US2296298A - Staple fiber cutter - Google Patents

Staple fiber cutter Download PDF

Info

Publication number
US2296298A
US2296298A US413703A US41370341A US2296298A US 2296298 A US2296298 A US 2296298A US 413703 A US413703 A US 413703A US 41370341 A US41370341 A US 41370341A US 2296298 A US2296298 A US 2296298A
Authority
US
United States
Prior art keywords
cutting
filamentary material
feeding
lengths
filamentary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US413703A
Inventor
John E Spalding
Dan B Wicker
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Akzo Nobel UK PLC
Original Assignee
American Viscose Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by American Viscose Corp filed Critical American Viscose Corp
Priority to US413703A priority Critical patent/US2296298A/en
Application granted granted Critical
Publication of US2296298A publication Critical patent/US2296298A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01GPRELIMINARY TREATMENT OF FIBRES, e.g. FOR SPINNING
    • D01G1/00Severing continuous filaments or long fibres, e.g. stapling
    • D01G1/02Severing continuous filaments or long fibres, e.g. stapling to form staple fibres not delivered in strand form
    • D01G1/04Severing continuous filaments or long fibres, e.g. stapling to form staple fibres not delivered in strand form by cutting
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T83/00Cutting
    • Y10T83/647With means to convey work relative to tool station
    • Y10T83/6472By fluid current
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T83/00Cutting
    • Y10T83/647With means to convey work relative to tool station
    • Y10T83/6473Centrifugal feed to tangential tool [e.g., "Beria" type]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T83/00Cutting
    • Y10T83/647With means to convey work relative to tool station
    • Y10T83/6572With additional mans to engage work and orient it relative to tool station
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T83/00Cutting
    • Y10T83/869Means to drive or to guide tool
    • Y10T83/8789With simple revolving motion only
    • Y10T83/8791Tool mounted on radial face of rotor

