US2306462A - Intumescent furnace - Google Patents

Intumescent furnace Download PDF

Info

Publication number
US2306462A
US2306462A US394199A US39419941A US2306462A US 2306462 A US2306462 A US 2306462A US 394199 A US394199 A US 394199A US 39419941 A US39419941 A US 39419941A US 2306462 A US2306462 A US 2306462A
Authority
US
United States
Prior art keywords
furnace
flame
treated
burner
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US394199A
Inventor
Hesden F Moorman
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US394199A priority Critical patent/US2306462A/en
Application granted granted Critical
Publication of US2306462A publication Critical patent/US2306462A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/02Treatment
    • C04B20/04Heat treatment
    • C04B20/06Expanding clay, perlite, vermiculite or like granular materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S264/00Plastic and nonmetallic article shaping or treating: processes
    • Y10S264/63Processes of molding porous blocks

Definitions

  • This invention relates to and has for an object the provision of an improved means for intumescing or expanding certain minerals in the form of a light weight aggregate possessing a high insulation value, such as obsidian, perli-te, pitchare readily exfoliated by the mere application of heat, whereas such materials as perlite or other allied minerals, particularly of the obsidian family, are not effectively expanded for commercial usage by heat alone but require the direct application of fire for sustained periods in order that the material subsequent to my treatment may be capable of commercial use, as for instance, as an element of plaster applicable to walls of buildings, and as a component of a sound deadening ,or insulating material.
  • the invention comprehends the provision of an improved means which includes a furnace in which the usual refractory lining is omitted, principally because the finest particles of material may adhere thereto and become fused, and into which a flame from a high pressure burner is directed tangentially for providing a'maximum of turbulence and in which the flame I traverses the interior of the furnace in a spiral or helical path.
  • the material to be treated is introduced into the furnace through a firing tube into which the flame from the burner is also introduced and the material is adapted to be held in suspension within the furnace for sufficient periods of time to effect the complete intumescence of the particles before they are exhausted from the bottom of the furnace by suction to points of further treatment, such as for separating the materials from the gases, or ultimate disposition.
  • An object is to provide a. furnace having the characteristics herein named which may be effective either with or without the usual cyclone separating means common to other systems and is adapted for use in connection particles and for dispensing them as required for use.
  • Fig. 1 is a side elevation of an assembledap- 'paratus, shown partly in section;
  • Fig. 2 is a sectional plan on line 2-2 of Fig. 1;
  • Fig. 3 is a sectional elevation through the firing tube and the material feed hopper on line 3---3 of Fig. 1.
  • my invention includes: a furnace A to which is tangentially connected a firing tube B arranged for receiving a flame froma high pressure burner C, a feed hopper D for holding a substantial quantityof material to be treated, a material feeding means E for regulating the volume of material fed from hopper D to the fur-- nace, a separator F for separating the treated.
  • a fan G associated with the separator for exhausting the products of combustion
  • a storage receptacle I- I into which the treated material is deposited from the separator and which isadapted to dispense the material into suitable bags, as at .I, or other forms of collecting receptacles.
  • the furnace A is preferably of cylindrical form with an inner wall I, an outer wall 2 and insulating material 3 between said walls, except preferably for a small area directly opposite the inlet from the firing tube B.
  • Said furnace has a top 4 with an opening 5 therein which is adapted to be covered by a plate or lid 6 and which is removable for affording vision and access to the interior of the furnace at will.
  • bottom ofthe furnace is of the conical form and may be integral or separate from the with a suitable means for collecting the treated 55 furna ody, s wn in Fi with a vertical outlet 8 connected with a horizontal section 9 of a discharge pipe carrying an air valve or damper In in its end and connected with a riser pipe H which leads to the separator F.
  • the furnace is suitably supported upon a frame J.
  • the burner C is a high pressure type and.
  • the burner not being a part of my invention.
  • the jet ll. of the burner is adjacent to the inlet of the firing tube B and said tube is, as shown in Fig.
  • Feed hopper D is adapted to hold a substantial quantity of the material which flows by gravity through an outlet l4 capable of being controlled by a suitable valve l5, and thence downwardly into and through a tube l6 into a smaller hopper l1 attached to the upper end of inlet l3, from which latter point the material is drawn into the furnace through firing tube B in accordance with requirements, as may be determined by the capacity of the furnace.
  • the flame and material to be treated is introduced into the furnace through an orifice I8 and while the flame traverses a spiral downward path within the furnace as shown by the lines and arrows, the turbulence in the furnace tends to hold the particles, large and small, of the material in'suspension for long enough periods to effect the complete intumescence of every particle, after which the particles are drawn downwardly by reason of the induced draft in the pipe it caused by fan G.
