US2212872A - Mechanical movement - Google Patents

Mechanical movement Download PDF

Info

Publication number
US2212872A
US2212872A US250791A US25079139A US2212872A US 2212872 A US2212872 A US 2212872A US 250791 A US250791 A US 250791A US 25079139 A US25079139 A US 25079139A US 2212872 A US2212872 A US 2212872A
Authority
US
United States
Prior art keywords
axis
gears
oscillation
movement
weights
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US250791A
Inventor
Percy E Barker
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US14464A external-priority patent/US2143854A/en
Application filed by Individual filed Critical Individual
Priority to US250791A priority Critical patent/US2212872A/en
Application granted granted Critical
Publication of US2212872A publication Critical patent/US2212872A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F13/00Washing machines having receptacles, stationary for washing purposes, with agitators therein contacting the articles being washed 
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B3/00Methods or apparatus specially adapted for transmitting mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/18Mechanical movements
    • Y10T74/18056Rotary to or from reciprocating or oscillating
    • Y10T74/18344Unbalanced weights
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/18Mechanical movements
    • Y10T74/18416Rotary to alternating rotary

Definitions

  • My invention particularly relates to improvements in mechanical movements, and the subject matter claimed in the instant application is a division of my pending application Serial No.
  • a gyrator assembly in which all linkage and crank elements are eliminated and which, preferably, is wholly located in the washing tub orchamber.
  • the gyrator assembly which includes the new and improved mechanical movement, comprises a motor and its housing, gearing and other mechanism necessary to effect the movements and reversals of gyrator vanes, and an assembly casing, al1 as one compact unit which can be economically manufactured and assembled, and which, after being assembled, will be hermetically sealed, and in which all moving parts work in oil which is enclosed and protected from pollution by dust and injurious gases.
  • the illustrated structure and functioning of the improved mechanical movement includes also illustrative means for controlling the character of the action induced by the functioning of the movement, the particular illustrative controlling means being adapted to cushion the energy that is generally abruptly expended and comparatively slowly recovered in starting and stopping an agitator incident to the periodic reversals of the directions of movement of the agitating vanes.
  • Figure 1 is a central vertical section of a portable type of washing machine embodying my im- 55 proved mechanical movement, and in which the entire gyrator assembly is located in the washing chamber, the gure being taken in the plane indicated by the line i-Il Figure 2;
  • Figure 2 is a horizontal section, taken in the planes indicated by the line 2 2, Figure 1, one 5 of the extreme positions taken by certain elements, incident to the reversing action, being shown in broken lines;
  • Figure 3 is a broken horizontal section, taken in the planes indicated by the line 3 3, Figure 10 l, two extreme positions of certain spring elements and related parts during the reversing actions of the gyrator being shown in broken lines and in dot-and-dash lines, respectively; y
  • Figure 3a is a fragmentary central vertical 15 section, taken in the planes indicated by the line tez-3a, Figure 3; r
  • Figure 4 is a diagrammatic viewillustrating the effect upon certain movable bearings of certain weights eccentrically secured to certain rotating parts of my gyrator assembly, the Weights cooperating with certain spring members which alternately assist and oppose the movements of the bearings which are induced by the inertia of the eccentrically mounted rotating weights;
  • Figure 5 is a fragmentary central vertical section of another form of washing machine embodying my improved mechanical movement and in which the agitator actuating mechanism is 1ocated in a chamber separate from the washing chamber;
  • Figure 6 is a central vertical section, partially in elevation, of a form of washing apparatus embodying my improved mechanical movementv which is applied to a compartment of a standard laundry tray;
  • Figure 'l' is a plan view of the gyrator assembly shown in Figure 6 and Figure 8 is a plan view of two compartments 40 of a laundry tray in one of which is mounted a gyrator assembly embodying my improved mechanical movement, certain extreme positions assumed by the assembly during the reversing actions being indicated in broken lines.
  • a tub l which may be Aany suitable vessel of pract- 50 cable size and material, serves as a washing chamber, and is provided with a close fitting cover 2 having an exterior central knob portion 3 forming a ⁇ supportV for an vupper bearing 33.
  • the tub i is provided with handles 62.' Within 55 this tub, I position a gyrator assembly 36 which is adapted to turn in the upper bearing 33 and in a lower opposed bearing 23 formed in an upwardly extension of a base plate 23 secured to the inner wall of the bottom of the tub I.
  • a plate 22 is secured to the bottom of the gyrator casing and is formed with a downwardly-extended trunnion 22 which -is journalled in the bearing 23.
  • the gyrator assembly includes an enclosed outer casing comprised of a saucershaped base member I2 upon which is erected an upper member 5 which converges inwardly and upwardly and at its upper central portion merges into a tube 32 extended upwardly through a sleeve 3Q which is journalled in the upper bearing 33.
  • the tube 32 is provided with an electric socket (not shown) which is adapted to removably accommodate a plug 34 in which are secured electric conductors 3I.
  • the motor il is formed with and. secured to a cover member II and a base member 2l, from the center of the latter of which a boss 28' extends upwardly and forms a bearing for a downwardly-extended motor shaft 38.
  • the motor base member 2 is formed with outwardly-extended diametrically-opposed portions 29 having downwardly-extended tubular bosses 2t within which pins S and I@ are dependingly secured.
  • These pins 9 and IU are enclosed in bushings 3@ which form journals for a pair of elongated hubs 'I2 and 82 secured respectively to horizontallyspaced gears 'I and 8 which engage at their inner adjacent edge portions with the opposite sides of a pinion 6 secured to the lower end of the motor shaft 38.
  • the bodies of these gears l and 8 are formed with a plurality of spaced openings I and 8 in order to reduce their weight.
  • the motor base member 2 is also formed with diametrically-opposed ears 45, Figure 2, spaced ninety degrees from the bosses 29 and forming supports for downwardly extending pins dii, Figures 1 and 2, which bear upon the casing member I2 and assist in supporting the motor 6i.
  • the motor and gearing are secured to the casing comprised of the members I2, 5, and 32 by means of pins 2B and 2l secured in and downwardly extended from the pins 9 and I il, respectively, and passing through the casing member I2.
