A US 2346955A US 449352 A US449352 A US 449352A US 44935242 A US44935242 A US 44935242A US 2346955 A US2346955 A US 2346955A
- Authority
- US
- United States
- Prior art keywords
- coil
- heater
- resistance
- turns
- borate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000463 material Substances 0.000 description 16
- 238000000034 method Methods 0.000 description 9
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 6
- 239000011324 bead Substances 0.000 description 5
- 230000004927 fusion Effects 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 239000004568 cement Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 229910001120 nichrome Inorganic materials 0.000 description 2
- 238000007711 solidification Methods 0.000 description 2
- 230000008023 solidification Effects 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 210000003298 dental enamel Anatomy 0.000 description 1
- CDMADVZSLOHIFP-UHFFFAOYSA-N disodium;3,7-dioxido-2,4,6,8,9-pentaoxa-1,3,5,7-tetraborabicyclo[3.3.1]nonane;decahydrate Chemical compound O.O.O.O.O.O.O.O.O.O.[Na+].[Na+].O1B([O-])OB2OB([O-])OB1O2 CDMADVZSLOHIFP-UHFFFAOYSA-N 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910000623 nickel–chromium alloy Inorganic materials 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01C—RESISTORS
- H01C7/00—Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
- H01C7/04—Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having negative temperature coefficient
Definitions
- the present invention relates to a process of manufacturing heater or the like resistance coils such as, for example, the heater coils of indirectly heated resistances or the resistance of a resistance thermometer. More particularly it relates to such resistances which have a pronounced negative or positive temperature coefficient of resistance. Such devices have been, for convenience described as Thermistors.
- a prewound heater coil of small dimensions surrounds the bead, and is held in the desired position relative to the bead, and is insulated therefrom by means such as an insulating cement.
- the resistance element is extremely small, say 0.03" dia.
- exact centering of the bead in the heater coil is difficult, particularly as the heater coil is many times longer than the bead. In such cases the heat of the coil is not concentrated on the resistance element, and the manufacture of thermistors with reproducible characteristics is difficult.
- the process of manufacturing a resistance coil of the type specified comprises applying to the coil a material, which after fusion and subsequent solidification has insulating properties, and applying heat to fuse the material so that the surface tension of the fused material pulls the coil turns close together leaving a thin layer of the material between successive turns.
- a heater coil which consists of a fine gauge resistance wire such as a nickelchromium alloy wire known under the registered trade-mark Nichrome or a similar resistance wire, or tungsten, for example, is dipped into an aqueous solution, which may be saturated, of sodium biborate or other metal borate solution or suspension (e. g. lithium, potassium, lead, etc), and is then transferred to a furnace or oven at a temperature above the fusion point of the borate but below the melting point of the wire.
- aqueous solution which may be saturated, of sodium biborate or other metal borate solution or suspension (e. g. lithium, potassium, lead, etc)
- the borate fuses, the turns of the coil are pulled together by surface tension but are insulated from one another and prevented from touching by a thin film of the borate.
- the process can also be carried out by using any fusible glass or enamel which will exert sufficient surface tension to pull the coil turns together, and which will insulate the turns one from the other.
- a rigid glazed heater of tube like form is produced in this way, into which it is easy to insert the thermistor element with its attached lead wires, and in which accurate centering by means such as an insulating cement is carried out easily and in a readily reproducible manner.
- the coil is first dipped into water and then in the finely powdered borate or other fusible material or a mixture of fusible materials, and then heated in a furnace or oven.
- the fusion of the material and the shrinkage of the coil may be performed in a flame.
- heater coils of the same resistance as heretofore can be made of much smaller length; the size of the assembly when used with resistors, for instance, is reduced; the heater is covered with an insulating layer and is in the form of a rigid hollow tube, non-uniformities in coil lentgh consequent upon cutting a large length into smaller lengths of equa1 resistance are removed, since all coils having the same amount of wire shrink to the same size.