  • Fan G creates suction in chamber I9 of separator F which is communicated to pipe I l, section 9 and the interior of the furnace so that the tendency of the apparatus is to move the suspended particles through the furnace, pipes 9 and II and separator F, but the turbulence in the furnace is sumcient to hold the particles suspended in the furnace for sufficient periods of time to effect their intumescence before they are exhausted into section 9 and from said point to the separator F through pipe ll.
  • the relative pressure from the flame of the burner and the suction created by fan G is regulated either by the usual air valve on the burner or by the regulator III on section 9 of the outlet pipe, or by both of such instrumentalities.
  • receptacle H has a dispensing outlet 25 with a suitable valve 26 therein for regulating the dispensing of the treated material from the receptacle into a bag as at L or otherwise as may be convenient and desirable.
  • My system must also, and does provide means for the quick expulsion from the fire zone of the particles so that they may not become overhot and useless commercially, i. e., they may become viscid and fusible which may also render them at times incapable of discharge from the fire zone.
  • the material when treated in my apparatus is maintained in a closed circuit from its point of entry to its point of ultimate disposition, and the deposition of a regulated volume of material into the firing tube and its conduct therethrough to the fire zone in which there is Provided a maximum of cyclonic turbulence, assures the suspension of the particles throughout a sustained period sufiicient to effect complete intumescence and a resultant uniformity of the commercial product.
  • the burner C has the usual fuel control valve 21 and air control 28; the air regulator l0 applied to section 9 of pipe H for regulating admission of air to pipe II, and the fan G which may be adjusted to vary the suction which effects the removal of the treated material from the furnace and its separation from the products of combustion.
  • An apparatus of the character herein described lends itself readily to economy and efiiciency in operation in that several of the units may be attended by a single operator and the output will depend upon the particular character and mesh of the material treated.
  • the fan G which is operatively associated with the separator F and the furnace A creates sumcient draft through the furnace for effecting proper combustion and also for withdrawing the treated material and products of combustion from the furnace and for conveying the material and products of combustion to the separator, at which point the treated material is: separated from the products of combustion and the latter are withdrawn from the separator while .the material is deposited in the receptacle H.
  • the means herein shown and described accomplishes the following results, viz., the provision of a continuous flow of air through the apparatus necessary for afiecting proper combustion; the creation of a cyclonic turbulence which serves as a medium for supporting'the material in disseminated suspension during treatment thereof; the continuous removal of the material from the zone of treatment .byreason of the draft; the utilization of the draft thus created for conveying the treated mterial and the products of combustion to a suitable separating apparatus; and finally, the S p ration of .the treated material from the productsofcombustion and the deposit thereof in a suitable storage bin or receptacle.
  • the cyclonic turbulenee in the fire zone is not only occasioned by the pressure applied to the flame from the burner C, but also from the suction created in the apparatus by fan G, and. these two forces are relatiyely "adjustable as to intensity and volume for retarding or speeding up the flow of the materials through the furnace and theconse quent regulation of the len th or the treating 'What I claim is:
  • An intumescentfumace comprising: a cylindrical furnace, a firing tube tangentially connected-therewith at the top of the furnace, a burner for projecting a flame at high pressure into saidtuizoeandfurnacesoastoeilfectaspiral traverse of the furnace by the flame, means for feeding finely divided intumescible material into said tube at a point intermediate the burner and the inlet to the furnace so that the particles thereof will be held in suspension while under the direct attack of said flame, and means for discharging the treated material and the products of combustion.
  • An intumescent furnace comprising: a furnace having a cylindrical body, a firing tube tangentially'extended from the top thereof, a burner for projecting a flame at high pressure into said tube and furnace so as to effect a spiral traverse of the furnace by the flame, means connected with said tube and disposed between the burner and the furnace for feeding finely divided intumescible material into said tube and thence to the furnace so that the particles thereof will be held in suspension while under the direct attack of .said flame, said furnace having a conical bottom, and an outlet in said bottom for discharging the'treated materia1 and the products of combustion, said outlet arrangedfor connection with a source of suction to eifect the discharge of the the furnace so that the particles thereof will be held in suspension while under the' direct attack of said fiame,'said' furnace having a conical bottom and an outlet in said bottom for discharging the treated material and the products of com-.
  • said last mentioned means including a pipe connected with the out-- let of said furnace and arranged for connection with a source of suction, and a damper in said pipe for regulating air admitted thereto from the atmosphere, as described.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Furnace Details (AREA)