  • pins 2B and 2l also secured to the lower surface of the casing member I2 an inverted saucer-shaped plate I9. Projecting downwardly from, and secured to, the plate I9 are a pair of diametrically-opposed lugs 4I and t2, Figures 3 and 3a, whose function will be later described.
  • weights I-II-I'I- Iii Securedto the gears l and 3, and adjacent the peripheries thereof, and to symmetrically disposed portions thereof, are weights I-II-I'I- Iii, the weights being in opposed pairs Iii-It and IIL-I8, respectively, fastened to the top and bottom faces of the gears and 8 by rivets 49.
  • I provide means for intensifying the strokes of the vanes 3l" in an assembly such as thus far described, and for cushioning or equalizing the energy that would be expended in such an assemb-ly in stopping the pins Si and Il? and the related elements in one direction of movement and in starting the movement of these pins and elements in the other direction.
  • Joni-nailed upon the upwardly-extended bearing 23 of the base plate 2S is an inner spring block Ell between which and outer spring blocks and to which inner and outer spring blocks, are secured by means of rivets il two leaf spring assemblies 25 and
  • the lugs IIE and 52 which have been mentioned as extended downwardly from the plate I5 extend downwardly slightly further than the springs 25 and 26 and are disposed between the latter adjacent their ends so that the springs 25 and 2S will intercept these lugs II and t2 when the plate I is turned incident to the reciprocatory movements of the gyrator assembly.
  • the lugs il and 12 are of a horizontal length slightly less than the distance between the opposed inner leaves of the springs 25 and 26, as clearly indicated in Figure 3 by the space tdi There are other lugs I3 and a pair of them and diametrically opposed, projected upwardly from the stationary base member 23, and
  • the action of the springs 5 and 26 not only gives the gyrator assembly a snap action and increases its speed of recip-rocatory movement at the beginning of it stroke in one direction, but also slows up its movement at the end of the stroke in each direction and thus cushions or equalizes the energy which is expended in stopping the movement .of the gyrator assembly in one direction and in starting its movement in the opposite direction, when the weights rotate by the centers which define the changes of direction in which the tangentially-directed forces are exerted.
  • This cushioning and smoothing out of energy application is occasioned, of course, by the resistance of the springs 25 and 26 to compression and by the reactive stresses exerted by the Vsprings when they are freed from the forces tending to compress them.
  • I provide means for lubricating moving parts and enclose the same so that there is no contamination by dust and injurious liquids and gases.
  • These means comprise open bottom cups or shells i3 and it downwardly extended from the main bodies of the gears 'l and 8 and spaced somewhat from the bottom ends of the bushings @t so as to form oil cups from which by means of openings All in the bushings Si? and hubs l2 and E32 therefor the lubricant iinds entrance to the moving surfaces, there being provided a felt and wick arrangement @lll for eiecting the transier of the lubricant.
  • the lubricant is splashed up into the cups i3 and ifi by their movement with the gears l and 8 from an oil well 39 which is formed in the bottom of the casing member l2 and is iilled to about the height of the bottom of the cups i3 and ist.
  • the lubricant also travels upwardly and outwardly along the conical sides of the cups i3 and Ul due to the rotation of the gears i and 8.
  • I disclose a form of washing apparatus embodying my improved mechanical movement in which the motor gearing, and related mechanism are disposed in the space t5 located exteriorlyof and beneath the washing chamber of the tub it and between the legs upon which the tub is supported.
  • a casing Si for the operating mechanism is formed with an elongated standard 68 which extends upwardly into the washing chamber of the tub 'Sli and is connected to an agitator of any desired style provided with vanes iig.
  • the standard t3 is supported by and turns in an elongated bearing 'lll mounted upon the inside face of the bottom of the washing chamber of the tub Efl.
  • I therein disclose an adaptation of washing apparatus embodying my improved movement to a compartment ci" a standard laundry tray, in which 5W represents such conflpartment ci a standard tub assembly which is supplied with hot and cold water through the pipes 5l.
  • 5W represents such conflpartment ci a standard tub assembly which is supplied with hot and cold water through the pipes 5l.
  • This bar 5t has elongated downwardly-extended boss 5t interiorly of which and adjacent the bottom of which is ⁇ mounted a cylindrical journal member 55 forming the top of the gyrator assembly 3G. Secured to the top of the journal member is a tube 52.?
  • Such turning is caused by the turning of the tube 56 and the journal member 55 in the boss 54, and the turning of the vanes 312, and the motor 4, and the entire gyrator assembly, by means within the casing members 5 and l2 substantially identical With those described with reference to Figures 1, 2, 3, and 3a., except that the fixed base 23, the leaf springs 25 and 25, the cupshaped member I9, and the related mechanism beneath the member I9, which are described and shown with reference to the form of washing apparatus shown in Figures l, 2, 3, and 3a., are dispensed with in the form of washing apparatus shown in Figures 6, '7, and 8, and the effect of the springs 25 and 25 upon the swinging movements of the bearings 9 and lli described with reference to Figures 1, 2, 3, and 3a, is accomplished in the form of washing apparatus shown in Figures-5, 6, and '7, by the spring 59.
  • Washing apparatus shown in Figures 6, 7, and 8 differs in one particular, in effect, from that shown in Figures 1, 2, 3, 3a, and 4, in that the spring 59 commences immediately to be put under tension, upon any movement of the gyrator assembly; Whereas, there is some slight movement of the gyrator assembly, before the springs 25 and 26 are so acted upon, in the construction shown in Figures l, 2, 3, 3a, and 4, because of the provision of the slight spaces 6l) and Figure 3, between the lugs lll, d2, 43, and lili, and the adjacent leaves of the springs 25 and 26.
  • a mechanical movement comprising a fixed support and a movable support, a spring secured to the xed support and also connected to the movable support so as to be tensioned or released by a movement of the latter, a motor and a gear driven thereby, said gear being centrally mounted relative to the movable support, bearing pins connected to the movable support so as to effect a movement of the latter when the bearing pins move, the bearing pins being symmetrically arranged relative to the gear, members respectively rotatable about the bearing pins and driven by the gear, and means moving the bearing pins alternately in opposite directions, said means being energized by the momentum of the rotating members.
