US2288803A - Metal treating - Google Patents

Metal treating Download PDF

Info

Publication number
US2288803A
US2288803A US414452A US41445241A US2288803A US 2288803 A US2288803 A US 2288803A US 414452 A US414452 A US 414452A US 41445241 A US41445241 A US 41445241A US 2288803 A US2288803 A US 2288803A
Authority
US
United States
Prior art keywords
metal
quenching
liquid
treating zone
zone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US414452A
Inventor
Happel John
Wayne A Howard
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ExxonMobil Oil Corp
Original Assignee
Socony Vacuum Oil Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Socony Vacuum Oil Co Inc filed Critical Socony Vacuum Oil Co Inc
Priority to US414452A priority Critical patent/US2288803A/en
Application granted granted Critical
Publication of US2288803A publication Critical patent/US2288803A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/56General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering characterised by the quenching agents
    • C21D1/613Gases; Liquefied or solidified normally gaseous material

Definitions

  • metals tend to oxidize in the presence of air and other oxygen containing mixtures and compounds wherein the oxygen is available for reaction with the metala This problem is found in connection with all heat treating operations wherein a bright surface is desirable and is particularly acute in connection with continuous bright annealing of strip metals.
  • Water and mineral oils have been used for quenching, but in many instances, as in handling strip metals, both are unsatisfactory. Water is highly objectionable because it tends to cause formation of an oxide film, while oils normally used are of such characteristics that obiectionably heavy deposits thereof are left on the metal and such oils have a tendency to decompose and deposit carbonaceous matter difficult to remove on metal being treated.
  • the oils are also ineilicient because of their low capacityto take up heat and they therefore do not permit rapid operation.
  • the present invention contemplates overcoming these diiliculties by provision of a quenching method involving spraying onto the surface of the metal a liquid hydrocarbon or other inert liquid, preferably organic, which is substantially inert to the metal and which will evaporate at a temperature below that to which the metal'is to be quenched;
  • a quenching method involving spraying onto the surface of the metal a liquid hydrocarbon or other inert liquid, preferably organic, which is substantially inert to the metal and which will evaporate at a temperature below that to which the metal'is to be quenched;
  • the liquid to be sprayed should ment of, metals on which a bright finish is desired.
  • quenching media furnish another important advantage in that they may be utilized as vehicles for carrying to and depositing on the metal any desired protective material such as mineral oil, pine oil or a slushingcompound to provide a residual film protecting the metal against rusting or discoloration or to assist in further processing such as drawing stamping and the like.
  • any desired protective material such as mineral oil, pine oil or a slushingcompound to provide a residual film protecting the metal against rusting or discoloration or to assist in further processing such as drawing stamping and the like.
  • the preferred quenching media according to this invention are low boiling saturated hydrocarbons.
  • pentane is an excellent agent because of several factors. It has a very ⁇ low boiling point, resulting in rapid evaporation and immediate cooling whereforethe calculated cooling effect is promptly achieved and the process is therefore very responsive to control.
  • This compound is readily available at oil refineries as a by-product of relatively small utility and low cost.
  • the strip is continuously passed at the rate of one thousand feet per minute through a chamber fifteen feet in length. Entry temperature of the strip is about 450 F. and the metal is to be cooled to 200 F. before leaving the treating zone.
  • liquid pentane at 100 F. is sprayed on the metal at the rate of 19,000 pounds per hour and pentane vapors at approximately 100 Fi'are withdrawn.
  • the hydrocarbon quenching medium in this case absorbs 2,900,000 B. t. u.
