US2222549A - X-ray tube - Google Patents

X-ray tube Download PDF

Info

Publication number
US2222549A
US2222549A US246451A US24645138A US2222549A US 2222549 A US2222549 A US 2222549A US 246451 A US246451 A US 246451A US 24645138 A US24645138 A US 24645138A US 2222549 A US2222549 A US 2222549A
Authority
US
United States
Prior art keywords
rotor
anode
tube
shaft
ray tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US246451A
Inventor
Verhoeff Adrianus
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hartford National Bank and Trust Co
Original Assignee
Hartford National Bank and Trust Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hartford National Bank and Trust Co filed Critical Hartford National Bank and Trust Co
Application granted granted Critical
Publication of US2222549A publication Critical patent/US2222549A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/04Electrodes ; Mutual position thereof; Constructional adaptations therefor
    • H01J35/08Anodes; Anti cathodes
    • H01J35/10Rotary anodes; Arrangements for rotating anodes; Cooling rotary anodes
    • H01J35/101Arrangements for rotating anodes, e.g. supporting means, means for greasing, means for sealing the axle or means for shielding or protecting the driving
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2235/00X-ray tubes
    • H01J2235/12Cooling
    • H01J2235/1225Cooling characterised by method
    • H01J2235/1262Circulating fluids
    • H01J2235/1266Circulating fluids flow being via moving conduit or shaft