  • a mechanical movement comprising a fixed support and a movable support, a spring lsecured tothe fixed support and also connected to the movable support so as to be tensioned or released by a movement of the latter, a motor and a gear driven thereby, said gear being centrally mounted relative to the movable support, bearing pins connected to the movable support so as to effect ,a movement of the latter when the bearing pins move, the bearing pins being symmetrically arranged relative to the gear, and members respectively rotatable about the bearing pins and driven by the gear, said members being relatively symmetrically unbalanced so as to cause the centrifugal force created by the rotation of the members to pull said bearing pins alternately in opposite directions in arcs of a circle having its center in the axis of said gear.
  • a mechanical movement comprising a prime mover establishing an axis of oscillation, a oating member rotatable on its own axis by said prime mover in a plane transverse to the planes containing said axis of oscillation, a Weight secured to and eccentrically mounted on the rotatable member, means maintaining the axis of oscillation fixed, and means maintaining the axis of the rotatable member in a circle of Which the axis of oscillation is a center.
  • a mechanical movement comprising a prime mover establishing an axis of oscillation, a plurality of' floating members each rotatable on its ovvn axis by said prime mover in a plane transverse to the planes containing said axis of oscillation, said members being symmetrically arranged around said axis of oscillation, and per se relatively symmetrically unbalanced, and means maintaining said rotatable members in xed relative positions.
  • a mechanical movement comprising a prime mover establishing an axis of oscillation, a plurality of floating gears each rotatable on its own axis by said prime mover in a plane transverse to the planes containing said axis of oscillation, said gears being symmetrically arranged around said axis of oscillation, weights secured to and mounted onthe several gears in such a manner that the latter are relatively symmetrically unbalanced, and means maintaining said gears in xed relative positions.
  • a mechanical movement comprising a mO- i tor having a motor shaft establishing an axis of oscillation, a gear secured to the motor shaft, a pair of gears engaged by said first-mentioned gear, weights secured to and mounted on the respective gears, said Weights being such as to render the gears symmetrically unbalanced, said Weights, due to the rotation of the gears, traveling in circular paths transversely to planes containing the axis of oscillation, whereby the gears oscillate in arcs of circles having a center in said axis of oscillation, and means maintaining said ⁇ gears in fixed relative positions.
  • a mechanical movement comprising a source of power establishing an axis of oscillation, a member rotatable by the source of power, said member being mounted to float around said axis of oscillation, means energized by the rotation of said member and imparting to the latter an orbital arcuate movement, means maintaining the axis of oscillation fixed, and means maintaining the axis of the rotatable member in a circle of which the axis of oscillation is a center.
  • a mechanical movement comprising a motor and motor shaft, a gear secured to the motor shaft, gears arranged in a common plane transverse to and about the motor shaft and driven by the rst-mentioned gear, Weights eccentrically mounted on the several last-mentioned gears, said gears and Weights being of such several effective masses that the resultant of their combined centrifugal forces exerts no torque on the axis of the motor shaft, and means maintaining said gears in fixed relative positions.
  • a mechanical movement comprising a motor and motor shaft, a gear secured to the motor shaft, a pair of gears symmetrically arranged around the motor shaft and engaged by the rstmentioned gear, said pair of gears having axes of rotation that are parallel to the axis of the motor shaft, Weights eccentrically mounted on said pair of gears, and means maintaining said gears in fixed relative positions.
  • a mechanical movement comprising a motor and motor shaft, a gear secured to the motor shaft, opposed ecceiitrically-vveighted gears rotatable by the first-mentioned gear, said opposed gears being mounted so as to cause their Weights, When the gears are rotated, each to swing in circles lying in planes perpendicular to the motor shaft, and means maintaining said gears in iixed relative positions.
  • a mechanical movement comprising a prime mover establishing an axis of oscillation, a plurality of oating members each rotatable on its own axis by said prime mover in a plane transverse to the planes containing said axis of oscillation, said members being symmetrically arranged around said axis of oscillation, and per se relatively symmetrically unbalanced, means maintaining said rotatable members in xed relative positions, and means for controlling the amplitude of the oscillatory strokes imparted to said floating members by the aforementioned elements.
  • a mechanical movement comprising a prime mover establishing an axis of oscillation, a plurality of floating members each rotatable on its own axis by said prime mover in a Yplane transverse to the planes containing said axis of oscillation, said members being symmetrically arranged around said axis of oscillation, and per se relatively symmetrically unbalanced, means maintaining said rotatable members in xed relative positions, and springs intersecting the Paths of the oscillatory movements imparted to said maintaining means by the aforementioned elements.
  • a mechanical movement comprising a prime mover establishing an axis of oscillation, a plurality of floating members each rotatable on its own axis by said prime mover in a plane transverse to the planes containing said axis of oscillation, said members being symmetrically arranged around said axis of oscillation, and per se relatively symmetrically unbalanced, means maintaining said rotatable members in fixed relative positions, and means for periodically storing part of the energy induced by the aforementioned elements to slow down the resultant oscillatory movements of the floating members, said means alternately releasing the stored energy to speed up said oscillatory movements.
  • a mechanical movement comprising a prime mover establishing an axis of oscillation, a plurality of floating members each rotatable on its own axis by said prime mover in a plane transverse to the planes containing said axisl of oscillation, said members being symmetrically arranged around said axis of oscillation, and per se relatively symmetrically unbalanced, means maintaining said rotatable members in fixed relative positions, and means for alternately accumulating and releasing the kinetic energy ⁇ induced by the aforementioned elements periodically to vary the oscillatory movements of the floating members.
  • a mechanical movement comprising a prime mover establishing an axis of oscillation, a plurality of floating members each rotatable on its own axis by said prime mover in a plane transverse to the planes containing said axis of oscillation, said members being symmetrically arranged around said axis of oscillation, and per se relatively symmetrically unbalanced, means maintaining said rotatable members in xed relative positions, and means for periodically storing part of the energy induced by the aforementioned elements to slow down the end of the resultant oscillatory movements of the floating members, said means alternately releasing the stored energy to speed up the beginning of said oscillatory movements.