  • the quenching liquid is supplied at such rate as to vaporize to a sub-- stantially complete extent in 'performing the desired cooling.
  • the vapors of the quenching medium because of their inert character provide an atmosphere peculiarly suited to treatmetal almost wholly by taking up latent heat of vaporization.
  • liquid propane is also useful. It is easily liquefied and expands to 37 cubic feet of gas at standard conditions per gallon of liquid, insuring an adequate blanket of a reducing atmosphere about the metal under treatment.
  • the latent heat of vaporization of propane is B. t. u. per pound, providing adequate capacity for cooling in a relatively small treating zone at a rapid rate.
  • the commercial grades of pentane, butane, propane and other similar light hydrocarbons are iree of materials such as sulphur which are capable of discoloring' or otherwise impairing the appearance of the metal surface and are readily available in adequate quantities.
  • the quenching medium should be of such properties that it will not recondense in the treating zone, but it is contemplated that the same may be withdrawn from that zone, cooled and compressed to liquefy it and recycled to the treating zone, with addition of such surface protective agents as may be desired.
  • light aliphatic hydrocarbons are excellent solvents for the mineral lubricating oils which may be desirably left on the surface of the metal as protective agents or aids in further processing. Slushing compounds or other agents not soluble in the quenching medium may be suspended in th quenching medium without substantial difficulty. These aliphatic compounds are very refractory and are thermally decomposed only at extremely high temperatures on the order of those greatly above temperatures at which quenching is employed.
  • a process of quenching hot metal to a desired temperature which comprises spraying liquid pentane on said metal within a treating zone, and effecting exclusion from said treating zone of gaseous material other than that from evaporation of said pentane.
  • a process of quenching hot metal to a desired temperature which comprises spraying on said metal within a treating zone liquid pentane containing a protective agent for said metal, and efiecting exclusion from said treating zone of gaseous material other than that from evaporation of said pentane.
  • a process of quenching hot metal. to' a desired temperature which comprises spraying liquid propane on said metal within a treating zone, and effecting exclusion from said treating zone of gaseous material other than that from evaporation of said propane.
  • a process of quenching hot metal. to a defaaeaeos sired temperature which comprises spraying on said metal within a treating zone liquid propane containing a protective agent for said metal, and effecting exclusion from saidtreating zone of gaseous material other than that from evaporation of said propane.
  • a process of quenching hot metal to a desired temperature which comprises spraying on said metal within a treating zone a hydrocarbon liquid inert thereto and having a boiling point below said desired temperature, and effecting exclusion from said treating zone of gaseous material other than that from evaporation of said liquid.
  • a process of quenching hot metal to a desired temperature which comprises spraying on said metal within a treating zone a quenching liquid inert thereto and having a boiling point below said desired temperature, and effecting exclusion from said treating zone of gaseous material other than that from evaporation of said liquid.
  • a process of quenching hot metal toa desired temperature which comprises applying to said metal within a treating zone a liquid hydrocarbon inert thereto and having a boiling point below said desired temperature and efiecting exclusion from said treating zone of gaseous material other than that from evaporation of said liquid hydrocarbon.
  • a process of quenching hot metal to a desired temperature which comprises applying to said metal within a treating zone a quenching liquid inert thereto and having a boiling point below said desired temperature, efiecting exclusion from said treating zone of gaseous material other than that from evaporation of said liquid, withdrawing vapors of said liquid from said zone, condensing the withdrawn vapors and recycling the condensate to said zone and again applying it to said metal.