Definitions

  • This invention relates to an apparatus for cutting staple fibers to produce a product having a variety of lengths.
  • Figure 1 shows an elevation of one embodiment
  • FIG. 2 shows an enlarged detail view of the crank mechanism of Figure 1, partially in cross section,
  • Figure 3 shows an elevation of a second embodiment of the invention, partially in cross section
  • Figure 4, Figure 5, and Figure 6 show length distribution diagrams obtainable in accordance with the invention.
  • the invention involves a feeding means for positively delivering a tow or filamentary bundle at a fixed rate to a cutting device and the interposition of a device between the positive feeding means and the cutting means to alter the length of the filamentary material which is presented to the blades of the latter between successive instants of cutting.
  • filamentary material 2 in the form of a bundle or tow is drawn about the drum 3 one or more times from which it is delivered at a constant rate, depending upon the speed of rotation of the drum, to the cutting means 4, which is shown in this figure as constituting the centrifugal disk 5 having the entrance 6 connected with the radial channel I therein and the knife 8.. While, only one knife is shown, the-frequency of cutting may be modifiedby substituting a plurality of knives around the disk periphery. Similarly other factors, such as 55 the speedof rotation of the centrifugal disk,
  • the filamentary material passes through the eye 9 of a reciprocating rod l0 operated in guides H and I2 by the crank mechanism l3 linked to the other end of the reciprocating rod Ill by the member l4.
  • the crank mechanism comprises a disk l5 mounted for rotation with the shaft l6 which is operated by means of bevel gears l1 and I8 connected with the motor l9 and variable speed gear box 20.
  • the crank arm may be adjusted ,by loosening the nut 2i and sliding the stud bolt 22 and block 23 along the slot 24 and groove 25 respectively, and again clamping the stud bolt 22 in position at the desired distance from the center of the shaft Hi.
  • the bolt may be'formed with the flange 26 to permit of clamping it in the desired position and to serve as a bearing for the face'of the end of the link member l4 pivoted upon the stud bolt.
  • the feeding drum3 and reciproeating rod ill with its connections are arranged to cooperate with a modified form of cutting means 4.
  • the cutter comprises a tube 21 having a head 8 in which a nozzle 29 is formed which may be supplied with compressed air for forcing the filamentary bundle through the tube.
  • a rotary disk 30 provided with one or more cutting knives 3
  • the feeding drum preferably rotates at constant speed thereby delivering the filamentary material at a constant rate.
  • the centrifugal disk (referring to Figure l), rotates at a constant speed in a manner that would normally produce from filamentary material fed to it at a constant rate, fibers having substantially equal lengths.
  • the function of the reciprocating rod is to vary the length of path of the filamentary material from the feeding drum to the entrance (and consequently. the exit) of the disk.
  • the amount of filamentary material protruding from the centrifugal disk at successive instants of cutting dlifersand depends upon tne extent to whicntheleng'th of the path of the filamentary material hasbeen increased or decreased between successive instants of cutting.
  • tne extent to whicntheleng'th of the path of the filamentary material hasbeen increased or decreased between successive instants of cutting.
  • the median staple length is regulated by bringing the speed of the feeding device and frequency of cuts into proper relationship.
  • the maximum and minimum staple lengths are regulated by bringing the extent (amplitude) and periodicity of the motion of guide eye into proper relation with the frequency of cuts.
  • the distribution among the variety of lengths is regulated by controlling the synchronization, or deviation therefrom, between the instants of cutting and the motion of the guide eye; also by regulating the nature of the motion of the guide eye as for example, simple harmonic motion or more complex motions obtainable by cams, linkages, etc.
  • Figure 4 there is shown a distribution diagram of staple fiber produced with a relatively low frequency of the periodic motion of the guide eye,-
  • FIG. 5 there is shown -a distribution diagram of staple, fiber produced with a relatively high frequency of the guide eye motion, no synchronization being employed.
  • Figure 6 is shown a distribution diagram of a staple resultant from synchronizing the motion of the guide eye with that of the cutting means such that successive cuts come only at the instant of maximum displacement or the instant of minimum displacement of the path of the filamentary material passing from the feeding means to the cutting means.
  • the vertical distances to the curve represent the length of fibers while equal distance along the horizontal axis of the diagram represents equal numbers of fibers.
  • an indefinitely large number of combinations of lengths and distributions may be chtained by regulating the controlling variables described herewith.
  • adjustment may be made of the distance between the delivery drum and the entrance to the cutting means, which two points function generally as stationary guides between which the moving guide eye operates. Variation of this distance produces an effect corresponding to that resulting from variation in extent of the motion of the guide eye.