Description

Dec. 29, 1942.
H. F. MOORMAN INTUMESCENT FURNACE Filed May 19, 1941 INVENTOR M W w M F N m 5 H Patented Dec. 29, 1942 UNITED STATES PATENT OFFICE INTUMESCENT FURNACE Hesden F. Moorman, Los Angel, Calif. Application May 19, 1941, Serial No. 394,199
3 Claims.
This invention relates to and has for an object the provision of an improved means for intumescing or expanding certain minerals in the form of a light weight aggregate possessing a high insulation value, such as obsidian, perli-te, pitchare readily exfoliated by the mere application of heat, whereas such materials as perlite or other allied minerals, particularly of the obsidian family, are not effectively expanded for commercial usage by heat alone but require the direct application of fire for sustained periods in order that the material subsequent to my treatment may be capable of commercial use, as for instance, as an element of plaster applicable to walls of buildings, and as a component of a sound deadening ,or insulating material.
The invention, therefore, comprehends the provision of an improved means which includes a furnace in which the usual refractory lining is omitted, principally because the finest particles of material may adhere thereto and become fused, and into which a flame from a high pressure burner is directed tangentially for providing a'maximum of turbulence and in which the flame I traverses the interior of the furnace in a spiral or helical path. The material to be treated is introduced into the furnace through a firing tube into which the flame from the burner is also introduced and the material is adapted to be held in suspension within the furnace for sufficient periods of time to effect the complete intumescence of the particles before they are exhausted from the bottom of the furnace by suction to points of further treatment, such as for separating the materials from the gases, or ultimate disposition.
An object, therefore, is to provide a. furnace having the characteristics herein named which may be effective either with or without the usual cyclone separating means common to other systems and is adapted for use in connection particles and for dispensing them as required for use.
Other objects include: means for regulating the feed of the material to the firing tube; a primary means for regulating the volume of air admitted to the firing tube; auxiliary means for in the accompanying-drawing for carrying out the hereinabove named objects of my invention, subject to modification, within the scope of the appended claims, without departing from the spirit of'my invention.
In said drawing:
. Fig. 1 is a side elevation of an assembledap- 'paratus, shown partly in section;
Fig. 2 is a sectional plan on line 2-2 of Fig. 1; and
Fig. 3 is a sectional elevation through the firing tube and the material feed hopper on line 3---3 of Fig. 1. g A
I Briefly described, my invention includes: a furnace A to which is tangentially connected a firing tube B arranged for receiving a flame froma high pressure burner C, a feed hopper D for holding a substantial quantityof material to be treated, a material feeding means E for regulating the volume of material fed from hopper D to the fur-- nace, a separator F for separating the treated.
material from the products of combustion, a fan G associated with the separator for exhausting the products of combustion, and a storage receptacle I- I into which the treated material is deposited from the separator and which isadapted to dispense the material into suitable bags, as at .I, or other forms of collecting receptacles.
The furnace A is preferably of cylindrical form with an inner wall I, an outer wall 2 and insulating material 3 between said walls, except preferably for a small area directly opposite the inlet from the firing tube B. Said furnace has a top 4 with an opening 5 therein which is adapted to be covered by a plate or lid 6 and which is removable for affording vision and access to the interior of the furnace at will. The
bottom ofthe furnace, as at 1, is of the conical form and may be integral or separate from the with a suitable means for collecting the treated 55 furna ody, s wn in Fi with a vertical outlet 8 connected with a horizontal section 9 of a discharge pipe carrying an air valve or damper In in its end and connected with a riser pipe H which leads to the separator F. The furnace is suitably supported upon a frame J.
The burner C is a high pressure type and.
adapted for use with either gas or oil and arranged for regulation of the volume of air for mixture with the fuel at a suitable point for providing a maximum heat and efliciency, the burner not being a part of my invention. As shown in Fig. 1 the jet ll. of the burner is adjacent to the inlet of the firing tube B and said tube is, as shown in Fig. 2, disposed at a tangent to the inner wall of the furnace A so that when the flame from the burner is introduced into the furnace a substantial turbulence will be caused by the whirling of the flame while it is traversing the circular inner wall of the furnace so that when material to be treated is fed through an inlet l3 into the firing tube the material will be held in suspension within the furnace for sustained periods of time in a disseminated state.