Definitions

  • My invention relates to 'X-ray tubes having a rotary anode and particularly to tubes of this type which are enclosed within a protective hous-
  • the rotation of the anode of an X- ray tube is usually effected by means of a ro- *ating magnetic field set up by a stationary, and preferably three-phase, stator which surrounds the tube.
  • a stationary, and preferably three-phase, stator which surrounds the tube.
  • the stator increases the diameter of the protective housing of the tube, and if it is desired to control the speed of rotation of the anode a frequency changer must be used.
  • three-phase current is not available, it is necessary to provide phase-displacement means for starting the rotation of the anode.
  • the object of my invention is to overcome the above difiiculties and for this purpose I rotate the anode by means of a driving rotor which is located outside the Vacuum space of the X-ray tube and which may be either an electro-magnet 25 or a permanent magnet.
  • the rotatable anode may carry a permanent magnet cooperating with a driving rotor consisting of a body of ferromagnetic material, which body may be provided with poles. I drive this rotor from an electric motor, and effect this drivethrough a shaft of insulating material so that the rotor can have the potential of the anode.
  • the motor is located at one end of the tube so that it does not cause any increase in the diameter of the protective housing, and may be of a variable speed type, for instance a single-phase commutator motor.
  • I locate the driving rotor within a glass or me- 40 .tallic reentrant portion of the tube envelope, and provide the anode with a cylindrical extension which extends into the annular space formed between this reentrant portion and the outer wall of the tube envelope.
  • This cylindrical extension forms the point of application of the driving torque and is provided with a cylinder-of magnetic material of high permeability or with a 55; mg medium, such as air, or 'a' stirrerfor a cooling' i means surrounds the tube, and as a result the liquid, such as oil, is provided within the protective housing, I prefer to connect the driving rotor to the means for driving the fan or stirrer. This gives a simple construction and at the same time an increase in the speed of rotation of the anode will be accompanied by an increase in the cooling capacity, which is very desirable.
  • the driving rotor may also serve to circulate a cooling fluid and for this purpose may be formed as an impeller of a fan or as a rotor of a pump, or an impeller or pump rotor can be arranged adjacent the driving rotor so that they are also at high potential.
  • the driving shaft may be made hollow so that it can serve as a passageway for the cooling fluid, and under some conditions this improves the cooling of parts of the tube in the vicinity of the anode.
  • Figure l is a sectionized view of a portion of an X-ray'tube embodying the invention.
  • Fig. 2 is a sectional View along line II-II of Figure 1
  • Fig.3 is a sectionized view of a portion of an X-ray tube according to another embodiment-of the invention.
  • Fig. 4 is a plan view of the driving rotor of Fig. 3.
  • Fig. 5 is a plan view of a driving rotor in a modified form.
  • Fig. 6 shows a modification of the construction represented by Fig. 3.
  • the X-ray tube partly shown in Figure 1 has an envelope comprising a central metal cylinder 3, for instance of chrome iron, to the ends of which are hermetically sealed two vitreous mem-- bers l and 2.
  • Member I has a reentrant portion 1 whose lower end is hermetically sealed to a cup-shaped member 6 of metal, for instance of chrome iron.
  • Supported by member 6 is a shaft 5 upon which is rotatably mounted a cylindrical anode 4 having an annular portion 8 extending into the annular space formed by vitreous member l and carrying an iron cylinder 9.
  • the cylinder 9 may be made up of axially-extending sections each forming a separate magnetisable body.
  • a cylindrical body 43 is fixedly secured to member 6 and has a large surface closely spaced from the inner surface of anode 4 so as to facilitate the removal of heat from the anode.
  • Metal cylinder 3 is provided with a Window 36 for the exit ofthe X-rays, and is surrounded,
  • a cathode 35 located within a concentrating device 34 is shown near the target surface of anode 4.
  • the X-ray tube is enclosed within a protective housing I! of metal, or of insulating material having a metal coating, provided with a filter holder 31, and having a cup-shaped end portion [6 provided with several apertures 33.
  • a moulded body 23 of insulating material which serves to prevent flash-over between the parts of the tube which are at high potential and the housing I! which is usually grounded.
  • Body 23 surrounds the vitreous member I with an intermediate annular space !0 and is provided with a central bore in which is moulded a metal tube 22 provided at its lower end with a plurality of apertures 32.
  • a motor I5 preferably of the variable speed type, having a shaft l9 carrying a fan 21.
  • a rod 26 of insulating material is secured at one end to shaft l9. During operation the housing and the windings of motor l5 have substantially the potential of housing 11.
  • a driving rotor II in the form of a permanent magnet which, as shown in Figure 2, has four poles l l to [4 of which poles II and 12 may be north poles and poles l3 and I4 may be south poles, as indicated.
  • Rotor I0 is fixedly mounted on a metal shaft [8 which shaft has one end supported in a bearing 5
  • rotor I0 is at a very high potential with respect to the housing I! and the motor l5.
  • the use of the insulating rod 20 completely insulates the motor and housing against this high voltage.
  • the intervening part of glass portion 1 will not be electrostatically loaded, and consequently the spacing between the peripheral surface of rotor l0 and the inner surface of portion 8 can be as small as is possible from a mechanical standpoint. In view of this small spacing there will be very little slip between rotor l0 and anode 4, and the anode can be rapidly accelerated to the desired rotational velocity.
  • Tube 22 to which rotor 10 and thus anode 4 is electrically connected, is engaged by a contact rod 26 forming part of a terminal piece 24 of insulating material secured to housing I! by a nut 52.
  • An insulated cable 25 for the supply of anode current is secured to terminal piece 24 with its conductor connected to rod 26.
  • member 6 may be made longer so as to extend between rotor l0 and portion 8 and form a direct metallic connection with tube 22.
  • Such a construction is illustrated by Figure 3.
  • the cooling air travels a course indicated by the arrows. More particularly the air passes from the cathode end of the tube through the annular passageway formed between cylinder 29 and the central portion 28 of housing H. The air then passes upwardly through the space 10, downwardly through the space formed between the portion 1 and an extending portion 3
