US2273447A - Unidirective energy radiating system - Google Patents

Unidirective energy radiating system Download PDF

Info

Publication number
US2273447A
US2273447A US293704A US29370439A US2273447A US 2273447 A US2273447 A US 2273447A US 293704 A US293704 A US 293704A US 29370439 A US29370439 A US 29370439A US 2273447 A US2273447 A US 2273447A
Authority
US
United States
Prior art keywords
lens
reflector
energy
rays
unidirective
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US293704A
Inventor
Russell S Ohl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AT&T Corp
Original Assignee
Bell Telephone Laboratories Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bell Telephone Laboratories Inc filed Critical Bell Telephone Laboratories Inc
Priority to US293704A priority Critical patent/US2273447A/en
Priority to FR868507D priority patent/FR868507A/en
Application granted granted Critical
Publication of US2273447A publication Critical patent/US2273447A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/06Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using refracting or diffracting devices, e.g. lens
    • H01Q19/08Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using refracting or diffracting devices, e.g. lens for modifying the radiation pattern of a radiating horn in which it is located

Definitions

  • This invention relates to an improved system for obtaining unidirective radiation 'of energy.
  • a principal object of the invention is the provision of systems for the production of radiant energy beams in which the component rays are substantially parallel.
  • a further object is the production of a beam of parallel energy rays having an equiphase wave front.
  • Reflectorsl and lens systems have long been used to obtain approximately unidirectional radiation of light from a given source.
  • Analogous systems have been proposed for use with ultrashort wave Lradio systems and other systems einploying radiant energy of short wave-length. ⁇ In an ideal system the source of radiant energy would be a dimensionless point. systems this source obviously valways has finite,
  • the angle of divergence of the beam when using a lens alone can for relatively narrow beams be found from the equation sin a from the beam may be, made small by making F also relatively large.
  • F since the A source must be located at the focal point of the lens, as F is increased the distance of the source from the lens is correspondingly increased and the angle subtended by the lens with respect to the radiation source is decreased. It becomes desirable, therefore, to supplement the lens by a reflecting member.
  • the system of this invention comprises in its simplest form the combinationA of a cylindrical member through which radiant energy may be transmitted, a parabolic reflector and a lens.
  • the emitting end of the cylindrical member is positioned concentrically in the'normal focal plane of the reflector and the lens is placed concentrically within the reflector and normal to its longitudinal axis. lis 4made coincident with that of the reflector.
  • Phase adjustment of the rays passing'through the lens may be effected by uniformly increasing the effective thickness of the lens or by adding av member of suitable material on either side of the lens to produce the desired phase adjustment of rays'passing through the lens.
  • Fig. l illustrates a preferred embodiment of the combination of the invention in diagrammatic cross-sectional form
  • Fig. 2 shows in perspective the combination of Fig. l with the reflector Ill partly broken away to show the method of assembly of the tube and lens within it.
  • member 6 has a cylindrical passage l through its center and the end surface 8 of member 6 is made coincident with the normal focal plane of parabolic reflector I0, i. e., the plane normal to the longitudinal axis 20 of reflector I which contains the focal point of reflector IIJ.
  • a lens I2 is supported by members' I4. concentrically within reflector I0 and The focal point ofl lens I 2- ⁇ normal to axis 20. is made coincident with that of reflector I0;
  • Members I4 should preferably be constructed of material which will freely transmit the energy to be radiated..
  • a disc of material I I' may be added to the left of lens I2 or the lens itself may be uniformly increased in thickness.
  • FIG. 2 an arrangement of structure substantially as described in connection with Fig. 1 is shown in perspective.
  • reflector I0 is partly broken away to show the method of assembling lens I2, phase adjusting member II and member 6 in the combination.
  • the minimum dimensions for a system of this invention should be determined, as mentioned above, in terms of the wave-length of the energy it is desired to radiate.
  • a lens at least 20 centimeters in diameter should preferably be employed.
  • the passage 'I through member 6 should be approximately 3.3 centimeters in diameter
  • the axial length of reflector II) from the focal plane 8 to the right end thereof should be approximately centimeters
  • Means for producing a unidirective beam of ultra-high frequency radio wave energy comprising a cylindrical wave guide having an internal diameter approximately 0.7 times the wave-length of the energy to be used, a paraboloid reflector having a diameter at its normal focal plane which is large with respect to the internal diameter of the said wave guide, a focusing lens having a diameter substantially equal to the diameter of said reflector at its normal focal plane, said reflector being truncated through its normal focal plane, said wave guide, said reflector and said lens being coaxially aligned, the lens being within the reflector and positioned to have its focal point coincident with the focal point of said reflector, said wave guide being without the reflector, its nearer end lying in the normal focal plane of said reflector.
  • the diameter of the lens being at least four times the Wavelength of the energy to be used.