  • fixed guides may be placed at any points on either side of the moving guide eye. Such an arrangement simplifies any calculations that may be desired to be made to predetermine the character of the distribution diagram of the product desired. If desired, there may be a multiplicity of fixed and moving guides for achieving particular distributions of staple length.
  • means for cutting filamentary material at intervals to discontinuous lengths means for feeding filamentary material to said cutting means, and means for varying the lengths of the filamentary material extending from the feeding means to the cutting means at successive instants of cutting.
  • means for cutting filamentary material at intervals to discontinuous lengths means for feeding filamentary material to said cutting means, and means for varying the rate of delivery of said filamentary material to said cutting means between successive instants of cutting.
  • means for cutting filamentary material at intervals to discontinuous lengths means for feeding said filamentary material to said cutting means, means for altering the path of said filamentary material between said feeding means and said cutting means between successive instants of cutting.
  • means for cutting filamentary material at intervals to discontinuous lengths means for feeding said filamentary material to said cutting means, a movable guide for said filamentary material between said feeding means and said cut- I ting means, and means for moving said guide to various positions to alter the lengths of filamentary material instantaneously held between said feeding means and said cutting means at successive instants of cutting.
  • means for cutting filamentary material at intervals to discontinuous lengths means for feeding said filamentary material to said cutting means, a movable guide for said filamentary material between said feeding means and saidcutting means, and means for imparting periodic motion to said guide such that a component of the motion is transverse to the path of said filamentary bundle.
  • V 6 In apparatus of the character described, means for cutting filamentary material at intervals to discontinuous lengths, means for feeding said filamentary material to said cutting means, two stationary guides for said filamentary material spaced apart and located betweensaid feeding means and said cutting means, and means extending between said stationary guides for varying the length of the path of the fila mentary material therebetween.
  • means for cutting filamentary material at intervals to discontinuous lengths means for feeding said filamentary material to said .cutting means, two stationary guides for said filamentary material spaced apart and located between said feeding means and said cutting means, a movable guide for said filamentary material between said stationary guides, and means for moving said guide into and out of alignment with said stationary guides.
  • means for cutting filamentary material at inter vals to discontinuous lengths means for feedin said filamentary material to said cutting means, two stationary guides for said filamentary material spaced apart and located between said cutting means and said feeding means, a movable guide for said filamentary material between said stationary guides, and means for imparting periodic motion to said guide such that one component of the motion is transverse to the line between said stationary guides.
  • means for cutting filamentary material at intervals to discontinuous lengths and means for varying the length of fibers severed from said filamentary material at successive instants of cutting.
  • means for cutting filamentary material at intervals to discontinuous lengths means for feeding filamentary material to said cutting means, and means for varying the lengths of the filamentary material presented by said feeding means to the cutting means at successive instants of cutting.
  • means for cutting filamentary material at intervals to discontinuous lengths means for feeding filamentary material tosaid cutting means, said feeding means comprising a positive feeding element, and means for varying the lengths of the filamentary material extending from the positive feeding element to the cutting means at successive instants of cutting.
  • means for cutting filamentary material at intervals to discontinuous lengths and means associated with said feeding means for altering the path of said filamentary material as it approaches said cutting means between successive instants of cutting.
  • means for cutting filamentary material at intervals to discontinuous lengths means comprising a positive feeding element for feeding said filamentary materials to said cutting means, a movable guide for said filamentary material between said positive feeding element and said cutting means, and means for moving said guide to various positions to alter the lengths of filamentary material instantaneously held between said feeding means and said cutting means at successive instants of cutting.
  • said feeding means comprising a positive feeding element for delivering said filamentary material at a constant rate, a movable guide for said filamentary materials between said positive feeding element and said cutting means, and means for imparting periodic motion to said guide such that a component of the motion is transverse to the path of said filamentary bundle.
  • means for cutting filamentary material at intervals to discontinuous lengths means for feeding said filamentary material to said cutting means, said feeding means comprising a positive feeding element for delivering said filamentary material at a constant rate, twostationary guides for said filamentary materials spaced apart and located between saidpositive feeding element and said cutting means, and means extending between said stationary guides for varying the length 'of the path of the filamentary material therebetween.