Description

Aug. 27, 1940.
P. E. BARKER '2,212,872
MECHANICAL MOVEMENT original Filed April 3, 1955 4 shetssheet 1 Envcutor Aug. 27, 1940. P. E. BARKER 2,212,872
MECHANICAL MOVEMENT original Filed April 5, 1935 4 Sheets-Sheet 2 f2:76. 3a. i@ U www Gttorncgs Aug. 27, 1940. P. E. BARKER MECHANICAL MOVEMENT riginal Filed April s, 1935 4 Sheets'sheet 3 Cttorucgs Aug. 27, 1940. P. E. BARKER MECHANICAL MOVEMENT Original Filed April 5, 1935 4 Sheets-Sheet 4 nvcutor Patented Aug. 27, 1940 @riginal application April 3, 1935, Serial No.l 14,464. Divided and this application [January 13, 1939, Serial No. 250,791
15 Claims.
My invention particularly relates to improvements in mechanical movements, and the subject matter claimed in the instant application is a division of my pending application Serial No.
5 14,464, led April 3, i935, entitled Washing machines.
The structure and functioning of the improved mechanical movement claimed in the instant application are illustrated by the use thereof in a l washing machine of the agitator type in which the washing operation is performed by forward and backward movements of gyrator vanes which cause washing turbulence in the washing duid.
It will be noted that in this illustration of the l claimed subject matter a gyrator assembly is provided in which all linkage and crank elements are eliminated and which, preferably, is wholly located in the washing tub orchamber. The gyrator assembly, which includes the new and improved mechanical movement, comprises a motor and its housing, gearing and other mechanism necessary to effect the movements and reversals of gyrator vanes, and an assembly casing, al1 as one compact unit which can be economically manufactured and assembled, and which, after being assembled, will be hermetically sealed, and in which all moving parts work in oil which is enclosed and protected from pollution by dust and injurious gases.
The illustrated structure and functioning of the improved mechanical movement includes also illustrative means for controlling the character of the action induced by the functioning of the movement, the particular illustrative controlling means being adapted to cushion the energy that is generally abruptly expended and comparatively slowly recovered in starting and stopping an agitator incident to the periodic reversals of the directions of movement of the agitating vanes.
Other and related objects of my invention will appear from the detailed description of the construction and operation thereof hereinafter given, by reference to the accompanying drawings.
The annexed drawings and the following description set forth in detail certain means embodying my invention, suchY means constituting, however, but three of the various mechanical forms in which the principle of the invention may be illustrated.
In said annexed drawings:
Figure 1 is a central vertical section of a portable type of washing machine embodying my im- 55 proved mechanical movement, and in which the entire gyrator assembly is located in the washing chamber, the gure being taken in the plane indicated by the line i-Il Figure 2;
Figure 2 is a horizontal section, taken in the planes indicated by the line 2 2, Figure 1, one 5 of the extreme positions taken by certain elements, incident to the reversing action, being shown in broken lines;
Figure 3 is a broken horizontal section, taken in the planes indicated by the line 3 3, Figure 10 l, two extreme positions of certain spring elements and related parts during the reversing actions of the gyrator being shown in broken lines and in dot-and-dash lines, respectively; y
Figure 3a is a fragmentary central vertical 15 section, taken in the planes indicated by the line tez-3a, Figure 3; r
Figure 4 is a diagrammatic viewillustrating the effect upon certain movable bearings of certain weights eccentrically secured to certain rotating parts of my gyrator assembly, the Weights cooperating with certain spring members which alternately assist and oppose the movements of the bearings which are induced by the inertia of the eccentrically mounted rotating weights;
Figure 5 is a fragmentary central vertical section of another form of washing machine embodying my improved mechanical movement and in which the agitator actuating mechanism is 1ocated in a chamber separate from the washing chamber;
Figure 6 is a central vertical section, partially in elevation, of a form of washing apparatus embodying my improved mechanical movementv which is applied to a compartment of a standard laundry tray;
Figure 'l'is a plan view of the gyrator assembly shown in Figure 6 and Figure 8 is a plan view of two compartments 40 of a laundry tray in one of which is mounted a gyrator assembly embodying my improved mechanical movement, certain extreme positions assumed by the assembly during the reversing actions being indicated in broken lines.
Referring to the annexed drawings in which the same parts are indicated by the same respective numbers in the several views, and particularly referring to Figures 1, 2, 3, 3a, and fi, a tub l, which may be Aany suitable vessel of pract- 50 cable size and material, serves as a washing chamber, and is provided with a close fitting cover 2 having an exterior central knob portion 3 forming a` supportV for an vupper bearing 33. The tub i is provided with handles 62.' Within 55 this tub, I position a gyrator assembly 36 which is adapted to turn in the upper bearing 33 and in a lower opposed bearing 23 formed in an upwardly extension of a base plate 23 secured to the inner wall of the bottom of the tub I. A plate 22 is secured to the bottom of the gyrator casing and is formed with a downwardly-extended trunnion 22 which -is journalled in the bearing 23. The gyrator assembly includes an enclosed outer casing comprised of a saucershaped base member I2 upon which is erected an upper member 5 which converges inwardly and upwardly and at its upper central portion merges into a tube 32 extended upwardly through a sleeve 3Q which is journalled in the upper bearing 33. The tube 32 is provided with an electric socket (not shown) which is adapted to removably accommodate a plug 34 in which are secured electric conductors 3I. Downwardly extended through the tube 32 and through a plug 35 tightly fitted within the tube 32 and disposed adjacent the bottom of the tube are electric conductors 3| running to a motor ZI, the motor being of suitable R. P. M. to effect, through the speed reduction gearing used, to and fro movements of the gyrator vanes at a washing frequency, which frequency, as is well known, is comparatively low as compared with a vibrating frequency. The conductors 3l above the plug 35 and within the tube 32 are enclosed by an airtight sleeve 63 of sealing wax. Mounted upon the upper casing member 5 and exteriorly of the tube 32 and tightly fitted to the latter is an elongated hub 37 to which are secured the inner edges of a plurality of spaced agitator vanes 3l.
