US2241613A - Manufacture of nitrates - Google Patents
Manufacture of nitrates Download PDFInfo
- Publication number
- US2241613A US2241613A US195152A US19515238A US2241613A US 2241613 A US2241613 A US 2241613A US 195152 A US195152 A US 195152A US 19515238 A US19515238 A US 19515238A US 2241613 A US2241613 A US 2241613A
- Authority
- US
- United States
- Prior art keywords
- reaction
- counter
- zone
- liquor
- nitric acid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000004519 manufacturing process Methods 0.000 title description 4
- 150000002823 nitrates Chemical class 0.000 title description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 30
- 238000006243 chemical reaction Methods 0.000 description 23
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 20
- 229940074355 nitric acid Drugs 0.000 description 20
- 229910017604 nitric acid Inorganic materials 0.000 description 20
- 238000000034 method Methods 0.000 description 17
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 14
- 229910002651 NO3 Inorganic materials 0.000 description 13
- 238000001704 evaporation Methods 0.000 description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 11
- 239000000460 chlorine Substances 0.000 description 8
- 229910052801 chlorine Inorganic materials 0.000 description 8
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 6
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 6
- 239000004157 Nitrosyl chloride Substances 0.000 description 6
- 150000001805 chlorine compounds Chemical class 0.000 description 6
- 230000008020 evaporation Effects 0.000 description 6
- VPCDQGACGWYTMC-UHFFFAOYSA-N nitrosyl chloride Chemical compound ClN=O VPCDQGACGWYTMC-UHFFFAOYSA-N 0.000 description 6
- 235000019392 nitrosyl chloride Nutrition 0.000 description 6
- 239000000203 mixture Substances 0.000 description 5
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 4
- 239000000376 reactant Substances 0.000 description 4
- 238000002425 crystallisation Methods 0.000 description 3
- 239000012452 mother liquor Substances 0.000 description 3
- 239000011541 reaction mixture Substances 0.000 description 3
- 229910001018 Cast iron Inorganic materials 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 239000003513 alkali Substances 0.000 description 2
- 229910021529 ammonia Inorganic materials 0.000 description 2
- QZPSXPBJTPJTSZ-UHFFFAOYSA-N aqua regia Chemical compound Cl.O[N+]([O-])=O QZPSXPBJTPJTSZ-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- -1 chlorine ions Chemical class 0.000 description 2
- 230000008025 crystallization Effects 0.000 description 2
- 238000004821 distillation Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- VWDWKYIASSYTQR-UHFFFAOYSA-N sodium nitrate Chemical compound [Na+].[O-][N+]([O-])=O VWDWKYIASSYTQR-UHFFFAOYSA-N 0.000 description 2
- 238000009835 boiling Methods 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000010517 secondary reaction Methods 0.000 description 1
- 235000010344 sodium nitrate Nutrition 0.000 description 1
- 239000004317 sodium nitrate Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B21/00—Nitrogen; Compounds thereof
- C01B21/20—Nitrogen oxides; Oxyacids of nitrogen; Salts thereof
- C01B21/38—Nitric acid
- C01B21/46—Purification; Separation ; Stabilisation
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01D—COMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
- C01D9/00—Nitrates of sodium, potassium or alkali metals in general
- C01D9/04—Preparation with liquid nitric acid
Definitions
- the difliculties of the known processes are overcome by the fact that the conversion of the chlorides by means of nitric acid is not effected as heretofore at the lowest possible temperature but at the highest possible temperature, and furthermore steam at atmospheric pressure is introduced, in so far as it is not produced by evaporation of the nitrate liquor which is likewise carried out at atmospheric pressure.
- 'Ihe present process employs in this case nitric acid in excess, so that after completion of the reaction, chlorine ions are no longer present in the reaction mixture and consequently the evaporation of the nitrate liquor containing nitric acid can take place in apparatus made of ordinary materials.
- strong nitric acid may be employed, the hydrochloric acid is obtained directly in the commercial concentration of about 33%.
- the reaction takes place in a counter-now. device comprising two stages, for example in a column which is combined with an evaporator.
- aqueous nitric acid To the upper stage water is supplied, if desired together with a part of the chlorides to be converted, and to the lower stage are supplied aqueous nitric acid, mother liquor resulting from the separation of the nitrate, and the chloride, in so far as the latter is not already supplied to the upper stage.