Description

J. E. SPALDING EI'AL 2,296,298
STAPLE FIBER CUTTER Filed Oct. 4, 1941 -Sept. 22,
E mWK wfi am MW n E W A Patented Sept. 22, 1942 PATENT OFFICE 2,296,298 STAPLE FIBER CUTTER John E. Spalding, Nitro, and Dan B. Wicker, Dunbar, W. Va, assignors to American Viscose Corporation, Wilmington; Del., a corporation of Delaware Application October 4, 1941, Serial No. 413,703
17 Claims.
This invention relates to an apparatus for cutting staple fibers to produce a product having a variety of lengths.
It has been generally accepted that textile fibers of similar or different character blend better during processing and produce a yarn of better uniformity if the fibers have a diversity of lengths. The optimum extent and distribution of such diversity differs according to the type of yarn or fabric which is to be produced and the textile system which is to be employed therefor. It is the object of this invention to provide an apparatus for facilitating, the production of staple fibers having a diversity of lengths, which apparatus may be controlled to produce mixtures of fibers having an indefinitely large number of combinations of staple lengths. Such distributions of lengths are conveniently represented by stable fiber diagrams, commonly referred to in the art as Baer diagrams." Further objects of the invention will be apparent from the drawing and description thereof hereinafter.
In the drawing, illustrating certain embodiments of the-invention,
Figure 1 shows an elevation of one embodiment, 1
Figure 2 shows an enlarged detail view of the crank mechanism of Figure 1, partially in cross section,
Figure 3 shows an elevation of a second embodiment of the invention, partially in cross section,
Figure 4, Figure 5, and Figure 6 show length distribution diagrams obtainable in accordance with the invention.
In'general, the invention involves a feeding means for positively delivering a tow or filamentary bundle at a fixed rate to a cutting device and the interposition of a device between the positive feeding means and the cutting means to alter the length of the filamentary material which is presented to the blades of the latter between successive instants of cutting.
In Figures 1 and 2, filamentary material 2 in the form of a bundle or tow is drawn about the drum 3 one or more times from which it is delivered at a constant rate, depending upon the speed of rotation of the drum, to the cutting means 4, which is shown in this figure as constituting the centrifugal disk 5 having the entrance 6 connected with the radial channel I therein and the knife 8.. While, only one knife is shown, the-frequency of cutting may be modifiedby substituting a plurality of knives around the disk periphery. Similarly other factors, such as 55 the speedof rotation of the centrifugal disk,
may be varied to obtain any desired cutting frequency.
In passing from the feeding drum 3 to the cutting device 4, the filamentary material passes through the eye 9 of a reciprocating rod l0 operated in guides H and I2 by the crank mechanism l3 linked to the other end of the reciprocating rod Ill by the member l4. The crank mechanism comprises a disk l5 mounted for rotation with the shaft l6 which is operated by means of bevel gears l1 and I8 connected with the motor l9 and variable speed gear box 20. The crank arm may be adjusted ,by loosening the nut 2i and sliding the stud bolt 22 and block 23 along the slot 24 and groove 25 respectively, and again clamping the stud bolt 22 in position at the desired distance from the center of the shaft Hi. The bolt may be'formed with the flange 26 to permit of clamping it in the desired position and to serve as a bearing for the face'of the end of the link member l4 pivoted upon the stud bolt.
In Figure 3, the feeding drum3 and reciproeating rod ill with its connections are arranged to cooperate with a modified form of cutting means 4. The cutter comprises a tube 21 having a head 8 in which a nozzle 29 is formed which may be supplied with compressed air for forcing the filamentary bundle through the tube. A rotary disk 30 provided with one or more cutting knives 3| (four being shown in Figure 3) cuts the filamentary material as it emerges from the tube.
In operation of the device, the feeding drum preferably rotates at constant speed thereby delivering the filamentary material at a constant rate. Similarly the centrifugal disk (referring to Figure l), rotates at a constant speed in a manner that would normally produce from filamentary material fed to it at a constant rate, fibers having substantially equal lengths. How ever, the function of the reciprocating rod is to vary the length of path of the filamentary material from the feeding drum to the entrance (and consequently. the exit) of the disk. Hence, by making the eye of the reciprocating rod occupy various positions at successive instants of cutting, the amount of filamentary material protruding from the centrifugal disk at successive instants of cutting dlifersand depends upon tne extent to whicntheleng'th of the path of the filamentary material hasbeen increased or decreased between successive instants of cutting. For example, should one instantof cutting coincide with the position of the guide eye which is in alignment with the shortest path of the filamentary material as it passes from the delivery drum to the entrance of the centrifugal disk, and should the following instant of cutting coincide with that position of the guide eye which produces maximum displacement from this shortest path, then a minimum staple length is obtained from the latter cut. Conversely, should one instant of cutting coincide with the guide eye position corresponding with the maximum displacement from the shortest path of the filamentary material and the successive instant coincide with the guide eye position which is in alignment with this shortest path, then a maximum staple length results from the latter cut.