Description

Y UIDIRECTIVE ENERGY RADIATING SYSTEM Filed Sept. 7, 1939 Ffa; 2v
. /NVE/VTOR By 5. OHL
2% @W v ATTORNEY Patented Feb. 17, 1942' UNIDIRECTIVE ENE srs Bell Telephone Laboratories,
RGY RADIATING TEM `Russell S. Ohl, Little Silver, N. J., assigner to Incorporated,
New York, N. Y., a corporation of New York Application September 7, 1939, Serial No. 293,704
3 Claims.
This invention relates to an improved system for obtaining unidirective radiation 'of energy.-
More particularly, it relates to a novel combination of reflector, lens and radiating means associated toy produce a beam of parallel energy rays and to minimize divergence of energy therefrom.
A principal object of the invention is the provision of systems for the production of radiant energy beams in which the component rays are substantially parallel. A further object is the production of a beam of parallel energy rays having an equiphase wave front. Other objects will become apparent during the following description and in the appended claims.
Reflectorsl and lens systems have long been used to obtain approximately unidirectional radiation of light from a given source. Analogous systems have been proposed for use with ultrashort wave Lradio systems and other systems einploying radiant energy of short wave-length. `In an ideal system the source of radiant energy would be a dimensionless point. systems this source obviously valways has finite,
and frequently has substantial, dimensions. The
greater the dimensions of the source the greater will be the tendency toward the divergence of energy' from a true unidirectional beam.
The angle of divergence of the beam when using a lens alone can for relatively narrow beams be found from the equation sin a from the beam may be, made small by making F also relatively large. However, since the A source must be located at the focal point of the lens, as F is increased the distance of the source from the lens is correspondingly increased and the angle subtended by the lens with respect to the radiation source is decreased. It becomes desirable, therefore, to supplement the lens by a reflecting member. radiating source, in so far as practical considerations permit, it is also convenient and desirable to introduce the energy into the system of this invention through a cylindrical member, as will In practical the lens into phase with rays directed into the beam by the reflector so that an equiphase wave front is obtained.` As an alternative to increasing the lens thickness for the purpose of adjusting the phase, a simple disc of material suitably changing the phase of rays which pass through the lens may be used. The use of materials for adjusting the phase of energy rays is well known in the art.
In accordance with the above desiderata the system of this invention comprises in its simplest form the combinationA of a cylindrical member through which radiant energy may be transmitted, a parabolic reflector and a lens. The emitting end of the cylindrical member is positioned concentrically in the'normal focal plane of the reflector and the lens is placed concentrically within the reflector and normal to its longitudinal axis. lis 4made coincident with that of the reflector.
Phase adjustment of the rays passing'through the lens may be effected by uniformly increasing the effective thickness of the lens or by adding av member of suitable material on either side of the lens to produce the desired phase adjustment of rays'passing through the lens.
For many practical uses a truncated conical reflector approximating the dimensions of the parabolic reflector can be substituted for the truly parabolic reflector Withoutgreatly increasing the divergence of energy from the beam.`
For a system'of reasonable physical dimensions the wave-length of the radiant energy must, of course, be relatively very short.'
Further, when a lens is employed two effects are operative to produce a beam of parallel rays, namely, refraction and diffraction. Diffraction is objectionable in that it produces some divergence of the beam. However, if the diameter of the lens exceeds four times the wave-length of the radiated energy, refraction becomes almost completely dominant and the absolute sharpness of the beam (absence of divergence) is then de- To reduce the area of the appear more fully below. As a further renement the 'thickness of the lens is increased as may be required to bring the rays passing through termined largely by the focal distance as indicated in Equation 1 above.
The principles of the invention will be more apparent when considered in connection with the accompanying drawing, in which:
Fig. l illustrates a preferred embodiment of the combination of the invention in diagrammatic cross-sectional form; and
Fig. 2 shows in perspective the combination of Fig. l with the reflector Ill partly broken away to show the method of assembly of the tube and lens within it.
The focal point of the lens.v
In more detail ink Fig. 1, member 6 has a cylindrical passage l through its center and the end surface 8 of member 6 is made coincident with the normal focal plane of parabolic reflector I0, i. e., the plane normal to the longitudinal axis 20 of reflector I which contains the focal point of reflector IIJ. A lens I2 is supported by members' I4. concentrically within reflector I0 and The focal point ofl lens I 2-` normal to axis 20. is made coincident with that of reflector I0; Members I4 should preferably be constructed of material which will freely transmit the energy to be radiated..
For the purpose of adjusting the phase of energy rays passing through lens I2 so that they Will form an equiphase wave front with rays reflected by reflector I0, a disc of material I I', its edge being suitably beveled as indicated, may be added to the left of lens I2 or the lens itself may be uniformly increased in thickness.
yRays of energyremanating from the right end of passage 'l if within the angle subtended by lens I2, as limited by rays 22 and 24 of Fig. 1 which just miss the lens, will be focussed as illustrated by ray 26 by the lens I2 in a beam of rays parallel with axis 20. Rays not within the angle so subtended, for example rays 22, 24, 28r and 30 of Fig. 1, will strike reflector I0 and will be reflected parallel to axis 20. They Will, because of the arrangement of the invention, miss lens I2 and will form with the rays' passing through lens I2 a wave front of rays all directed parallel to axis 20. By the insertion of an appropriate phase adjusting member, such as member II of Fig. l, or by increasing the thickness of lens I2 suitably, an equiphase wave front is obtained.
In Fig. 2 an arrangement of structure substantially as described in connection with Fig. 1 is shown in perspective. In Fig. 2 reflector I0 is partly broken away to show the method of assembling lens I2, phase adjusting member II and member 6 in the combination.
The minimum dimensions for a system of this invention should be determined, as mentioned above, in terms of the wave-length of the energy it is desired to radiate. For example, for a radio system employing waves 5 centimeters long a lens at least 20 centimeters in diameter should preferably be employed. For such a system the passage 'I through member 6 should be approximately 3.3 centimeters in diameter, the axial length of reflector II) from the focal plane 8 to the right end thereof should be approximately centimeters and the focal length of `lens I2 should be at least 38 centimeters for an angle of divergence of a=5 degrees.
In general, the larger the dimensions employed, all elements of the combination being in proper proportion, the less the divergence of energy from the beam.
Other embodiments of the principles of the invention will occur to those skilled in the art. The scope of the invention is defined in the following claims.
What is claimed is:
l. Means for producing a unidirective beam of ultra-high frequency radio wave energy comprising a cylindrical wave guide having an internal diameter approximately 0.7 times the wave-length of the energy to be used, a paraboloid reflector having a diameter at its normal focal plane which is large with respect to the internal diameter of the said wave guide, a focusing lens having a diameter substantially equal to the diameter of said reflector at its normal focal plane, said reflector being truncated through its normal focal plane, said wave guide, said reflector and said lens being coaxially aligned, the lens being within the reflector and positioned to have its focal point coincident with the focal point of said reflector, said wave guide being without the reflector, its nearer end lying in the normal focal plane of said reflector.
2. The arrangement of claim l, the diameter of the lens being at least four times the Wavelength of the energy to be used.
3. The arrangement of claim 1, the focal length of said lens being at least 7.6 times the wavelength of the energy to be used.
RUSSELL S. OHL.
US293704A 1939-09-07 1939-09-07 Unidirective energy radiating system Expired - Lifetime US2273447A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US293704A US2273447A (en) 1939-09-07 1939-09-07 Unidirective energy radiating system
FR868507D FR868507A (en) 1939-09-07 1940-12-28 Ultra-high frequency electro-magnetic wave transmission systems

