US2195417A - Vibrating piezoelectric relay - Google Patents

Vibrating piezoelectric relay Download PDF

Info

Publication number
US2195417A
US2195417A US173770A US17377037A US2195417A US 2195417 A US2195417 A US 2195417A US 173770 A US173770 A US 173770A US 17377037 A US17377037 A US 17377037A US 2195417 A US2195417 A US 2195417A
Authority
US
United States
Prior art keywords
piezoelectric
contact
relay
circuit
electromotive force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US173770A
Inventor
Warren P Mason
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AT&T Corp
Original Assignee
Bell Telephone Laboratories Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bell Telephone Laboratories Inc filed Critical Bell Telephone Laboratories Inc
Priority to US173770A priority Critical patent/US2195417A/en
Priority to GB31244/38A priority patent/GB520267A/en
Application granted granted Critical
Publication of US2195417A publication Critical patent/US2195417A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H57/00Electrostrictive relays; Piezoelectric relays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R17/00Piezoelectric transducers; Electrostrictive transducers

Definitions

  • FIG-6 LOAD /NVENTOR
  • FIG 10 A T TORNE Y Patented Apr. 2, 1940 UNITED sures PATENT orries w g vmaa'rmo rmzonacrarc may Warren 1'. Mason. West Orange. J., asllgnor to Bell Telephone
  • This invention relates to vibratinl mectric relays and more particularly to ringing Cir, cuits employing such relays.
  • a An object of the invention is to provide a vibrating device that may be operated over a relatively high resistance circuit such asa long telegraph conductor or submarine cable system.
  • Another object of the invention is to provide a device which will vibrate in response to a unidirectional electromotive force of a given polarity but not in response to one of opposite polarity whereby the polarity of the terminals of condensers and other apparatus may be ascertained.
  • An additional object is to provide an electromechanical vibrator, the rate of vibration of which may be readily varied.
  • Another object of the invention is to provide a vibrating piezoelectric circuit breaker in which the separation of the circuit-breaking contacts may be made as large as is desirable.
  • a further object of the invention is to produce an alternating current relay which is highly selective to currents of a given frequency.
  • a still further object of the invention is to decrease chattering of the contacts of piezoelectric relays.
  • Fig. 1 illustrates a circuit employing a remotely-controlled mechanical biased piezoelectric vibrator to serve as a source of alternating current
  • FIGs, 2 and 3 illustrate two difi'erent modifications ofvthe shape which the vibrating piezoelectric element itself may take 55
  • FIG. 4 shows a modification of the circuit of f r1 11 awman s. electrically biased piesoelectric ement is; employed;
  • mgisfl shows another modification of the cir- 1 in which a mechanically biased piezoelectric element is provided with contacts I! normallyo'pened instead of normally closed, as in Fig. 6 illustrates a circuit arrangement for employing vibrating apparatus similar to that of Fig. 5 to indicate the polarity of the terminals of 10 a condenser or other electrical element which is charged or which is traversed by electric current;
  • Fig. 7 discloses a system utilizing a quartz piezoelectric relay operating by virtue of extenl6 sional or longitudinal displacement to serve as a polarized relay;
  • Fig. 8 discloses a multi-element polarized relay having pairs of piezoelectric elements in frictional engagement with each other to provide damping; 50
  • Fig. 9 shows a frequency selective piezoelectric relay actuated by alternating current
  • Fig. 10 discloses a modification of the apparatus of Fig. 9;
  • Fig. 11 discloses a piezoelectric relay having a 5 circuit closer of the mercury column type
  • Fig. 12 illustrates a piezoelectric vibrator of U-shape provided with electrodes to operate it effectively as a pair of integrally connected tuning forks
  • Fig. 13 illustrates a two-party telephone circuit with a central ringing or calling station.
  • Fig. 1 there is shown key I I, together 'with its contact and electric source i8 and a relatively long circuit i1 connecting the key and source to a remote piezoelectric vibrator Ill in series with the primary winding of alternating current transformer i9 to the secondary winding of which load 20 is connected.
  • the vibrator element preferably comprises two thlnvfiat blades of piezoelectric material as, for example, Rochelle salt, clamped and held in juxtaposition as indicated by a base member 2!.
  • the clamping base member may be of the type disclosed in application Serial No. 131,160, to which reference has been made.
  • the blades of Rochelle salt are preferably coated on their two flat faceswith conducting material such as a thin film of metal or of aquadag, a colloidally fine suspension of carbon.
  • the two outer conducting faces are connected by a conductor 22 which is also electrically connected to a contact member 23 insulated from but carried by one of the piezoelectric elements.