  • Figure 3 is a sectionized view of a portion of an X-ray tube which, in other respects, is similar to that shown in Figure 1.
  • the reentrant part of member I terminates at a point 53 at which it is hermetically fused to a ring 39 of chrome iron.
  • a cup-shaped metal member 54 Secured to the lower end of ring 39, for instance by solder, is a cup-shaped metal member 54, hereinafter more fully described, to which is fixedly secured the metal member 43 of Figure 1.
  • a bearing 42 carrying a shaft 55 to which is secured an anode 56 similar to the anode 4 of Figure 1 and having an extending portion 51 surrounding a portion of member 54 and provided with an iron ring 9.
  • a moulded member 58 of insulating material whose upper portion (not shown) is similar to that of member 23 of Figure 1, surrounds the tube envelope with an intermediate space H. Moulded within the central part of member 58 is a metal tube 59 having a flared end portion 40 extending into the space enclosed within the cup-shaped member 54.
  • Tube 59 has an inner coating 12 of insulating material to prevent flashing-over from the inner surface of the metal tube through the space between this tube and shaft 60 to grounded parts at the end of the housing.
  • a shaft 60 which is similar to rod 20 of Figure 1 and is driven in a similar manner by the motor l5 of this figure.
  • F'ixedly secured to the lower end of rod 60 is a coupling 6
  • Rotor 62 rotates on a ball bearing 38 mounted on a shaft 63 carried by member 54.
  • rotor 62 is similar to rotor [0 of Figure 1 except that it has a grooved inner surface which forms with the bushing 64, four openings 44.
  • has one end secured to member 54 and its other end bearing the flared end of tube 59 to form a direct electrical connection therebetween.
  • the anode 56 is rotated in the same manner as in Figure 1, by the rotating magnetic field produced .by rotating the driving rotor 62.
  • the reaction caused by the eddy currents is extremely small, because these currents will be much smaller than in the case of a metal of high conductivity.
  • the rotor 62 can be formed as an impeller as shown in Fig. or a fan can be mounted above this.
  • the magnet poles 14 form the Wings of a fan and are so positioned as to draw the air from the rear side to the side from which the rotor is shown, which is the side facing the bottom of member 5 1 of Fig. 3.
  • the spokes 15 are disposed with a reversed inclination, so that theyform a blower propelling the air from the space between the rotor and member 54 to the space enclosed between shaft 611 and tube 59.
  • Fig. 6 shows a portion of the arrangement of Fig. 3 with a modified construction of the shaft.
  • the shaft 16 is hollow.
  • An X-ray apparatus comprising an X-ray tube having a cathode and a rotatable anode, a protective metallic housing enclosing said tube, and means for magnetically rotating said anode including a driving rotor, a motor supported from said housing, and a shaft of insulating material connected between said motor and rotor, said rotor being in magnetic relationship with said anode.
  • An X-ray apparatus comprising a protective housing, and an X-ray tube within saidhousing and comprising an envelope having a reentrant portion forming an annular space with the envelope, a cathode, and a rotatable anode supported from the reentrant portion and having a portion extending into said annular space, and means to magnetically rotate said anode including a driving rotor within said reentrant portion, said rotor being in magnetic relationship with the extending portion of said anode.
  • An X-ray apparatus comprising an X-ray tube having a cathode and a rotatable anode, and
  • motor for driving said fan and supported from said housing, and means to magnetically rotate said anode including a driving rotor in magnetic relationship with said anode, and a shaft of insulating material connecting said rotor to said motor.
  • An X-ray apparatus comprising an X-ray tube having a cathode and a rotatable anode, a,
  • a member arranged adjacent said rotor for circulating a fluid around the X-ray tube including a member arranged adjacent said rotor.
  • An X-ray apparatus comprising an X-ray tube having a cathode and a rotatable anode, a protective housing enclosing said tube, and means for rotating said anode and for circulating a fluid around said tube including a motor supported from said housing, a driving rotor, and a shaft of insulating material connecting said rotor and motor; said rotor being in magnetic relationship with said anode and being shaped as an impeller.
  • An X-ray apparatus comprising an X-ray tube having a cathode and a rotatable anode, a protective housing enclosing said tube, and means for rotating said anode and for circulating a fluid around said tube including a motor supported from said housing, a driving rotor, and a hollow shaft of insulating material connecting said rotor and motor, said rotor being in magnetic relationship with said anode and being shaped as an impeller.
  • An X-ray apparatus comprising an X-ray tube having a cathode and a rotatable anode, a protective metallic housing enclosing said tube,
  • said tube and means to rotate said anode including a driving rotor in magnetic relationship with said anode, a motor, and a shaft of insulating material connecting said motor and rotor, said envelope having a non-magnetic metal portion bf a resistivity at least .04 ohm per cubic centimeter extending between said rotor and a portion of said anode.
  • AnX-ray apparatus comprising an X-ray tube having an envelope, a cathode and a'rotatable anode, a protective housing enclosing said tube, and means to rotate said anode also enclosed by said housing, said means including an electric motor, a rotor and a shaft of insulating material connecting said motor and rotor, said rotor comprising radially extending magnet poles andsaid anode comprising a ring of ferromagnetic material, surrounding said rotor, a reentrant portion of said envelope extending between said rotor and ring, said shaft projecting from said reentrant portion.
  • An X-ray tube comprising an evacuated envelope having a reentrant portion, a cathode within said envelope, a rotatable anode within said envelope and at one end thereof, and means to magnetically rotate said anode including a driving rotor in magnetic relationship with the anode, and a driving device connected to said rotor, said rotor being located within said reentrant portion and outside the evacuated space of the tube.
  • An X-ray tube comprising an evacuated envelope having a reentrant portion, a cathode within said envelope, a rotatable anode near said reentrant portion, and means to magnetically rotate said anode, said means including a driving rotor in magnetic relation with the anode, and a motor connected to said rotor, said rotor being located within said reentrant portion and outside the evacuated space of the tube.