Feed hopper D is adapted to hold a substantial quantity of the material which flows by gravity through an outlet l4 capable of being controlled by a suitable valve l5, and thence downwardly into and through a tube l6 into a smaller hopper l1 attached to the upper end of inlet l3, from which latter point the material is drawn into the furnace through firing tube B in accordance with requirements, as may be determined by the capacity of the furnace.
As illustrated in Fig. 1, the flame and material to be treated is introduced into the furnace through an orifice I8 and while the flame traverses a spiral downward path within the furnace as shown by the lines and arrows, the turbulence in the furnace tends to hold the particles, large and small, of the material in'suspension for long enough periods to effect the complete intumescence of every particle, after which the particles are drawn downwardly by reason of the induced draft in the pipe it caused by fan G.
Fan G creates suction in chamber I9 of separator F which is communicated to pipe I l, section 9 and the interior of the furnace so that the tendency of the apparatus is to move the suspended particles through the furnace, pipes 9 and II and separator F, but the turbulence in the furnace is sumcient to hold the particles suspended in the furnace for sufficient periods of time to effect their intumescence before they are exhausted into section 9 and from said point to the separator F through pipe ll.
The relative pressure from the flame of the burner and the suction created by fan G is regulated either by the usual air valve on the burner or by the regulator III on section 9 of the outlet pipe, or by both of such instrumentalities.
The material enters chamber IQ of the separator at a tangent through an orifice 20 and falls by gravity into the storage receptacle H through a neck 2| while the products of combustion are discharged upwardly through an outlet 22 leading toa pipe 23 from which the gases are delivered to an axial opening in the fan G and are discharged from the fan through an outlet 24. In this connection it may be noted that the section of the apparatus shown in Fig. 2 is also typical of the connection of pipe H with the separator F, and in some cases the burner C and firing tube B may be applied to the separator directly, or, the fan G may be applied to the top of the furnace A and the outlet 2| be formed on or attached to section 9 of the discharge means in lieu of the combined use of the two elements described. In the form shown, receptacle H has a dispensing outlet 25 with a suitable valve 26 therein for regulating the dispensing of the treated material from the receptacle into a bag as at L or otherwise as may be convenient and desirable.
In connection with the furnace it is notable that when fir brick is employed, as in some types of furnaces, the finest particles of material are prone to cling to the refractory lining ancl fuse, hence I have ascertained that a stainless steel lining is most adaptable to prevent such results.
In the operation of the furnace I have discovered that the kinds of material hereinbefore mentioned and which are granular or cellular and are not laminated are capable of intumescense at a temperature of approximately 1750 degrees Fahrenheit when the flame from the burner is directly applied to the granules, and I have also discovered that the same temperature is ineffective for producing the desired results when merely heat of said temperature is applied to the material, While the same temperature, more or less, may be effective for exfoliating mica, vermiculite and other laminated material, it requires more than mere heat and an actual application of flame to the particles of material, large or small, for accomplishing the results of this invention. To this end, therefore, I have ascertained from experimentation, that an extreme turbulence must be maintained within the furnace, into which the particles of materials are introduced in sufilcient volume, and the flame must be under a high pressure in order to hold the particles in suspension for periods of time requisite for eifecting their complete intumescence.
My system must also, and does provide means for the quick expulsion from the fire zone of the particles so that they may not become overhot and useless commercially, i. e., they may become viscid and fusible which may also render them at times incapable of discharge from the fire zone. The material when treated in my apparatus is maintained in a closed circuit from its point of entry to its point of ultimate disposition, and the deposition of a regulated volume of material into the firing tube and its conduct therethrough to the fire zone in which there is Provided a maximum of cyclonic turbulence, assures the suspension of the particles throughout a sustained period sufiicient to effect complete intumescence and a resultant uniformity of the commercial product.