The motor il is formed with and. secured to a cover member II and a base member 2l, from the center of the latter of which a boss 28' extends upwardly and forms a bearing for a downwardly-extended motor shaft 38. The motor base member 2 is formed with outwardly-extended diametrically-opposed portions 29 having downwardly-extended tubular bosses 2t within which pins S and I@ are dependingly secured. These pins 9 and IU are enclosed in bushings 3@ which form journals for a pair of elongated hubs 'I2 and 82 secured respectively to horizontallyspaced gears 'I and 8 which engage at their inner adjacent edge portions with the opposite sides of a pinion 6 secured to the lower end of the motor shaft 38. The bodies of these gears l and 8 are formed with a plurality of spaced openings I and 8 in order to reduce their weight. The motor base member 2 is also formed with diametrically-opposed ears 45, Figure 2, spaced ninety degrees from the bosses 29 and forming supports for downwardly extending pins dii, Figures 1 and 2, which bear upon the casing member I2 and assist in supporting the motor 6i.
The motor and gearing are secured to the casing comprised of the members I2, 5, and 32 by means of pins 2B and 2l secured in and downwardly extended from the pins 9 and I il, respectively, and passing through the casing member I2. These pins and 2l also secured to the lower surface of the casing member I2 an inverted saucer-shaped plate I9. Projecting downwardly from, and secured to, the plate I9 are a pair of diametrically-opposed lugs 4I and t2, Figures 3 and 3a, whose function will be later described.
From the aforegoing description and the accompanying drawings, it is evident that the axes of the bearing pins S and Il) for the gears 'I and 8 are not fixed but, if means are provided for swinging them to and fro in arcs having centers concentric with the axis of the motor shaft 38, they are free so to swing, and that such swinging movements will be communicated to the gyrator assembly including the casing i2, 5, and Si', and vanes, the motor, and the plate I9. I shall now describe means for eifecting such swinging movements.
Securedto the gears l and 3, and adjacent the peripheries thereof, and to symmetrically disposed portions thereof, are weights I-II-I'I- Iii, the weights being in opposed pairs Iii-It and IIL-I8, respectively, fastened to the top and bottom faces of the gears and 8 by rivets 49. When the gears i and Il are rotated from a starting position such as illustrated, for instance, by the full line showing thereof in Figures 2 and 4, and the motor shaft 33 turns in a counter-clockwise direction, the gears i and S turn in a clock.- wise direction, and the weights IE-IG-Ii--I move toward the positions shown therefor in dotand-dash lines in Figure 4, the tangentially-directed forces created by the weights tending to move the axes of the bearing pins S and It in arcs having the axis of the motor shaft 38 as a center and in clockwise direction, Figures 2 and 4. rThis tendency of the pins il and I@ so to be moved continues until the rotation of the gears i and 8 has carried the weights through a suflicient arc to reverse the direction in which the tangentially--directed forces created by the weights tend to move the axes of the pins 9 and Iii. Then, until the continued rotation of the gears 'i and S has again reversed the direction of the throw induced by the inertia of the weights, the weights ith-Iii-Il'-IS and the gears l and 8 move toward the positions shown therefor in broken lines, Figure e, and the axes of the pins 9 and Iii move in the arcs in a counter-clockwise direction. These cycles are periodically repeated by the continued rotation. of the gears l and 8, and the axes of the pins 9 and i@ move back and forth in the paths of the two arcs shown in Figure 4 and, consequently the whole gyrator assembly including the vanes 3l', will have to and ro oscillating movements.
I provide means for intensifying the strokes of the vanes 3l" in an assembly such as thus far described, and for cushioning or equalizing the energy that would be expended in such an assemb-ly in stopping the pins Si and Il? and the related elements in one direction of movement and in starting the movement of these pins and elements in the other direction. These means will now be described.
Joni-nailed upon the upwardly-extended bearing 23 of the base plate 2S is an inner spring block Ell between which and outer spring blocks and to which inner and outer spring blocks, are secured by means of rivets il two leaf spring assemblies 25 and The lugs IIE and 52 which have been mentioned as extended downwardly from the plate I5 extend downwardly slightly further than the springs 25 and 26 and are disposed between the latter adjacent their ends so that the springs 25 and 2S will intercept these lugs II and t2 when the plate I is turned incident to the reciprocatory movements of the gyrator assembly. The lugs il and 12 are of a horizontal length slightly less than the distance between the opposed inner leaves of the springs 25 and 26, as clearly indicated in Figure 3 by the space tdi There are other lugs I3 and a pair of them and diametrically opposed, projected upwardly from the stationary base member 23, and
lying, normally, adjacently interiorly of the movable lugs lll and 52. These xed lugs G3 and M are disposed between the opposed springs 25 and 2S so as also to contact with the inner long leaves of the springs 25 and E6, after a slight movement of the latter from their normal positions, the amount oi such slight movement being represented by the space t', Figure 3.
From the aioregoing, it is evident that the reciprocatory movements of the gyrator assembly will cause vthe lug di to engage and move an end of one spring 25, and the lug i2 to engage and move an end or" the other spring 25, both spring movements being clockwise, if the direction of movement of the gearing is such as indicated by the dot-and-dash showing in Figure 4. However', the opposite ends of the respective .springs cannot move clockwise, as is true'oi the ends yinst-mentioned, but are stopped and bent into symmetrically opposite positions, to those assumed by the first-mentioned spring ends, by the xed lugs ift and d3. The result is indicated in the dot-and-dlash showing of Figure 3. If the gyrator assembly had been moved in the opposite direction to that just described, i. e., to the positions shown in broken lines in Figures 2 and 4, then the eiect upon the springs 25 and 25 and the positions assumed by the latter would be those indicated in the broken line showings of Figure 3.
The operation of the aforementioned elements, and the eiect upon the reversing of .directions of movement of the vanes 3l', are as follows:
When the gyrator assembly tends to move in counter-clockwise direction, for instance, Figure a, the springs 25 and 2t are increasingly tensioned toward the position illustrated by the broken line showing of Figure 3, this tensioning of the springs continuing until the reactive forces of the springs 25 and 25 are equal to the tangentially-directed forces of the weights l5-lS- Vlll-lil, by which time the rotation of the gears l and 8 has carried the weights to approximately the broken line positions shown in Figures 2 and 4. Then there is a dwell or rest period in the movement of the gyrator assembly in its reciprocatory path until the tangentially-directed forces or" the weights tends to reverse the direction of movement of the gyrator assembly. During this dwell period the gears l and 8 continue to rotate and the tangentially-'directed forces of the weights iEi--l-l'l-l are reversed in direction. As soon as these tangentially-directed forces tend to move the gyrator assembly in a direction the same as that in which the reactive forces of the tensioned springs 25 and 2G tend to move the gyrator assembly, then the weights and springs aggregate