Landscapes

  • X-Ray Techniques (AREA)

Description

Nov. 19, 1940. A, VERH DEFF 2,222,549
X-RAY TUBE Filed Dec. 17, 1938 2 Sheets-Sheet 1 nun lNVE/VTOR AOR/ANL/ VERHOZTF Nov. 19, 1940.
A. VERHOEFF X-RAY TUBE Filed Dec. 17, 1938 2 Sheets-Sheet 2 Patented Nov. 19 1940 UNITED STATES PATENT OFFICES X-RAY TUBE Conn, as trustee Application December 17, 1938, Serial No.'246,451 In Germany December 22, 1937 11 Claims.
My invention relates to 'X-ray tubes having a rotary anode and particularly to tubes of this type which are enclosed within a protective hous- In practice the rotation of the anode of an X- ray tube is usually effected by means of a ro- *ating magnetic field set up by a stationary, and preferably three-phase, stator which surrounds the tube. Although this method is very simple and satisfactory it is difiicult to insulate the stator, which must be located close to the tube, against a high voltage with respect to the anode. Furthermore the stator increases the diameter of the protective housing of the tube, and if it is desired to control the speed of rotation of the anode a frequency changer must be used. In addition, if three-phase current is not available, it is necessary to provide phase-displacement means for starting the rotation of the anode.
The object of my invention is to overcome the above difiiculties and for this purpose I rotate the anode by means of a driving rotor which is located outside the Vacuum space of the X-ray tube and which may be either an electro-magnet 25 or a permanent magnet. Alternatively the rotatable anode may carry a permanent magnet cooperating with a driving rotor consisting of a body of ferromagnetic material, which body may be provided with poles. I drive this rotor from an electric motor, and effect this drivethrough a shaft of insulating material so that the rotor can have the potential of the anode.
The motor is located at one end of the tube so that it does not cause any increase in the diameter of the protective housing, and may be of a variable speed type, for instance a single-phase commutator motor.
According to one embodiment of the invention, I locate the driving rotor within a glass or me- 40 .tallic reentrant portion of the tube envelope, and provide the anode with a cylindrical extension which extends into the annular space formed between this reentrant portion and the outer wall of the tube envelope. This cylindrical extension forms the point of application of the driving torque and is provided with a cylinder-of magnetic material of high permeability or with a 55; mg medium, such as air, or 'a' stirrerfor a cooling' i means surrounds the tube, and as a result the liquid, such as oil, is provided Within the protective housing, I prefer to connect the driving rotor to the means for driving the fan or stirrer. This gives a simple construction and at the same time an increase in the speed of rotation of the anode will be accompanied by an increase in the cooling capacity, which is very desirable.
The driving rotor may also serve to circulate a cooling fluid and for this purpose may be formed as an impeller of a fan or as a rotor of a pump, or an impeller or pump rotor can be arranged adjacent the driving rotor so that they are also at high potential. The driving shaft may be made hollow so that it can serve as a passageway for the cooling fluid, and under some conditions this improves the cooling of parts of the tube in the vicinity of the anode.
In order that the invention may be clearly understood and readily carried into effect, I shall describe the same in more detail with reference to the accompanying drawings in which:
Figure l is a sectionized view of a portion of an X-ray'tube embodying the invention,
Fig. 2 is a sectional View along line II-II of Figure 1,
Fig.3 is a sectionized view of a portion of an X-ray tube according to another embodiment-of the invention, and
Fig. 4 is a plan view of the driving rotor of Fig. 3.
Fig. 5 is a plan view of a driving rotor in a modified form.
Fig. 6 shows a modification of the construction represented by Fig. 3. I
The X-ray tube partly shown in Figure 1 has an envelope comprising a central metal cylinder 3, for instance of chrome iron, to the ends of which are hermetically sealed two vitreous mem-- bers l and 2. Member I has a reentrant portion 1 whose lower end is hermetically sealed to a cup-shaped member 6 of metal, for instance of chrome iron. Supported by member 6 is a shaft 5 upon which is rotatably mounted a cylindrical anode 4 having an annular portion 8 extending into the annular space formed by vitreous member l and carrying an iron cylinder 9. Instead of being solid, the cylinder 9 may be made up of axially-extending sections each forming a separate magnetisable body. A cylindrical body 43 is fixedly secured to member 6 and has a large surface closely spaced from the inner surface of anode 4 so as to facilitate the removal of heat from the anode.
Metal cylinder 3 is provided with a Window 36 for the exit ofthe X-rays, and is surrounded,
except at window 36, with a lead sheath 29. A cathode 35 located within a concentrating device 34 is shown near the target surface of anode 4.
The X-ray tube is enclosed within a protective housing I! of metal, or of insulating material having a metal coating, provided with a filter holder 31, and having a cup-shaped end portion [6 provided with several apertures 33. Supported in a suitable manner from housing I! is a moulded body 23 of insulating material which serves to prevent flash-over between the parts of the tube which are at high potential and the housing I! which is usually grounded. Body 23 surrounds the vitreous member I with an intermediate annular space !0 and is provided with a central bore in which is moulded a metal tube 22 provided at its lower end with a plurality of apertures 32.