Description

Patented July 7, 1942 UNITED STATES PATENT OFFICER METAL TREATING John Happel, Brooklyn, and Wayne A. Howard, Manhasset, N. Y., assignors to Socony-Vacuum Oil Company, Incorporated,New York, N. Y., a corporation of New York No Drawing. Application October 10, 1941, Serial No. 414,452
8 Claims.
result. At the high temperatures employed;
metals tend to oxidize in the presence of air and other oxygen containing mixtures and compounds wherein the oxygen is available for reaction with the metala This problem is found in connection with all heat treating operations wherein a bright surface is desirable and is particularly acute in connection with continuous bright annealing of strip metals.
Water and mineral oils have been used for quenching, but in many instances, as in handling strip metals, both are unsatisfactory. Water is highly objectionable because it tends to cause formation of an oxide film, while oils normally used are of such characteristics that obiectionably heavy deposits thereof are left on the metal and such oils have a tendency to decompose and deposit carbonaceous matter difficult to remove on metal being treated. The oils are also ineilicient because of their low capacityto take up heat and they therefore do not permit rapid operation.
The present invention contemplates overcoming these diiliculties by provision of a quenching method involving spraying onto the surface of the metal a liquid hydrocarbon or other inert liquid, preferably organic, which is substantially inert to the metal and which will evaporate at a temperature below that to which the metal'is to be quenched; The liquid to be sprayed should ment of, metals on which a bright finish is desired.
These quenching media furnish another important advantage in that they may be utilized as vehicles for carrying to and depositing on the metal any desired protective material such as mineral oil, pine oil or a slushingcompound to provide a residual film protecting the metal against rusting or discoloration or to assist in further processing such as drawing stamping and the like.
The preferred quenching media according to this invention are low boiling saturated hydrocarbons. Among these, pentane is an excellent agent because of several factors. It has a very\ low boiling point, resulting in rapid evaporation and immediate cooling whereforethe calculated cooling effect is promptly achieved and the process is therefore very responsive to control. This compound is readily available at oil refineries as a by-product of relatively small utility and low cost.
In applying the invention to quenching of three-foot wide tin-plated steel strip according to one embodiment of the invention, the strip is continuously passed at the rate of one thousand feet per minute through a chamber fifteen feet in length. Entry temperature of the strip is about 450 F. and the metal is to be cooled to 200 F. before leaving the treating zone. For that purpose, liquid pentane at 100 F. is sprayed on the metal at the rate of 19,000 pounds per hour and pentane vapors at approximately 100 Fi'are withdrawn. The hydrocarbon quenching medium in this case absorbs 2,900,000 B. t. u.
, per hour, providing adequate cooling of the also be refractory, that is, highly resistant to decomposition at the temperatures prevailing in the treating zone. In this manner advantage is taken of the latent heat of vaporization of the quenching medium. which is much greater than the specific heat. Further, very accurate control of the quenching operation is possible by regulation of the quantity of quenching medium supplied. Preferably the quenching liquid is supplied at such rate as to vaporize to a sub-- stantially complete extent in 'performing the desired cooling. The vapors of the quenching medium, because of their inert character provide an atmosphere peculiarly suited to treatmetal almost wholly by taking up latent heat of vaporization.
Other light hydrocarbons and the like may be utilized, the system being adjusted to the properties of the quenching medium employed. For example, liquid propane is also useful. It is easily liquefied and expands to 37 cubic feet of gas at standard conditions per gallon of liquid, insuring an adequate blanket of a reducing atmosphere about the metal under treatment. The latent heat of vaporization of propane is B. t. u. per pound, providing adequate capacity for cooling in a relatively small treating zone at a rapid rate. The commercial grades of pentane, butane, propane and other similar light hydrocarbons, are iree of materials such as sulphur which are capable of discoloring' or otherwise impairing the appearance of the metal surface and are readily available in adequate quantities.
The quenching medium should be of such properties that it will not recondense in the treating zone, but it is contemplated that the same may be withdrawn from that zone, cooled and compressed to liquefy it and recycled to the treating zone, with addition of such surface protective agents as may be desired.
One important advantage of light aliphatic hydrocarbons is that they are excellent solvents for the mineral lubricating oils which may be desirably left on the surface of the metal as protective agents or aids in further processing. Slushing compounds or other agents not soluble in the quenching medium may be suspended in th quenching medium without substantial difficulty. These aliphatic compounds are very refractory and are thermally decomposed only at extremely high temperatures on the order of those greatly above temperatures at which quenching is employed.
We claim:
1. A process of quenching hot metal to a desired temperature which comprises spraying liquid pentane on said metal within a treating zone, and effecting exclusion from said treating zone of gaseous material other than that from evaporation of said pentane.
2. A process of quenching hot metal to a desired temperature which comprises spraying on said metal within a treating zone liquid pentane containing a protective agent for said metal, and efiecting exclusion from said treating zone of gaseous material other than that from evaporation of said pentane.
3. A process of quenching hot metal. to' a desired temperature which comprises spraying liquid propane on said metal within a treating zone, and effecting exclusion from said treating zone of gaseous material other than that from evaporation of said propane.
4. A process of quenching hot metal. to a defaaeaeos sired temperature which comprises spraying on said metal within a treating zone liquid propane containing a protective agent for said metal, and effecting exclusion from saidtreating zone of gaseous material other than that from evaporation of said propane. v
5. A process of quenching hot metal to a desired temperature which comprises spraying on said metal within a treating zone a hydrocarbon liquid inert thereto and having a boiling point below said desired temperature, and effecting exclusion from said treating zone of gaseous material other than that from evaporation of said liquid.
6. A process of quenching hot metal to a desired temperature which comprises spraying on said metal within a treating zone a quenching liquid inert thereto and having a boiling point below said desired temperature, and effecting exclusion from said treating zone of gaseous material other than that from evaporation of said liquid.
l. A process of quenching hot metal toa desired temperature which comprises applying to said metal within a treating zone a liquid hydrocarbon inert thereto and having a boiling point below said desired temperature and efiecting exclusion from said treating zone of gaseous material other than that from evaporation of said liquid hydrocarbon.
8. A process of quenching hot metal to a desired temperature which comprises applying to said metal within a treating zone a quenching liquid inert thereto and having a boiling point below said desired temperature, efiecting exclusion from said treating zone of gaseous material other than that from evaporation of said liquid, withdrawing vapors of said liquid from said zone, condensing the withdrawn vapors and recycling the condensate to said zone and again applying it to said metal.
JOHN HAPPEL. WAYNE A. HOWARD.
US414452A 1941-10-10 1941-10-10 Metal treating Expired - Lifetime US2288803A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US414452A US2288803A (en) 1941-10-10 1941-10-10 Metal treating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US414452A US2288803A (en) 1941-10-10 1941-10-10 Metal treating