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US293704A US2273447A (en) 1939-09-07 1939-09-07 Unidirective energy radiating system

Publications (1)

Publication Number Publication Date
US2273447A true US2273447A (en) 1942-02-17

Family

ID=23130197

Family Applications (1)

Application Number Title Priority Date Filing Date
US293704A Expired - Lifetime US2273447A (en) 1939-09-07 1939-09-07 Unidirective energy radiating system

Country Status (2)

Country Link
US (1) US2273447A (en)
FR (1) FR868507A (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2415352A (en) * 1944-04-22 1947-02-04 Rca Corp Lens for radio-frequency waves
US2433368A (en) * 1942-03-31 1947-12-30 Sperry Gyroscope Co Inc Wave guide construction
US2468751A (en) * 1942-01-16 1949-05-03 Sperry Corp Object detecting and locating system
US2524292A (en) * 1944-04-18 1950-10-03 Rca Corp Radio vision system with high-speed scanner for short radio waves
US2547416A (en) * 1946-12-19 1951-04-03 Bell Telephone Labor Inc Dielectric lens
US2556087A (en) * 1948-02-27 1951-06-05 Rca Corp Directive antenna system
US2576181A (en) * 1947-10-28 1951-11-27 Rca Corp Focusing device for centimeter waves
US2588610A (en) * 1946-06-07 1952-03-11 Philco Corp Directional antenna system
US2599864A (en) * 1945-06-20 1952-06-10 Robertson-Shersby-Ha Rob Bruce Wave front modifying wave guide system
US2603749A (en) * 1946-04-08 1952-07-15 Bell Telephone Labor Inc Directive antenna system
US2669657A (en) * 1949-11-19 1954-02-16 Bell Telephone Labor Inc Electromagnetic lens
US2736894A (en) * 1946-01-22 1956-02-28 Bell Telephone Labor Inc Directive antenna systems
US2811719A (en) * 1953-04-28 1957-10-29 Henry W Wallace Double-universal nod mechanism
US2825062A (en) * 1945-07-09 1958-02-25 Chu Lan Jen Antenna
US3164724A (en) * 1946-09-07 1965-01-05 Charles B Aiken Scanning apparatus for detecting a radiant energy source
US3473013A (en) * 1967-10-02 1969-10-14 Polaroid Corp Polarized light projecting assembly
US3539798A (en) * 1967-07-18 1970-11-10 Donald M Perry Shadowless projection systems
US3541323A (en) * 1968-05-16 1970-11-17 Eg & G Inc Laser beam projector
US4878059A (en) * 1983-08-19 1989-10-31 Spatial Communications, Inc. Farfield/nearfield transmission/reception antenna
WO1991015879A1 (en) * 1990-04-06 1991-10-17 Microbeam Corporation Electromagnetic antenna collimator