Supported from an apertured portion 50 of body 23 is a motor I5, preferably of the variable speed type, having a shaft l9 carrying a fan 21. A rod 26 of insulating material is secured at one end to shaft l9. During operation the housing and the windings of motor l5 have substantially the potential of housing 11.
Within the space formed by reentrant portion 1 and aligned with ring 9 is a driving rotor II] in the form of a permanent magnet which, as shown in Figure 2, has four poles l l to [4 of which poles II and 12 may be north poles and poles l3 and I4 may be south poles, as indicated. Rotor I0 is fixedly mounted on a metal shaft [8 which shaft has one end supported in a bearing 5| secured to member 6, and its other end extending through a bearing 2| secured to tube 22, and connected to the lower end of insulating rod 20. Thus, because of its metallic connection to member 6, rotor I0 is at a very high potential with respect to the housing I! and the motor l5. However, the use of the insulating rod 20 completely insulates the motor and housing against this high voltage.
As rotor I0 and portion 8 are at the same potential, the intervening part of glass portion 1 will not be electrostatically loaded, and consequently the spacing between the peripheral surface of rotor l0 and the inner surface of portion 8 can be as small as is possible from a mechanical standpoint. In view of this small spacing there will be very little slip between rotor l0 and anode 4, and the anode can be rapidly accelerated to the desired rotational velocity.
Tube 22, to which rotor 10 and thus anode 4 is electrically connected, is engaged by a contact rod 26 forming part of a terminal piece 24 of insulating material secured to housing I! by a nut 52. An insulated cable 25 for the supply of anode current is secured to terminal piece 24 with its conductor connected to rod 26.
To eliminate the passage of current through bearing 5|, member 6 may be made longer so as to extend between rotor l0 and portion 8 and form a direct metallic connection with tube 22. Such a construction is illustrated by Figure 3.
During operation the cooling air travels a course indicated by the arrows. More particularly the air passes from the cathode end of the tube through the annular passageway formed between cylinder 29 and the central portion 28 of housing H. The air then passes upwardly through the space 10, downwardly through the space formed between the portion 1 and an extending portion 3| of member 23, through apertures 32, through the annular passageway formed between tube 22 and shaft 20, and out of the tube through apertures 33. With such a circulation of air the vitreous member I as well as the metal to glass seals of the tube envelope are effectively cooled.
Figure 3 is a sectionized view of a portion of an X-ray tube which, in other respects, is similar to that shown in Figure 1. In Figure 3 the reentrant part of member I terminates at a point 53 at which it is hermetically fused to a ring 39 of chrome iron. Secured to the lower end of ring 39, for instance by solder, is a cup-shaped metal member 54, hereinafter more fully described, to which is fixedly secured the metal member 43 of Figure 1.
Mounted in member 43 is a bearing 42 carrying a shaft 55 to which is secured an anode 56 similar to the anode 4 of Figure 1 and having an extending portion 51 surrounding a portion of member 54 and provided with an iron ring 9.
A moulded member 58 of insulating material, whose upper portion (not shown) is similar to that of member 23 of Figure 1, surrounds the tube envelope with an intermediate space H. Moulded within the central part of member 58 is a metal tube 59 having a flared end portion 40 extending into the space enclosed within the cup-shaped member 54.
Tube 59 has an inner coating 12 of insulating material to prevent flashing-over from the inner surface of the metal tube through the space between this tube and shaft 60 to grounded parts at the end of the housing.
Within the bore of tube 59 is a shaft 60 which is similar to rod 20 of Figure 1 and is driven in a similar manner by the motor l5 of this figure. F'ixedly secured to the lower end of rod 60 is a coupling 6| connected to a bushing 64 secured to a driving rotor 62. Rotor 62 rotates on a ball bearing 38 mounted on a shaft 63 carried by member 54. As shown more clearly in Figure 4, rotor 62 is similar to rotor [0 of Figure 1 except that it has a grooved inner surface which forms with the bushing 64, four openings 44.
A metal spring 4| has one end secured to member 54 and its other end bearing the flared end of tube 59 to form a direct electrical connection therebetween. V
The anode 56 is rotated in the same manner as in Figure 1, by the rotating magnetic field produced .by rotating the driving rotor 62. I have found that eddy currents produced in metal member 54, through which the magnetic lines of force pass, greatly reduce the speed of rotation of the anode, and to avoid this, I make this member of a non-magnetic material which has a high resistivity, for example more than 0.4 ohm per cubic centimeter cm. length and 0.01 cm. section). By using such metals the reaction caused by the eddy currents is extremely small, because these currents will be much smaller than in the case of a metal of high conductivity. As a result the anode will be readily carried along. I have found that particularly good results are obtained by using constantan, which is an alloy consisting of equal parts of nickel and copper and has a specific resistivity of about 0.5, but other non-magnetic alloys of high resistivity can be used.
During operation the cooling air is circulated by means of the fan 21 of Figure 1 and follows a course which is somewhat similar to that described in connectionwith Figure 1. However, in Figure 3 the air flows downwardly around the periphery of rotor 62, along the bottom of member 54, and upwardly through the openings 44 to the annular space formed between tube 59 and rod 60. Due to the passage of air along the bottom of member '54 a very effective cooling of the anode is obtained.