The median staple length is regulated by bringing the speed of the feeding device and frequency of cuts into proper relationship. The maximum and minimum staple lengths are regulated by bringing the extent (amplitude) and periodicity of the motion of guide eye into proper relation with the frequency of cuts. The distribution among the variety of lengths is regulated by controlling the synchronization, or deviation therefrom, between the instants of cutting and the motion of the guide eye; also by regulating the nature of the motion of the guide eye as for example, simple harmonic motion or more complex motions obtainable by cams, linkages, etc.
For. a given median staple length there are an infinite number of combinations of extent and periodicity of motion of the guide eye which result in the same maximum and minimum length. However, the distribution is affected by the particular combination which is selected. The periodicity may or may not be synchronized with the frequency of cutting, as desired. If
' synchronization is employed, only a limited number of staple lengths, corresponding to the synchronized relationships, are produced; if synchronization is not employed fibers of substantially all lengths between minimum and maximum are obtained. When synchronization is not employed, the greater the frequency of the periodic motion of the guide eye, the larger the percentage of fibers at lengths near the maximum and minimum lengths; the less the frequency the larger the percentage of lengths near the median length.
To illustrate these relative difierences, reference may be had to Figures}, 5, and 6. In Figure 4 there is shown a distribution diagram of staple fiber produced with a relatively low frequency of the periodic motion of the guide eye,-
the motion not being synchronized with the instants of cutting. In Figure 5 there is shown -a distribution diagram of staple, fiber produced with a relatively high frequency of the guide eye motion, no synchronization being employed. In Figure 6 is shown a distribution diagram of a staple resultant from synchronizing the motion of the guide eye with that of the cutting means such that successive cuts come only at the instant of maximum displacement or the instant of minimum displacement of the path of the filamentary material passing from the feeding means to the cutting means. In these figures the vertical distances to the curve represent the length of fibers while equal distance along the horizontal axis of the diagram represents equal numbers of fibers. In addition to the examples cited, an indefinitely large number of combinations of lengths and distributions may be chtained by regulating the controlling variables described herewith.
To obtain further variations, adjustment may be made of the distance between the delivery drum and the entrance to the cutting means, which two points function generally as stationary guides between which the moving guide eye operates. Variation of this distance produces an effect corresponding to that resulting from variation in extent of the motion of the guide eye. If desired, fixed guides may be placed at any points on either side of the moving guide eye. Such an arrangement simplifies any calculations that may be desired to be made to predetermine the character of the distribution diagram of the product desired. If desired, there may be a multiplicity of fixed and moving guides for achieving particular distributions of staple length.
While preferred embodiments of the invention have been disclosed, the description is intended to be illustrative only, audit is to be understood that changes and variatiori'smay be made without departing from the spirit or scope of the invention as defined by the appended claims.
What we claim is: 1. In apparatus of the character described,
' means for cutting filamentary material at intervals to discontinuous lengths, means for feeding filamentary material to said cutting means, and means for varying the lengths of the filamentary material extending from the feeding means to the cutting means at successive instants of cutting.
2. In apparatus of the character described, means for cutting filamentary material at intervals to discontinuous lengths, means for feeding filamentary material to said cutting means, and means for varying the rate of delivery of said filamentary material to said cutting means between successive instants of cutting.
3. In apparatus of the character described, means for cutting filamentary material at intervals to discontinuous lengths, means for feeding said filamentary material to said cutting means, means for altering the path of said filamentary material between said feeding means and said cutting means between successive instants of cutting.
4. In apparatus of the character described, means for cutting filamentary material at intervals to discontinuous lengths, means for feeding said filamentary material to said cutting means, a movable guide for said filamentary material between said feeding means and said cut- I ting means, and means for moving said guide to various positions to alter the lengths of filamentary material instantaneously held between said feeding means and said cutting means at successive instants of cutting.