The several points of regulation render the apparatus capable of adaptation to variations as between different materials, size of the furnace and its capacity, altitude and other atmospheric conditions and other circumstances which may affect the product of the apparatus. For instance, the burner C has the usual fuel control valve 21 and air control 28; the air regulator l0 applied to section 9 of pipe H for regulating admission of air to pipe II, and the fan G which may be adjusted to vary the suction which effects the removal of the treated material from the furnace and its separation from the products of combustion.
An apparatus of the character herein described lends itself readily to economy and efiiciency in operation in that several of the units may be attended by a single operator and the output will depend upon the particular character and mesh of the material treated. after the apparatus has been once set for operation on a given kind of material. The fan G which is operatively associated with the separator F and the furnace A creates sumcient draft through the furnace for effecting proper combustion and also for withdrawing the treated material and products of combustion from the furnace and for conveying the material and products of combustion to the separator, at which point the treated material is: separated from the products of combustion and the latter are withdrawn from the separator while .the material is deposited in the receptacle H.
It is to be particularly noted that not only is the material held in suspension in the furnace during a continuous state of turbulence, but the material is at all times disseminated during the period of its suspension, thereby permitting the direct attack on the separate particles by the flame and from all sides and directions ,simultaneously.
Hence, the means herein shown and described accomplishes the following results, viz., the provision of a continuous flow of air through the apparatus necessary for afiecting proper combustion; the creation of a cyclonic turbulence which serves as a medium for supporting'the material in disseminated suspension during treatment thereof; the continuous removal of the material from the zone of treatment .byreason of the draft; the utilization of the draft thus created for conveying the treated mterial and the products of combustion to a suitable separating apparatus; and finally, the S p ration of .the treated material from the productsofcombustion and the deposit thereof in a suitable storage bin or receptacle. -Moreover, the cyclonic turbulenee in the fire zone is not only occasioned by the pressure applied to the flame from the burner C, but also from the suction created in the apparatus by fan G, and. these two forces are relatiyely "adjustable as to intensity and volume for retarding or speeding up the flow of the materials through the furnace and theconse quent regulation of the len th or the treating 'What I claim is:
1. An intumescentfumace comprising: a cylindrical furnace, a firing tube tangentially connected-therewith at the top of the furnace, a burner for projecting a flame at high pressure into saidtuizoeandfurnacesoastoeilfectaspiral traverse of the furnace by the flame, means for feeding finely divided intumescible material into said tube at a point intermediate the burner and the inlet to the furnace so that the particles thereof will be held in suspension while under the direct attack of said flame, and means for discharging the treated material and the products of combustion.
'2. An intumescent furnace comprising: a furnace having a cylindrical body, a firing tube tangentially'extended from the top thereof, a burner for projecting a flame at high pressure into said tube and furnace so as to effect a spiral traverse of the furnace by the flame, means connected with said tube and disposed between the burner and the furnace for feeding finely divided intumescible material into said tube and thence to the furnace so that the particles thereof will be held in suspension while under the direct attack of .said flame, said furnace having a conical bottom, and an outlet in said bottom for discharging the'treated materia1 and the products of combustion, said outlet arrangedfor connection with a source of suction to eifect the discharge of the the furnace so that the particles thereof will be held in suspension while under the' direct attack of said fiame,'said' furnace having a conical bottom and an outlet in said bottom for discharging the treated material and the products of com-.
'bustion. said outlet arranged for connection with a source of suction to effect the discharge of the,
treated materials, and means for varying the discharge of the materials to correspond to requirements of different materials, said last mentioned means including a pipe connected with the out-- let of said furnace and arranged for connection with a source of suction, and a damper in said pipe for regulating air admitted thereto from the atmosphere, as described.
'nEsnEn F. MOORMAN.
US394199A 1941-05-19 1941-05-19 Intumescent furnace Expired - Lifetime US2306462A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US394199A US2306462A (en) 1941-05-19 1941-05-19 Intumescent furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US394199A US2306462A (en) 1941-05-19 1941-05-19 Intumescent furnace