Instead of using thefan 21 of Figure 1, the rotor 62 can be formed as an impeller as shown in Fig. or a fan can be mounted above this.
rotor on member 6!. With the rotor shown in Fig. 5 the magnet poles 14 form the Wings of a fan and are so positioned as to draw the air from the rear side to the side from which the rotor is shown, which is the side facing the bottom of member 5 1 of Fig. 3. Again the spokes 15 are disposed with a reversed inclination, so that theyform a blower propelling the air from the space between the rotor and member 54 to the space enclosed between shaft 611 and tube 59.
Fig. 6 shows a portion of the arrangement of Fig. 3 with a modified construction of the shaft. In this construction the shaft 16 is hollow.
Through holes 73 provided in the thickened end portion of the shaft the air is permitted to penetrate into the duct Tl by which it is be sucked away. Because the space between the shaft and the tube 59 does no longer serve as an air conduit, it may be narrower than in the structure of Fig. 3. The insulating coating of the inner side of tube 59 is omitted, as there is no danger for flashingover across the long narrow gap between the metal tube 59 and the insulating shaft 16.
While I have described my invention in connection with specific examples and constructions, I do not wish to be limited thereto but desire the appended claims to be construed as broadly as'is permissible in What I claim is:
1. An X-ray apparatus comprising an X-ray tube having a cathode and a rotatable anode, a protective metallic housing enclosing said tube, and means for magnetically rotating said anode including a driving rotor, a motor supported from said housing, and a shaft of insulating material connected between said motor and rotor, said rotor being in magnetic relationship with said anode.
2. An X-ray apparatus comprising a protective housing, and an X-ray tube within saidhousing and comprising an envelope having a reentrant portion forming an annular space with the envelope, a cathode, and a rotatable anode supported from the reentrant portion and having a portion extending into said annular space, and means to magnetically rotate said anode including a driving rotor within said reentrant portion, said rotor being in magnetic relationship with the extending portion of said anode.
3. An X-ray apparatus comprising an X-ray tube having a cathode and a rotatable anode, and
' protective housing enclosing said tube, a fan, a
motor for driving said fan and supported from said housing, and means to magnetically rotate said anode including a driving rotor in magnetic relationship with said anode, and a shaft of insulating material connecting said rotor to said motor.
4. An X-ray apparatus comprising an X-ray tube having a cathode and a rotatable anode, a,
view of the prior art.
for circulating a fluid around the X-ray tube including a member arranged adjacent said rotor.
5. An X-ray apparatus comprising an X-ray tube having a cathode and a rotatable anode, a protective housing enclosing said tube, and means for rotating said anode and for circulating a fluid around said tube including a motor supported from said housing, a driving rotor, and a shaft of insulating material connecting said rotor and motor; said rotor being in magnetic relationship with said anode and being shaped as an impeller.
6. An X-ray apparatus comprising an X-ray tube having a cathode and a rotatable anode, a protective housing enclosing said tube, and means for rotating said anode and for circulating a fluid around said tube including a motor supported from said housing, a driving rotor, and a hollow shaft of insulating material connecting said rotor and motor, said rotor being in magnetic relationship with said anode and being shaped as an impeller.
7. An X-ray apparatus comprising an X-ray tube having a cathode and a rotatable anode, a protective metallic housing enclosing said tube,
tube, and means to rotate said anode including a driving rotor in magnetic relationship with said anode, a motor, and a shaft of insulating material connecting said motor and rotor, said envelope having a non-magnetic metal portion bf a resistivity at least .04 ohm per cubic centimeter extending between said rotor and a portion of said anode.
9. .AnX-ray apparatus comprising an X-ray tube having an envelope, a cathode and a'rotatable anode, a protective housing enclosing said tube, and means to rotate said anode also enclosed by said housing, said means including an electric motor, a rotor and a shaft of insulating material connecting said motor and rotor, said rotor comprising radially extending magnet poles andsaid anode comprising a ring of ferromagnetic material, surrounding said rotor, a reentrant portion of said envelope extending between said rotor and ring, said shaft projecting from said reentrant portion.
10. An X-ray tube comprising an evacuated envelope having a reentrant portion, a cathode within said envelope, a rotatable anode within said envelope and at one end thereof, and means to magnetically rotate said anode including a driving rotor in magnetic relationship with the anode, and a driving device connected to said rotor, said rotor being located within said reentrant portion and outside the evacuated space of the tube.
11. An X-ray tube comprising an evacuated envelope having a reentrant portion, a cathode within said envelope, a rotatable anode near said reentrant portion, and means to magnetically rotate said anode, said means including a driving rotor in magnetic relation with the anode, and a motor connected to said rotor, said rotor being located within said reentrant portion and outside the evacuated space of the tube.
1 ADRIANUS VERI-IOEFF.
US246451A 1937-12-23 1938-12-17 X-ray tube Expired - Lifetime US2222549A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE1937N0041459 DE695292C (en) 1937-12-23 1937-12-23 Rotating anode tube with high voltage protective jacket
DEN41585D DE721558C (en) 1937-12-23 1938-01-25 Rotating anode tube with high voltage protective jacket