5. In apparatus of the character described, means for cutting filamentary material at intervals to discontinuous lengths, means for feeding said filamentary material to said cutting means, a movable guide for said filamentary material between said feeding means and saidcutting means, and means for imparting periodic motion to said guide such that a component of the motion is transverse to the path of said filamentary bundle.
V 6. In apparatus of the character described, means for cutting filamentary material at intervals to discontinuous lengths, means for feeding said filamentary material to said cutting means, two stationary guides for said filamentary material spaced apart and located betweensaid feeding means and said cutting means, and means extending between said stationary guides for varying the length of the path of the fila mentary material therebetween.
7. In apparatus of the character described, means for cutting filamentary material at intervals to discontinuous lengths, means for feeding said filamentary material to said .cutting means, two stationary guides for said filamentary material spaced apart and located between said feeding means and said cutting means, a movable guide for said filamentary material between said stationary guides, and means for moving said guide into and out of alignment with said stationary guides.
8. In apparatus of the character described, means for cutting filamentary material at inter vals to discontinuous lengths, means for feedin said filamentary material to said cutting means, two stationary guides for said filamentary material spaced apart and located between said cutting means and said feeding means, a movable guide for said filamentary material between said stationary guides, and means for imparting periodic motion to said guide such that one component of the motion is transverse to the line between said stationary guides.
9. In apparatus of the character described, means for cutting filamentary material at intervals to discontinuous lengths, and means for varying the length of fibers severed from said filamentary material at successive instants of cutting.
10. In apparatus of the character described, means for cutting filamentary material at intervals to discontinuous lengths, means for feeding filamentary material to said cutting means, and means for varying the lengths of the filamentary material presented by said feeding means to the cutting means at successive instants of cutting.
11. In apparatus of the character described.
means for cutting filamentary material at intervals to discontinuous lengths, means for feeding filamentary material tosaid cutting means, said feeding means comprising a positive feeding element, and means for varying the lengths of the filamentary material extending from the positive feeding element to the cutting means at successive instants of cutting.
12. In apparatus of the character described, means for cutting filamentary material at intervals to discontinuous lengths, and means associated with said feeding means for altering the path of said filamentary material as it approaches said cutting means between successive instants of cutting.
13. Inapparatus of the character described, means for cutting filamentary material at intervals to discontinuous lengths, means for feeding various positions to alter the lengths of filamentary material presented by said feeding means to said cutting means at successive instants of cutting.
14. In apparatus of the character described, means for cutting filamentary material at intervals to discontinuous lengths, means comprising a positive feeding element for feeding said filamentary materials to said cutting means, a movable guide for said filamentary material between said positive feeding element and said cutting means, and means for moving said guide to various positions to alter the lengths of filamentary material instantaneously held between said feeding means and said cutting means at successive instants of cutting.
15. In apparatus of the character described, means for cutting filamentary material at inter-. vals to discontinuous lengthsmeans for feeding said filamentary material to said cutting means,
said feeding means comprising a positive feeding element for delivering said filamentary material at a constant rate, a movable guide for said filamentary materials between said positive feeding element and said cutting means, and means for imparting periodic motion to said guide such that a component of the motion is transverse to the path of said filamentary bundle.
17. In apparatus of the character described, means for cutting filamentary material at intervals to discontinuous lengths, means for feeding said filamentary material to said cutting means, said feeding means comprising a positive feeding element for delivering said filamentary material at a constant rate, twostationary guides for said filamentary materials spaced apart and located between saidpositive feeding element and said cutting means, and means extending between said stationary guides for varying the length 'of the path of the filamentary material therebetween. 1
JOHN B. SPALDING. DAN B. WICKEB'.
US413703A 1941-10-04 1941-10-04 Staple fiber cutter Expired - Lifetime US2296298A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US413703A US2296298A (en) 1941-10-04 1941-10-04 Staple fiber cutter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US413703A US2296298A (en) 1941-10-04 1941-10-04 Staple fiber cutter