their impulses and snap the gyrator assembly toward the opposite end of its reciprocatory path oi movement, or tend to so snap it. This induced snap action of the gyrator assembly is through an arc of about when the cycle has been repeated often enough to have built up the full accumulative effect of the springs 25 and 26. Thus, the action of the springs 5 and 26 not only gives the gyrator assembly a snap action and increases its speed of recip-rocatory movement at the beginning of it stroke in one direction, but also slows up its movement at the end of the stroke in each direction and thus cushions or equalizes the energy which is expended in stopping the movement .of the gyrator assembly in one direction and in starting its movement in the opposite direction, when the weights rotate by the centers which define the changes of direction in which the tangentially-directed forces are exerted. This cushioning and smoothing out of energy application is occasioned, of course, by the resistance of the springs 25 and 26 to compression and by the reactive stresses exerted by the Vsprings when they are freed from the forces tending to compress them.
I provide means for lubricating moving parts and enclose the same so that there is no contamination by dust and injurious liquids and gases. These means comprise open bottom cups or shells i3 and it downwardly extended from the main bodies of the gears 'l and 8 and spaced somewhat from the bottom ends of the bushings @t so as to form oil cups from which by means of openings All in the bushings Si? and hubs l2 and E32 therefor the lubricant iinds entrance to the moving surfaces, there being provided a felt and wick arrangement @lll for eiecting the transier of the lubricant. The lubricant is splashed up into the cups i3 and ifi by their movement with the gears l and 8 from an oil well 39 which is formed in the bottom of the casing member l2 and is iilled to about the height of the bottom of the cups i3 and ist. The lubricant also travels upwardly and outwardly along the conical sides of the cups i3 and Ul due to the rotation of the gears i and 8. y l
In Figure 5, I disclose a form of washing apparatus embodying my improved mechanical movement in which the motor gearing, and related mechanism are disposed in the space t5 located exteriorlyof and beneath the washing chamber of the tub it and between the legs upon which the tub is supported. A casing Si for the operating mechanism is formed with an elongated standard 68 which extends upwardly into the washing chamber of the tub 'Sli and is connected to an agitator of any desired style provided with vanes iig. The standard t3 is supported by and turns in an elongated bearing 'lll mounted upon the inside face of the bottom of the washing chamber of the tub Efl.
Referring particularly to Figures 6, 7, and 8, I therein disclose an adaptation of washing apparatus embodying my improved movement to a compartment ci" a standard laundry tray, in which 5W represents such conflpartment ci a standard tub assembly which is supplied with hot and cold water through the pipes 5l. For supporting my improved gyrator assembly 35 in such a traycompartment 5t, I provide an upper cross bar 52 adapted to be tightly secured to the top of the compartment 55%] by means of clamps 53. This bar 5t has elongated downwardly-extended boss 5t interiorly of which and adjacent the bottom of which is` mounted a cylindrical journal member 55 forming the top of the gyrator assembly 3G. Secured to the top of the journal member is a tube 52.? which extends upwardly through the bar 52 and forms a conduit for conductors 5l leading to the motor il. Extending upwardly from the casing member 5 is a central vane support Si to which are attached a plurality of outwardly extended spaced varies 3l2. The journallmember 55 projects upwardly from this vane support 6l. Surrounding the conductor tube 55 is a coiled spring 59 secured at its upper end in the stationary member 52 and at its lower end in the journal member 55. The upper end of the tube 55 is exteriorly threaded and engaged by a nut 58 whereby the whole assembly can be locked in position, the nut58 being adapted to turn freely mechanical and smoothly upon the portion of the upper surface of the bar 52 with which it contacts. Such turning is caused by the turning of the tube 56 and the journal member 55 in the boss 54, and the turning of the vanes 312, and the motor 4, and the entire gyrator assembly, by means within the casing members 5 and l2 substantially identical With those described with reference to Figures 1, 2, 3, and 3a., except that the fixed base 23, the leaf springs 25 and 25, the cupshaped member I9, and the related mechanism beneath the member I9, which are described and shown with reference to the form of washing apparatus shown in Figures l, 2, 3, and 3a., are dispensed with in the form of washing apparatus shown in Figures 6, '7, and 8, and the effect of the springs 25 and 25 upon the swinging movements of the bearings 9 and lli described with reference to Figures 1, 2, 3, and 3a, is accomplished in the form of washing apparatus shown in Figures-5, 6, and '7, by the spring 59. Also, in this form of the washing apparatus, the casing members 5 and l2 are secured together by countersunk screws 62, Figure 7. It is evident that the arcuate movement of the axes of the pins 9 and lll, under the action of the Weights l'-l-l'l-IS, Will put the spring 59 under tension which will effect alternately a cushioning for, and a snapping of, the strokes of the vanes 36.
The form of Washing apparatus shown in Figures 6, 7, and 8, differs in one particular, in effect, from that shown in Figures 1, 2, 3, 3a, and 4, in that the spring 59 commences immediately to be put under tension, upon any movement of the gyrator assembly; Whereas, there is some slight movement of the gyrator assembly, before the springs 25 and 26 are so acted upon, in the construction shown in Figures l, 2, 3, 3a, and 4, because of the provision of the slight spaces 6l) and Figure 3, between the lugs lll, d2, 43, and lili, and the adjacent leaves of the springs 25 and 26.
What I claim is:
l. A mechanical movement comprising a fixed support and a movable support, a spring secured to the xed support and also connected to the movable support so as to be tensioned or released by a movement of the latter, a motor and a gear driven thereby, said gear being centrally mounted relative to the movable support, bearing pins connected to the movable support so as to effect a movement of the latter when the bearing pins move, the bearing pins being symmetrically arranged relative to the gear, members respectively rotatable about the bearing pins and driven by the gear, and means moving the bearing pins alternately in opposite directions, said means being energized by the momentum of the rotating members.
2. A mechanical movement comprising a fixed support and a movable support, a spring lsecured tothe fixed support and also connected to the movable support so as to be tensioned or released by a movement of the latter, a motor and a gear driven thereby, said gear being centrally mounted relative to the movable support, bearing pins connected to the movable support so as to effect ,a movement of the latter when the bearing pins move, the bearing pins being symmetrically arranged relative to the gear, and members respectively rotatable about the bearing pins and driven by the gear, said members being relatively symmetrically unbalanced so as to cause the centrifugal force created by the rotation of the members to pull said bearing pins alternately in opposite directions in arcs of a circle having its center in the axis of said gear.