Publications (1)

Publication Number Publication Date
US2288803A true US2288803A (en) 1942-07-07

Family

ID=23641506

Family Applications (1)

Application Number Title Priority Date Filing Date
US414452A Expired - Lifetime US2288803A (en) 1941-10-10 1941-10-10 Metal treating

Country Status (1)

Country Link
US (1) US2288803A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1050592A1 (en) * 1999-05-03 2000-11-08 Linde Technische Gase GmbH Process of heat treating metal workpieces

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1050592A1 (en) * 1999-05-03 2000-11-08 Linde Technische Gase GmbH Process of heat treating metal workpieces

Similar Documents

Publication Publication Date Title
US2371645A (en) Degreasing process
US3553101A (en) Prevention of corrosion using heterocyclic nitrogen compounds
US2288803A (en) Metal treating
US2836513A (en) Chromizing, adhering coating
US2944969A (en) Prevention of rust and corrosion
US2418088A (en) Heat-treatment of electroplated strip metal
US3114702A (en) Corrosion inhibition
US3761243A (en) Method of quenching slag
US2529188A (en) Lubricating metal surfaces during cold-working
US3676327A (en) Inhibition of corrosion by hydrotreater effluent
US2463077A (en) Process for treating hydrocarbon mixtures to remove halogens therefrom
US2755166A (en) Method of reducing vapor zone corrosion
GB1014383A (en) Hard metal deposits
US3449144A (en) Method of aluminum plating with diethylaluminum hydride
US2436494A (en) Method for treating a hydrocarbon feed stock with a solution of toluene sulphonic acid and sodium meta arsenite
US1959714A (en) Vacuum distillation of liquids
KR930003595B1 (en) Protective atmosphere process for a annealing and/or hardening ferrous metals
US1398960A (en) Distillation of sulfur
NO116671B (en)
US2927080A (en) Corrosion inhibitor
US3000756A (en) Hot dip aluminum coating
US1456252A (en) Process of coating metals with metal phosphides
US3539514A (en) Corrosion inhibitor and lubricant
US2756120A (en) Process and sheet packaging material for inhibiting corrosion
Guseinova et al. Development of a Pyrophoric Deposit Deactivator Based on Caustic Waste from the Naphthenic Acid–Removing Treatment of Oil Fractions