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1312138C (en) * 1988-01-11 1992-12-29 Microbeam Corporation Multimode-dielectric-loaded multi-flare antenna

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2468751A (en) * 1942-01-16 1949-05-03 Sperry Corp Object detecting and locating system
US2433368A (en) * 1942-03-31 1947-12-30 Sperry Gyroscope Co Inc Wave guide construction
US2524292A (en) * 1944-04-18 1950-10-03 Rca Corp Radio vision system with high-speed scanner for short radio waves
US2415352A (en) * 1944-04-22 1947-02-04 Rca Corp Lens for radio-frequency waves
US2599864A (en) * 1945-06-20 1952-06-10 Robertson-Shersby-Ha Rob Bruce Wave front modifying wave guide system
US2825062A (en) * 1945-07-09 1958-02-25 Chu Lan Jen Antenna
US2736894A (en) * 1946-01-22 1956-02-28 Bell Telephone Labor Inc Directive antenna systems
US2603749A (en) * 1946-04-08 1952-07-15 Bell Telephone Labor Inc Directive antenna system
US2588610A (en) * 1946-06-07 1952-03-11 Philco Corp Directional antenna system
US3164724A (en) * 1946-09-07 1965-01-05 Charles B Aiken Scanning apparatus for detecting a radiant energy source
US2547416A (en) * 1946-12-19 1951-04-03 Bell Telephone Labor Inc Dielectric lens
US2576181A (en) * 1947-10-28 1951-11-27 Rca Corp Focusing device for centimeter waves
US2556087A (en) * 1948-02-27 1951-06-05 Rca Corp Directive antenna system
US2669657A (en) * 1949-11-19 1954-02-16 Bell Telephone Labor Inc Electromagnetic lens
US2811719A (en) * 1953-04-28 1957-10-29 Henry W Wallace Double-universal nod mechanism
US3539798A (en) * 1967-07-18 1970-11-10 Donald M Perry Shadowless projection systems
US3473013A (en) * 1967-10-02 1969-10-14 Polaroid Corp Polarized light projecting assembly
US3541323A (en) * 1968-05-16 1970-11-17 Eg & G Inc Laser beam projector
US4878059A (en) * 1983-08-19 1989-10-31 Spatial Communications, Inc. Farfield/nearfield transmission/reception antenna
US5166698A (en) * 1988-01-11 1992-11-24 Innova, Inc. Electromagnetic antenna collimator
WO1991015879A1 (en) * 1990-04-06 1991-10-17 Microbeam Corporation Electromagnetic antenna collimator

Also Published As

Publication number Publication date
FR868507A (en) 1942-01-05

Similar Documents

Publication Publication Date Title
US2273447A (en) Unidirective energy radiating system
US3414903A (en) Antenna system with dielectric horn structure interposed between the source and lens
US2370053A (en) Directive antenna system
US2342721A (en) Parabolic reflector
GB663166A (en) Improvements in or relating to antenna
US3430244A (en) Reflector antennas
GB1184851A (en) Improvements in Electromagnetic Horn Antennae
US2605416A (en) Directive system for wave guide feed to parabolic reflector
US1906546A (en) Echelon grating for reflecting ultra short waves
US2118419A (en) Ultrashort wave reflector
US2054896A (en) Reflector system for ultrashort electric waves
GB973583A (en) Improvements in or relating to microwave aerials
US2407057A (en) Antenna system
US2477694A (en) Radio waves radiators
US2540518A (en) Directional antenna
US3414904A (en) Multiple reflector antenna
GB1268341A (en) Improvements in parabolic antennas
US3518686A (en) Cassegrain antenna with dielectric lens mounted in main reflector
US2698901A (en) Back-radiation reflector for microwave antenna systems
US2594871A (en) Antenna
GB755011A (en) Improvements relating to radio beam antenna arrangements
US3611391A (en) Cassegrain antenna with dielectric guiding structure
US2982961A (en) Dual feed antenna
US3747116A (en) Radiating cone antenna
US3086205A (en) Ring scanning antenna adapted for flush mounting