3. A mechanical movement comprising a prime mover establishing an axis of oscillation, a oating member rotatable on its own axis by said prime mover in a plane transverse to the planes containing said axis of oscillation, a Weight secured to and eccentrically mounted on the rotatable member, means maintaining the axis of oscillation fixed, and means maintaining the axis of the rotatable member in a circle of Which the axis of oscillation is a center.
4. A mechanical movement comprising a prime mover establishing an axis of oscillation, a plurality of' floating members each rotatable on its ovvn axis by said prime mover in a plane transverse to the planes containing said axis of oscillation, said members being symmetrically arranged around said axis of oscillation, and per se relatively symmetrically unbalanced, and means maintaining said rotatable members in xed relative positions.
5. A mechanical movement comprising a prime mover establishing an axis of oscillation, a plurality of floating gears each rotatable on its own axis by said prime mover in a plane transverse to the planes containing said axis of oscillation, said gears being symmetrically arranged around said axis of oscillation, weights secured to and mounted onthe several gears in such a manner that the latter are relatively symmetrically unbalanced, and means maintaining said gears in xed relative positions.
6. A mechanical movement comprising a mO- i tor having a motor shaft establishing an axis of oscillation, a gear secured to the motor shaft, a pair of gears engaged by said first-mentioned gear, weights secured to and mounted on the respective gears, said Weights being such as to render the gears symmetrically unbalanced, said Weights, due to the rotation of the gears, traveling in circular paths transversely to planes containing the axis of oscillation, whereby the gears oscillate in arcs of circles having a center in said axis of oscillation, and means maintaining said `gears in fixed relative positions.
7. A mechanical movement comprising a source of power establishing an axis of oscillation, a member rotatable by the source of power, said member being mounted to float around said axis of oscillation, means energized by the rotation of said member and imparting to the latter an orbital arcuate movement, means maintaining the axis of oscillation fixed, and means maintaining the axis of the rotatable member in a circle of which the axis of oscillation is a center.
8. A mechanical movement comprising a motor and motor shaft, a gear secured to the motor shaft, gears arranged in a common plane transverse to and about the motor shaft and driven by the rst-mentioned gear, Weights eccentrically mounted on the several last-mentioned gears, said gears and Weights being of such several effective masses that the resultant of their combined centrifugal forces exerts no torque on the axis of the motor shaft, and means maintaining said gears in fixed relative positions.
9. A mechanical movement comprising a motor and motor shaft, a gear secured to the motor shaft, a pair of gears symmetrically arranged around the motor shaft and engaged by the rstmentioned gear, said pair of gears having axes of rotation that are parallel to the axis of the motor shaft, Weights eccentrically mounted on said pair of gears, and means maintaining said gears in fixed relative positions.
l0. A mechanical movement comprising a motor and motor shaft, a gear secured to the motor shaft, opposed ecceiitrically-vveighted gears rotatable by the first-mentioned gear, said opposed gears being mounted so as to cause their Weights, When the gears are rotated, each to swing in circles lying in planes perpendicular to the motor shaft, and means maintaining said gears in iixed relative positions.
11. A mechanical movement comprising a prime mover establishing an axis of oscillation, a plurality of oating members each rotatable on its own axis by said prime mover in a plane transverse to the planes containing said axis of oscillation, said members being symmetrically arranged around said axis of oscillation, and per se relatively symmetrically unbalanced, means maintaining said rotatable members in xed relative positions, and means for controlling the amplitude of the oscillatory strokes imparted to said floating members by the aforementioned elements.
12. A mechanical movement comprising a prime mover establishing an axis of oscillation, a plurality of floating members each rotatable on its own axis by said prime mover in a Yplane transverse to the planes containing said axis of oscillation, said members being symmetrically arranged around said axis of oscillation, and per se relatively symmetrically unbalanced, means maintaining said rotatable members in xed relative positions, and springs intersecting the Paths of the oscillatory movements imparted to said maintaining means by the aforementioned elements.
13. A mechanical movement comprising a prime mover establishing an axis of oscillation, a plurality of floating members each rotatable on its own axis by said prime mover in a plane transverse to the planes containing said axis of oscillation, said members being symmetrically arranged around said axis of oscillation, and per se relatively symmetrically unbalanced, means maintaining said rotatable members in fixed relative positions, and means for periodically storing part of the energy induced by the aforementioned elements to slow down the resultant oscillatory movements of the floating members, said means alternately releasing the stored energy to speed up said oscillatory movements.
14. A mechanical movement comprising a prime mover establishing an axis of oscillation, a plurality of floating members each rotatable on its own axis by said prime mover in a plane transverse to the planes containing said axisl of oscillation, said members being symmetrically arranged around said axis of oscillation, and per se relatively symmetrically unbalanced, means maintaining said rotatable members in fixed relative positions, and means for alternately accumulating and releasing the kinetic energy` induced by the aforementioned elements periodically to vary the oscillatory movements of the floating members.
15. A mechanical movement comprising a prime mover establishing an axis of oscillation, a plurality of floating members each rotatable on its own axis by said prime mover in a plane transverse to the planes containing said axis of oscillation, said members being symmetrically arranged around said axis of oscillation, and per se relatively symmetrically unbalanced, means maintaining said rotatable members in xed relative positions, and means for periodically storing part of the energy induced by the aforementioned elements to slow down the end of the resultant oscillatory movements of the floating members, said means alternately releasing the stored energy to speed up the beginning of said oscillatory movements.
PERCY E. BARKER.
US250791A 1935-04-03 1939-01-13 Mechanical movement Expired - Lifetime US2212872A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US250791A US2212872A (en) 1935-04-03 1939-01-13 Mechanical movement