- the reaction mixture passes for evaporation under atmospheric pressure into an evaporator, from which on the one hand the vapour mixture generated is passed into the lower stage of the counter-flow device, and on the other hand the nitrate liquor is passed into a crystalliser for the separation of the nitrate.
- a further improvement in the method of Working is secured by providing between the lower part of the counterflow device, on the one hand, and the evaporator on the other, a second, smaller additional counter-flow device, for example a column, through which are passed the vapours coming from the evaporator and if desired steam supplied from outside, before these enter the lower part of the counter-How device.
- the liquor passes from the lower part of the counter-flow device first through the additional column and only then, according to the method of working, either into the crystalliser or into the evaporator.
- This additional counter-flow device makes it possible to employ a very considerable excess of nitric acid, which excess however, does not enter the crystalliser or evaporator because it is evaporated in the additional column and thus enters the counter-flow device. In this way the nitric acid content is kept low in accordance with the quantity of steam and the conditions of equilibrium between the steam and the nitric acid Vapour, so that crystallisation does not require to be repeated.
- the two part counter-flow device shown consists of an upper part a, and a lower part b. Each of these parts is in itself a counter-how device and is provided either with a charging device, bell bottoms or the like installations.
- Water is supplied to the upper part a through a conduit c, if desired with a part of the chloride to be converted, and to the lower part b are supplied, through a conduit d, the aqueous nitric acid, the circulating mother liquor ⁇ and the residual part of the chloride which has not yet been supplied to the upper part a; in addition water may also be supplied at this place.
- the liquor ows through a conduit e into an auxiliary small counter-now device j and thence through a conduit g ⁇ into an evaporator h and from the latter through a conduit i into a crystalliser k.
- the liquor may also be led through a conduit l first into the crystalliser 1c and thence through a conduit m into the evaporator h, and after evaporation returned again to the crystalliser.
- the mother liquor produced in the crystalliser is returned through conduits s and d to the stage b of the counter-flow device and the salt is removed from the crystalliser through an outlet t.
- the vapours pass through a conduit n into the auxiliary counternow device f, into which steam may also be introduced through a conduit o. From the auxiliary counter-flow device f, the vapours are passed through a conduit p into the stage b of the main counter-now device.
- the crystalliser may be made of the known silicon cast iron or of V2A sheet metal, because chlorine ions are no longer present in the liquor, while the evaporator is preferably made of silicon cast iron vessels, which nowadays can be supplied for the evaporation of liquids containing nitric acid, up to the largest dimensions required industrially.
- the hydrochloric acid escapes from the counter-now device through a conduit q into a condenser r which is cooled to as low a temperature as possible.
- the heating of the liquids within the counter-now device causes dilution through condensing water, they may be heated indirectly, before they enter the counter-now device, at a suitable point outside the counter-flow device by means of the vapours generated during the process. rIhis step, however, does not make any difference in the heat requirement of the process, but merely results in the fact that a larger quantity or water may be supplied to the upper part of the device, while further below the addition of water should be correspondingly reduced.
- the process according to the invention is based on the following facts:
- the nitric acid mainly reacts with the chloride to form nitrate and free hydrochloric acid, the hydrochloric acid being converted to a considerable extent into vapour on account of its volatility.
- a secondary reaction takes place to a very considerable extent according to the following equation, namely the so-called aqua regia reaction:
- the aqua regia reaction is a reversible reaction, and that if the reaction products are passed through a relatively weak mixture of the components taking part or even only through pure water, the nitrosyl chloride and the chlorine in the water again form quantitatively nitric acid and hydrochloric acid, and that surprisingly, this reaction proceeds all the more rapidly and all the more completely, the higher the temperature, providaafiil ed only the concentration proportions are suitably selected and suicient time is allowed for the reaction proceeding in the reverse direction.
- the process may also be carried out by employing chlorides of the alkalies, of ammonia and of the alkaline earths alone or in admixture.