Publications (1)

Publication Number Publication Date
US2222549A true US2222549A (en) 1940-11-19

Family

ID=6548095

Family Applications (1)

Application Number Title Priority Date Filing Date
US246451A Expired - Lifetime US2222549A (en) 1937-12-23 1938-12-17 X-ray tube

Country Status (6)

Country Link
US (1) US2222549A (en)
BE (1) BE431762A (en)
DE (2) DE695292C (en)
FR (1) FR847826A (en)
GB (1) GB512388A (en)
NL (1) NL52716C (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2493606A (en) * 1945-06-11 1950-01-03 Gen Electric X-ray apparatus
US2496112A (en) * 1941-11-20 1950-01-31 Hartford Nat Bank & Trust Co X-ray tube
US2808517A (en) * 1951-02-13 1957-10-01 Gen Electric X-ray tube housing
US2980800A (en) * 1958-07-24 1961-04-18 Machlett Lab Inc X-ray units
US3153738A (en) * 1961-04-26 1964-10-20 Machlett Lab Inc Cooling system for anode sections separated by cylindrical X-ray window
US3205360A (en) * 1963-01-15 1965-09-07 Gen Electric Load sensitive rotating anode x-ray tube speed selector
US3244884A (en) * 1962-08-14 1966-04-05 Picker X Ray Corp X-ray tube starter
EP0063840A1 (en) * 1981-04-23 1982-11-03 Philips Patentverwaltung GmbH High tension vacuum tube, particularly X ray tube
US4369517A (en) * 1980-02-20 1983-01-18 Litton Industrial Products, Inc. X-Ray tube housing assembly with liquid coolant manifold
US4811375A (en) * 1981-12-02 1989-03-07 Medical Electronic Imaging Corporation X-ray tubes
US4884292A (en) * 1981-12-02 1989-11-28 Medical Electronic Imaging Corporation Air-cooled X-ray tube
EP1132942A2 (en) * 2000-03-07 2001-09-12 Marconi Medical Systems, Inc. Rotating X-ray tube
US20040076260A1 (en) * 2002-01-31 2004-04-22 Charles Jr Harry K. X-ray source and method for more efficiently producing selectable x-ray frequencies