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14464A US2143854A (en) 1935-04-03 1935-04-03 Washing machine
US250791A US2212872A (en) 1935-04-03 1939-01-13 Mechanical movement

Publications (1)

Publication Number Publication Date
US2212872A true US2212872A (en) 1940-08-27

Family

ID=26686136

Family Applications (1)

Application Number Title Priority Date Filing Date
US250791A Expired - Lifetime US2212872A (en) 1935-04-03 1939-01-13 Mechanical movement

Country Status (1)

Country Link
US (1) US2212872A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2432291A (en) * 1945-03-15 1947-12-09 Gen Electric Dishwashing apparatus
US2498293A (en) * 1947-08-29 1950-02-21 Horace W Peters Oscillating drive mechanism
US2513326A (en) * 1947-09-23 1950-07-04 Hutchinson Job Washing machine drive
US2565056A (en) * 1945-02-07 1951-08-21 Mullins Mfg Corp Tub and agitator for washing machines
US2656987A (en) * 1947-05-19 1953-10-27 Harold E Drake Grinding machine
US4712035A (en) * 1985-11-12 1987-12-08 General Electric Company Salient pole core and salient pole electronically commutated motor
US4835839A (en) * 1985-11-12 1989-06-06 General Electric Company Method of fabricating a salient pole electronically commutated motor
US5619871A (en) * 1985-11-12 1997-04-15 General Electric Company Laundry machine
US5752749A (en) * 1995-06-26 1998-05-19 Mando Machinery Corporation Anti-lock brake system for vehicle
US5918360A (en) * 1985-11-12 1999-07-06 General Electric Company Method of fabricating a salient pole electronically commutated motor
US6044718A (en) * 1998-06-02 2000-04-04 Lester; William T. Continuously variable transmission utilizing oscillating torque and one way drives
US6062096A (en) * 1998-06-02 2000-05-16 Lester; William T. Continuously variable transmission utilizing oscillating torque and one way drives
US20020011716A1 (en) * 1999-06-07 2002-01-31 Walsh Alan J. Cargo carrying deck for the tractor of a semitrailer truck
US20050252255A1 (en) * 2004-05-17 2005-11-17 Gray Peter G Method and system for washing
US7481127B2 (en) 2004-09-27 2009-01-27 Lester William T Continuously variable transmission using oscillating torque and one-way drives

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2565056A (en) * 1945-02-07 1951-08-21 Mullins Mfg Corp Tub and agitator for washing machines
US2432291A (en) * 1945-03-15 1947-12-09 Gen Electric Dishwashing apparatus
US2656987A (en) * 1947-05-19 1953-10-27 Harold E Drake Grinding machine
US2498293A (en) * 1947-08-29 1950-02-21 Horace W Peters Oscillating drive mechanism
US2513326A (en) * 1947-09-23 1950-07-04 Hutchinson Job Washing machine drive
US5918360A (en) * 1985-11-12 1999-07-06 General Electric Company Method of fabricating a salient pole electronically commutated motor
US4712035A (en) * 1985-11-12 1987-12-08 General Electric Company Salient pole core and salient pole electronically commutated motor
US4835839A (en) * 1985-11-12 1989-06-06 General Electric Company Method of fabricating a salient pole electronically commutated motor
US5619871A (en) * 1985-11-12 1997-04-15 General Electric Company Laundry machine
US5752749A (en) * 1995-06-26 1998-05-19 Mando Machinery Corporation Anti-lock brake system for vehicle
US6044718A (en) * 1998-06-02 2000-04-04 Lester; William T. Continuously variable transmission utilizing oscillating torque and one way drives
US6062096A (en) * 1998-06-02 2000-05-16 Lester; William T. Continuously variable transmission utilizing oscillating torque and one way drives
US20020011716A1 (en) * 1999-06-07 2002-01-31 Walsh Alan J. Cargo carrying deck for the tractor of a semitrailer truck
US20050252255A1 (en) * 2004-05-17 2005-11-17 Gray Peter G Method and system for washing
US7950254B2 (en) * 2004-05-17 2011-05-31 The Procter & Gamble Company Method and system for washing
US7481127B2 (en) 2004-09-27 2009-01-27 Lester William T Continuously variable transmission using oscillating torque and one-way drives

Similar Documents

Publication Publication Date Title
US2212872A (en) Mechanical movement
US2127317A (en) Vibratory motion producing apparatus
US2301046A (en) Clothes washer
US2222329A (en) Washing machine
US2071622A (en) Washing machine
US2831353A (en) Force producing apparatus
US2143854A (en) Washing machine
US2757544A (en) Vibrating apparatus utilizing a liquid as eccentric weight means
US1916871A (en) Mechanical movement for intermittent motion
US1942795A (en) Power transmission and speed reduction system
US2816450A (en) Washing machine transmission
US2234836A (en) Washing machine
US2622425A (en) Self-contained agitator for washing clothes
US1688665A (en) Washing machine
US2824454A (en) Rotary to oscillatory mechanical movement
US2272541A (en) Washing machine
USRE18010E (en) By the johnson
US2755651A (en) Drive mechanism for clothes washing machines
US2118362A (en) Mixing machine
US2270080A (en) Driving mechanism for washing machines
US2087562A (en) Variable speed operating mechanism for cotton cleaning feeders
US1334096A (en) Washing-machine
US2277829A (en) Driving mechanism
US1493474A (en) Washing-machine gearing
US2086931A (en) Speed reduction and motion translating mechanism