Publications (1)

Publication Number Publication Date
US2296298A true US2296298A (en) 1942-09-22

Family

ID=23638277

Family Applications (1)

Application Number Title Priority Date Filing Date
US413703A Expired - Lifetime US2296298A (en) 1941-10-04 1941-10-04 Staple fiber cutter

Country Status (1)

Country Link
US (1) US2296298A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2559700A (en) * 1946-09-07 1951-07-10 American Viscose Corp Fiber cutter
US2599148A (en) * 1948-04-27 1952-06-03 Pacific Mills Apparatus for cutting fibers
US2630173A (en) * 1948-06-05 1953-03-03 Custom Scient Instr Inc Method and apparatus for cutting materials
US2703172A (en) * 1951-02-28 1955-03-01 American Viscose Corp Variable feeder for staple cutters
US2808884A (en) * 1954-04-05 1957-10-08 Pacific Mills Apparatus for producing staple fibers from continuous strands of textile fibers
US2982163A (en) * 1957-05-08 1961-05-02 Chemstrand Corp Staple fiber cutter with means to vary lengths of fibers
US3217578A (en) * 1962-11-30 1965-11-16 Monsanto Co Beria cutter with tow straightened by air currents
US3977069A (en) * 1974-12-18 1976-08-31 Brunswick Corporation Process and apparatus for production of precision cut lengths of metal wires and fibers
US3978751A (en) * 1974-10-09 1976-09-07 Farmer Earl T Apparatus for cutting fibrous tow into staple
US20060132517A1 (en) * 2004-12-17 2006-06-22 Vinas Santiago G Printing system and method of printing an image in a fixed head printing system

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2559700A (en) * 1946-09-07 1951-07-10 American Viscose Corp Fiber cutter
US2599148A (en) * 1948-04-27 1952-06-03 Pacific Mills Apparatus for cutting fibers
US2630173A (en) * 1948-06-05 1953-03-03 Custom Scient Instr Inc Method and apparatus for cutting materials
US2703172A (en) * 1951-02-28 1955-03-01 American Viscose Corp Variable feeder for staple cutters
US2808884A (en) * 1954-04-05 1957-10-08 Pacific Mills Apparatus for producing staple fibers from continuous strands of textile fibers
US2982163A (en) * 1957-05-08 1961-05-02 Chemstrand Corp Staple fiber cutter with means to vary lengths of fibers
US3217578A (en) * 1962-11-30 1965-11-16 Monsanto Co Beria cutter with tow straightened by air currents
US3978751A (en) * 1974-10-09 1976-09-07 Farmer Earl T Apparatus for cutting fibrous tow into staple
US3977069A (en) * 1974-12-18 1976-08-31 Brunswick Corporation Process and apparatus for production of precision cut lengths of metal wires and fibers
US20060132517A1 (en) * 2004-12-17 2006-06-22 Vinas Santiago G Printing system and method of printing an image in a fixed head printing system
US7350892B2 (en) 2004-12-17 2008-04-01 Hewlett-Packard Development Company, L.P. Printing system and method of printing an image in a fixed head printing system

Similar Documents

Publication Publication Date Title
US2296298A (en) Staple fiber cutter
US3915042A (en) Random length cutter
US3334533A (en) Staple fiber cutting mechanism
US1978826A (en) Apparatus for handling textile yarns
US2931090A (en) Textile apparatus
US2110371A (en) Product and process for the manufacture thereof
US2234330A (en) Method of producing extensible slivers or rovings and means therefor
US2096080A (en) Process and apparatus for the production of textile materials
US2260383A (en) Apparatus for producing slivers
US4006277A (en) Random length cutter
US2296253A (en) Staple fiber cutting mechanism
US3164047A (en) Method of cutting filament tow and conveying the slivers away
US2982163A (en) Staple fiber cutter with means to vary lengths of fibers
US3430428A (en) Apparatus for cutting a running yarn in a centrifugal type spinning machine
US2570466A (en) Staple cutter
US2213793A (en) Method of making yarn
US2231497A (en) Apparatus for producing a continuous sliver composed of rayon staple fibers from endless rayon filaments
US2099215A (en) Producing hairy baton yarn
US2598086A (en) Method and apparatus for producing staple fiber yarn
US2296252A (en) Staple fiber cutting mechanism
US4237685A (en) Apparatus for producing a yarn
GB1010729A (en) Improvements in or relating to the production of staple fibre from continuous filaments
US2296297A (en) Staple fiber cutter
US3490397A (en) Hair-inserting apparatus
US2305692A (en) Apparatus foe stabilizing tarn