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2496112A (en) * 1941-11-20 1950-01-31 Hartford Nat Bank & Trust Co X-ray tube
US2493606A (en) * 1945-06-11 1950-01-03 Gen Electric X-ray apparatus
US2808517A (en) * 1951-02-13 1957-10-01 Gen Electric X-ray tube housing
US2980800A (en) * 1958-07-24 1961-04-18 Machlett Lab Inc X-ray units
US3153738A (en) * 1961-04-26 1964-10-20 Machlett Lab Inc Cooling system for anode sections separated by cylindrical X-ray window
US3244884A (en) * 1962-08-14 1966-04-05 Picker X Ray Corp X-ray tube starter
US3205360A (en) * 1963-01-15 1965-09-07 Gen Electric Load sensitive rotating anode x-ray tube speed selector
US4369517A (en) * 1980-02-20 1983-01-18 Litton Industrial Products, Inc. X-Ray tube housing assembly with liquid coolant manifold
EP0063840A1 (en) * 1981-04-23 1982-11-03 Philips Patentverwaltung GmbH High tension vacuum tube, particularly X ray tube
US4811375A (en) * 1981-12-02 1989-03-07 Medical Electronic Imaging Corporation X-ray tubes
US4884292A (en) * 1981-12-02 1989-11-28 Medical Electronic Imaging Corporation Air-cooled X-ray tube
EP1132942A2 (en) * 2000-03-07 2001-09-12 Marconi Medical Systems, Inc. Rotating X-ray tube
EP1132942A3 (en) * 2000-03-07 2004-02-11 Koninklijke Philips Electronics N.V. Rotating X-ray tube
US20040076260A1 (en) * 2002-01-31 2004-04-22 Charles Jr Harry K. X-ray source and method for more efficiently producing selectable x-ray frequencies
US7186022B2 (en) 2002-01-31 2007-03-06 The Johns Hopkins University X-ray source and method for more efficiently producing selectable x-ray frequencies

Also Published As

Publication number Publication date
BE431762A (en) 1939-01-31
DE695292C (en) 1940-08-22
GB512388A (en) 1939-09-01
DE721558C (en) 1942-06-09
FR847826A (en) 1939-10-17
NL52716C (en) 1942-07-15

Similar Documents

Publication Publication Date Title
US2222549A (en) X-ray tube
JP2539193B2 (en) High intensity X-ray source
US4357555A (en) Rotary anode X-ray tube
US4024424A (en) Rotary-anode X-ray tube
US4674109A (en) Rotating anode x-ray tube device
US6252935B1 (en) X-ray radiator with control of the position of the electron beam focal spot on the anode
US2493606A (en) X-ray apparatus
KR0138031B1 (en) X-ray tube apparatus of a rotating anode type
US2588466A (en) Electrical generator
US6570960B1 (en) High voltage isolated rotor drive for rotating anode x-ray tube
US1893759A (en) X-ray tube
US3619696A (en) An electric drive motor for rotatably driving the anode of an x-ray tube
US2549614A (en) Rotary anode x-ray tube
US3443134A (en) Homopolar dynamoelectric machine
US4468800A (en) Rotary anode X-ray tube
JPS6292754A (en) Single-pole machine
US5773909A (en) X-ray tube target drive rotor
US2332044A (en) Brake for rotary anode x-ray tubes
US3585422A (en) Homopolar dynamoelectric motor utilizing a moving, conductive fluid
US2141924A (en) Electrical discharge device
US4651336A (en) Rotating-anode X-ray tube
US2454031A (en) Electric discharge device of the magnetron type
JPS5941269B2 (en) rotating anode x-ray tube
US5822394A (en) X-ray tube with ring-shaped anode
US3116431A (en) Motor-impedance member device