Publications (1)

Publication Number Publication Date
US2306462A true US2306462A (en) 1942-12-29

Family

ID=23557965

Family Applications (1)

Application Number Title Priority Date Filing Date
US394199A Expired - Lifetime US2306462A (en) 1941-05-19 1941-05-19 Intumescent furnace

Country Status (1)

Country Link
US (1) US2306462A (en)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2441613A (en) * 1943-01-04 1948-05-18 Balassa Ladislaus Method and apparatus for pulverizing and processing materials
US2466001A (en) * 1947-04-23 1949-04-05 Univ Oklahoma Res Inst Method of making cellular products from volcanic ash
US2496203A (en) * 1948-05-10 1950-01-31 Cudahy Packing Company Beneficiation of volcanic ash
US2501962A (en) * 1947-05-16 1950-03-28 Pierce Harold Ladd Process for expanding earth materials
US2501698A (en) * 1947-06-05 1950-03-28 Great Lakes Carbon Corp Thermal expansion and vesiculation process for siliceous materials
US2505249A (en) * 1946-02-15 1950-04-25 Great Lakes Carbon Corp Process and furnace for expanding perlite
US2530077A (en) * 1948-02-11 1950-11-14 Frederick C Ramsing Metallurgical furnace
US2572484A (en) * 1947-09-17 1951-10-23 Howle Apparatus for expanding perlite and the like
US2602782A (en) * 1948-02-21 1952-07-08 Dant & Russell Method and apparatus for expanding perlite
US2621034A (en) * 1947-07-01 1952-12-09 Great Lakes Carbon Corp Apparatus for expanding minerals
US2630310A (en) * 1946-01-22 1953-03-03 Norman P Harshberger Apparatus for processing fusible materials
US2634116A (en) * 1949-09-26 1953-04-07 Witt Joshua Chitwood Method of and apparatus for clinkering cement raw materials and the like
US2636688A (en) * 1948-02-20 1953-04-28 Inst Gas Technology Method for treating coal and the like
US2637702A (en) * 1949-10-03 1953-05-05 Univ Oklahoma Res Inst Method of converting volcanic ash to cellular particles
US2692864A (en) * 1950-08-23 1954-10-26 Universal Oil Prod Co Disperse phase countercurrent contacting of subdivided particles
US2807453A (en) * 1947-05-16 1957-09-24 Pierce Harold Ladd Apparatus for expanding earth materials
US2810810A (en) * 1949-03-28 1957-10-22 Eugene B White Apparatus for expanding finely divided particles of obsidian-like material
US2830769A (en) * 1953-05-18 1958-04-15 Texaco Development Corp Method and apparatus for treating a solid material
US2945326A (en) * 1958-05-09 1960-07-19 Thomas K Wood Apparatus for manufacturing glass beads
US2994916A (en) * 1958-03-28 1961-08-08 Johns Manville Fiber Glass Inc Method and apparatus for melting glass and drawing filaments therefrom
US3428720A (en) * 1966-09-28 1969-02-18 Dow Chemical Co Method and apparatus for superatmospheric prefoaming of expandable synthetic resinous particles
US3533610A (en) * 1968-07-11 1970-10-13 Charles Wayne Johnson Apparatus for the heat treatment of comminuted material
DE2510765A1 (en) * 1974-03-25 1975-10-09 Veitscher Magnesitwerke Ag METHOD OF HEAT TREATMENT OF FINE GRAIN OR LIQUID MATERIAL AND OVEN TO CARRY OUT THE PROCEDURE
US4057908A (en) * 1976-05-20 1977-11-15 Grefco, Inc. Method and apparatus for drying damp powder
US4519777A (en) * 1982-09-08 1985-05-28 Akhtyamov Yakub A Method and apparatus for bloating granular material
US6047566A (en) * 1995-03-24 2000-04-11 Isover Saint-Gobain Method and device for melting recycled silicate starting materials
US11350815B2 (en) 2008-07-07 2022-06-07 Intuitive Surgical Operations, Inc. Catheter control systems