- the herein described method of making preformed heater coil tubes for indirectly heated resistors which consists in applying to a heater coilhaving the requisite degree of flexibility a material which after fusion and subsequent solidification has insulating properties and applying heat to fuse the material whereby the surface tension of the fused material pulls the coil turns closely together to a horned stop position with a thin layer of the material between the successive turns.
- heated resistance such as a, thermistor which 3.
- the process according to claim 1 wherein comprises covering a spiral coil of tungsten wire the coil is composed of a nichrome wire of a fine of fine guage with a metal borate and applying 8 guage and the said material consists of metal heat to fuse the borate so that the surface tenborate.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Resistance Heating (AREA)
- Thermistors And Varistors (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB10730/41A GB551485A (en) | 1941-08-22 | 1941-08-22 | Improvements in or relating to thermistors |
Publications (1)
Publication Number | Publication Date |
---|---|
US2346955A true US2346955A (en) | 1944-04-18 |
Family
ID=9973224
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US449352A Expired - Lifetime US2346955A (en) | 1941-08-22 | 1942-07-01 | Thermistor |
Country Status (4)
Country | Link |
---|---|
US (1) | US2346955A (en, 2012) |
BE (1) | BE468574A (en, 2012) |
FR (1) | FR931430A (en, 2012) |
GB (1) | GB551485A (en, 2012) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3232822A (en) * | 1962-04-19 | 1966-02-01 | Union Carbide Corp | Bonding of refractory materials by means of cerium oxide-cerium sulfide mixtures and product |
US3352009A (en) * | 1962-12-05 | 1967-11-14 | Secon Metals Corp | Process of producing high temperature resistant insulated wire, such wire and coils made therefrom |
-
0
- BE BE468574D patent/BE468574A/xx unknown
-
1941
- 1941-08-22 GB GB10730/41A patent/GB551485A/en not_active Expired
-
1942
- 1942-07-01 US US449352A patent/US2346955A/en not_active Expired - Lifetime
-
1946
- 1946-07-26 FR FR931430D patent/FR931430A/fr not_active Expired
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3232822A (en) * | 1962-04-19 | 1966-02-01 | Union Carbide Corp | Bonding of refractory materials by means of cerium oxide-cerium sulfide mixtures and product |
US3352009A (en) * | 1962-12-05 | 1967-11-14 | Secon Metals Corp | Process of producing high temperature resistant insulated wire, such wire and coils made therefrom |
Also Published As
Publication number | Publication date |
---|---|
GB551485A (en) | 1943-02-24 |
FR931430A (fr) | 1948-02-23 |
BE468574A (en, 2012) |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US2038627A (en) | Method of making glass | |
US2792620A (en) | Sealed resistors | |
US845413A (en) | Electric-resistance thermometer. | |
US1739256A (en) | Electrical resistance and art of forming the same | |
US2685015A (en) | Resistance thermometer element | |
SE7604429L (sv) | Langsam smeltsekring | |
US2346955A (en) | Thermistor | |
US1575994A (en) | Lead-in wire and gas-tight seal and method of making the same | |
GB528718A (en) | Improvements in and relating to a method of manufacturing electric heating elements | |
US2360287A (en) | Method of making spark plugs | |
US2253577A (en) | Resistance device | |
GB541922A (en) | Resistor devices and methods of making same | |
US2402927A (en) | Insulating seal | |
US3234630A (en) | Method of producing a conduit | |
US2280977A (en) | High temperature heating unit and method of making same | |
US3136973A (en) | Sealed resistor | |
US2623145A (en) | Resistor structure and method of manufacture | |
US2409361A (en) | Seal for electric lamps and similar devices | |
US3192497A (en) | Glass to metal seal | |
US3055084A (en) | Method of making covered electrical resistors | |
US2263601A (en) | Method for encasing or coating wires, rods, or tubes with glass or other thermoplastic substances | |
US2428059A (en) | Sealing of wires into glass | |
GB943548A (en) | Improvements in or relating to the production of thermistors | |
US1234973A (en) | Electrical heating apparatus and process of making the same. | |
JP2592253B2 (ja) | ガラスコートサーミスタの製造方法 |