- a method for the production of nitrates and hydrochloric acid from chlorides capable of metathetical reaction with nitric acid which comprises treating such chlorides at boiling temperature and at atmospheric pressure in a countercurrent reaction zone with an excess of strong nitric acid to form a nitrate liquor and a gasvapor mixture containing substantial quantities of nitrosyl chloride and chlorine, reacting the gasvapor mixture containing substantial quantities of nitrosyl chloride and chlorine eiiluent from said reaction zone at elevated temperatures under atmospheric pressure with water in countercurrent in a second treatment zone beyond that in which nitric acid is introduced to the process, whereby substantially all of the nitrosyl chloride and chlorine are converted into aqueous nitric acid which is returned to the reaction zone and gaseous hydrochloric acid which is ejected as such from said zone, and condensing the said hydrochloric acid.
- a process as set forth in claim 1 in which the nitrate liquor substantially free from hydrochloric acid is passed into a third zone in countercurrent to steam supplied to said third zone from an external source, and the steam and acid vapors formed in said third zone are passed into the reaction zone in countercurrent to the reactants therein.
- a process as set forth in claim l in which the nitrate liquor substantially free from hydrochloric acid is passed into a third zone in countercurrent to steam supplied to said third zone from an external source, the steam and acid vapors formed in said third zone are passedr into the reaction zone in countercurrent to the reactants therein, heating the nitrate liquor in an evaporating Zone, passing vapors formed in said evaporating Zone into the said third zone countercurrent to the fiow of liquor therein, subjecting the concentrated liquor formed in the evaporating zone to crystallization for the recovery of nitrates therefrom, and returning the mother liquor from said crystallization to the reaction zone.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Agronomy & Crop Science (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CS2241613X | 1937-03-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
US2241613A true US2241613A (en) | 1941-05-13 |
Family
ID=5458744
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US195152A Expired - Lifetime US2241613A (en) | 1937-03-27 | 1938-03-10 | Manufacture of nitrates |
Country Status (2)
Country | Link |
---|---|
US (1) | US2241613A (cs) |
NL (1) | NL48454C (cs) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2919972A (en) * | 1957-06-05 | 1960-01-05 | Marshall L Hyman | Removal of chloride from aqueous solutions |
DE1262249B (de) * | 1960-01-14 | 1968-03-07 | Delhi Taylor Oil Corp | Verfahren und Vorrichtung zur Herstellung von Alkali- oder Erdalkalinitraten |
-
0
- NL NL48454D patent/NL48454C/xx active
-
1938
- 1938-03-10 US US195152A patent/US2241613A/en not_active Expired - Lifetime
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2919972A (en) * | 1957-06-05 | 1960-01-05 | Marshall L Hyman | Removal of chloride from aqueous solutions |
DE1262249B (de) * | 1960-01-14 | 1968-03-07 | Delhi Taylor Oil Corp | Verfahren und Vorrichtung zur Herstellung von Alkali- oder Erdalkalinitraten |
Also Published As
Publication number | Publication date |
---|---|
NL48454C (cs) |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US2056283A (en) | Process for the production of urea and an ammonium salt | |
US2087325A (en) | Process for the production of urea and ammonium salts | |
US2807574A (en) | Treatment of unreacted ammonia in the manufacture of urea | |
US2241613A (en) | Manufacture of nitrates | |
US2089957A (en) | Manufacture of salts | |
US4125595A (en) | Process for the production of very pure bromine | |
US2215450A (en) | Process for the production of a nitrate | |
US2275825A (en) | Manufacture of hydrochloric acid | |
US2281715A (en) | Process for the production of sodium formate | |
US3932504A (en) | Urea manufacture | |
US3214240A (en) | Process of reacting chlorides with nitric acid | |
US2181559A (en) | Process for producing a nitrate | |
US3211525A (en) | Concentrating and reacting with nitric acid | |
US2716052A (en) | Method for producing anhydrous hydrazine salts | |
US1194354A (en) | Island | |
US2793102A (en) | Production of pure chlorine | |
US2148429A (en) | Production of alkali and alkaline earth metal nitrates | |
US2124536A (en) | Recovery of alkali metal nitrates | |
US2296762A (en) | Process for the production of chlorine and a nitrate from nitrogen peroxide and a chloride | |
US2541724A (en) | Recovery of ammonium chloride from solution in liquid ammonia | |
US2395567A (en) | Process of manufacturing potassium tetraborate | |
US2963345A (en) | Production of chlorine and alkali metal nitrates from alkali metal chlorides | |
US2675298A (en) | Hydrazine manufacture | |
US2027477A (en) | Process for the manufacture of | |
US2007478A (en) | Production of nitrates from metal halides |