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2441613A (en) * 1943-01-04 1948-05-18 Balassa Ladislaus Method and apparatus for pulverizing and processing materials
US2630310A (en) * 1946-01-22 1953-03-03 Norman P Harshberger Apparatus for processing fusible materials
US2505249A (en) * 1946-02-15 1950-04-25 Great Lakes Carbon Corp Process and furnace for expanding perlite
US2466001A (en) * 1947-04-23 1949-04-05 Univ Oklahoma Res Inst Method of making cellular products from volcanic ash
US2807453A (en) * 1947-05-16 1957-09-24 Pierce Harold Ladd Apparatus for expanding earth materials
US2501962A (en) * 1947-05-16 1950-03-28 Pierce Harold Ladd Process for expanding earth materials
US2501698A (en) * 1947-06-05 1950-03-28 Great Lakes Carbon Corp Thermal expansion and vesiculation process for siliceous materials
US2621034A (en) * 1947-07-01 1952-12-09 Great Lakes Carbon Corp Apparatus for expanding minerals
US2572484A (en) * 1947-09-17 1951-10-23 Howle Apparatus for expanding perlite and the like
US2530077A (en) * 1948-02-11 1950-11-14 Frederick C Ramsing Metallurgical furnace
US2636688A (en) * 1948-02-20 1953-04-28 Inst Gas Technology Method for treating coal and the like
US2602782A (en) * 1948-02-21 1952-07-08 Dant & Russell Method and apparatus for expanding perlite
US2496203A (en) * 1948-05-10 1950-01-31 Cudahy Packing Company Beneficiation of volcanic ash
US2810810A (en) * 1949-03-28 1957-10-22 Eugene B White Apparatus for expanding finely divided particles of obsidian-like material
US2634116A (en) * 1949-09-26 1953-04-07 Witt Joshua Chitwood Method of and apparatus for clinkering cement raw materials and the like
US2637702A (en) * 1949-10-03 1953-05-05 Univ Oklahoma Res Inst Method of converting volcanic ash to cellular particles
US2692864A (en) * 1950-08-23 1954-10-26 Universal Oil Prod Co Disperse phase countercurrent contacting of subdivided particles
US2830769A (en) * 1953-05-18 1958-04-15 Texaco Development Corp Method and apparatus for treating a solid material
US2994916A (en) * 1958-03-28 1961-08-08 Johns Manville Fiber Glass Inc Method and apparatus for melting glass and drawing filaments therefrom
US2945326A (en) * 1958-05-09 1960-07-19 Thomas K Wood Apparatus for manufacturing glass beads
US3428720A (en) * 1966-09-28 1969-02-18 Dow Chemical Co Method and apparatus for superatmospheric prefoaming of expandable synthetic resinous particles
US3533610A (en) * 1968-07-11 1970-10-13 Charles Wayne Johnson Apparatus for the heat treatment of comminuted material
DE2510765A1 (en) * 1974-03-25 1975-10-09 Veitscher Magnesitwerke Ag METHOD OF HEAT TREATMENT OF FINE GRAIN OR LIQUID MATERIAL AND OVEN TO CARRY OUT THE PROCEDURE
US3989446A (en) * 1974-03-25 1976-11-02 Veitscher Magnesitwerke-Aktiengesellschaft Method and kiln for calcining finely divided material
US4057908A (en) * 1976-05-20 1977-11-15 Grefco, Inc. Method and apparatus for drying damp powder
US4519777A (en) * 1982-09-08 1985-05-28 Akhtyamov Yakub A Method and apparatus for bloating granular material
US6047566A (en) * 1995-03-24 2000-04-11 Isover Saint-Gobain Method and device for melting recycled silicate starting materials
US11350815B2 (en) 2008-07-07 2022-06-07 Intuitive Surgical Operations, Inc. Catheter control systems

Similar Documents

Publication Publication Date Title
US2306462A (en) Intumescent furnace
US2421902A (en) Means of expanding pearlite and like substances
US2431884A (en) Method of expanding pearlite
US4398477A (en) Method for generation of hot gas by incineration of combustible material and apparatus for generation of hot gas by incineration of combustible material
US4347155A (en) Energy efficient perlite expansion process
US2689780A (en) Method of and apparatus for producing ammonium phosphate
US2746735A (en) Material mixing burner for processing furnaces
US2621034A (en) Apparatus for expanding minerals
GB1166740A (en) Fluidized Bed Combustion System for Organic Waste
US2572484A (en) Apparatus for expanding perlite and the like
US3727563A (en) Incinerator
US2444985A (en) Fuel burner
US2666632A (en) Perlite popping furnace
US1970109A (en) Furnace
US4519777A (en) Method and apparatus for bloating granular material
US2572483A (en) Method for expanding perlite
US3010911A (en) Method of and apparatus for heat processing particulate solids
US3057701A (en) Apparatus for the distribution of gases
US3201099A (en) Methods of expanding perlite and like materials
JPS56119403A (en) Furnace for combustion granular substance
GB729186A (en) Improvements in or relating to drying of materials in the form of particles
US2673081A (en) Heat processing system and furnace
US3511485A (en) Furnaces for processing expandable volcanic rock
US3533610A (en) Apparatus for the heat treatment of comminuted material
US1832226A (en) Furnace for sintering, calcining, roasting, and smoldering of substances and process for working said furnace