  • the contiguous faces of the piezoelectric blades are likewise coated with conducting material and s5 are then preferably shellacked to protect the Rochelle salt against atmospheric moisture and to cause the juxtaposed surfaces of the two blades to adhere throughout their length.
  • the coating! or electrodes on the contiguous faces are electrically connectedby thin foil or in any other suitable manner to a conductor 24.
  • is mounted adjacent the contact member 28 and may be adjusted to such a position that the base 2i serves to mechanically bias the piezoelectric device II in such manner as to hold the contact 22 in close engagement with the contact 2
  • the piezoelectric force produced will hold the contact 22 out of engagement with the contact 25.
  • the path through resistance 26 enables the charge to be discharged at a rate depending upon the magnitude of that resistance.
  • disengaged may be determined by adjustment of the magnitude of resistance 26. It is possible in a. practical case to vary that period from a minute portion of a second up to a duration of several seconds.
  • the blades of element ll may be of the rectangular type disclosed in application, Serial No. 131,160, with the planes of their principal faces parallel to the B and C axes of the virgin Rochelle salt crystal and perpendicular to the A axis. They are preferably so cut that the central longitudinal axis of the blade is in a direction inclined 45totheBandCaxuofthevirgincrystal.
  • Fig. 5 shows an alternative apparatus in which the element II- is normally mechanically biased to an open position.
  • the capacitances associated with the blades are so charged as to initiate an action tending to bring the contact 23 into engagement with the contact 2
  • the time required for the relay to close its contacts after the circuit has been closed by the key I2 may be regulated by adjusting the magnitude of the variable series resistance and the position of the adjustable contact 2
  • a short-circulting action immediately takes place over 'the path afforded by conductor 82, thus permitting the mechanically biased element ll to return to its initial position. .Thereupon the charging process begins again.
  • the device functionsinthesamemannerasthoseofl lgs. lands to supply alternating current to impress an alternating electromotive force upon the load 2
  • Fig. 6 illustrates an apparatus included within the broken line rectangle for ascertaining the polarity of the terminals of an electrical device which is charged or traversed by unidirectional current.
  • a condenser 24 possessing an electrical charge, the polarity of which is to be ascertained.
  • Piezoelectric relay element ll may be identical with that of Pig. 6.
  • the chargthe remanent charge ingcircuit diflersfromthato'fl'lgdonlyinthst the transformer II is omitted and that in lieu of the charging source 8!, the charge of unknown" polarity on the condenser 84 is employed.
  • 'Ihe charging circuit is provided with a key I!
  • a galvanometer G shunted by a smoothing condenser I, as illustrated. If, upon closure of the key 82, the element It does not vibrate, the reversing switch 36 may be thrown into its alternate position whereupon the relay ll will be actuated to vibrate if the electromotive force across the terminals of the device 34 is sufficiently high. Since the element l8 vibrates only under the condition that an electromotive force of a particular polarity is applied to its terminals, the polarity of charge on the condenser II is definitely indicated. It is obvious that the apparatus is not limited toindication of polarity of the charge on a condenser but may equally well be applied to determine the polarity of the difierence of potential existing between any two points in an electric circuit.
  • Fig. 7 illustrates a piezoelectric relay comprising a quartz element cut from a plane perpendicular to the natural face of a virgin crystal and parallel to the optical axis. It has been found that the maximum value of the piezoelectric constant d1!
  • the rotation about the x axis is l clockwise with the positive (by compression) end of the X axis pointed toward the observer.
  • the quartz element is indicated at II with one end fixed to the base 39 in any desired manner and the other end connected by a link ll, preferably of insulating material, to armature ll with which are associated inner and outer contacts 42 and 43, which may preferably be ofthe adjustable type, such as indicated at 25 in Fig. 1.
  • switch 44 be operated in one direction to impress an electromotive force upon the element 38, armature ll will be moved to engagement with one contact whereas an opposite motion of switch 44 will cause the relay to move its armature into engagement with the other contact.
  • the remotely controlled devices .and 40 may be selectively energized by so operating switch 44 as to apply an electromotive force of the proper polarity to the polarized piezoelectric relay.
  • Fig. 8 discloses a system corresponding in its function to that of Fig. 'l in that it enables selective energization of devices 41 and 48 by actuation of a switch N in accordance with the polarity of the electromotive force applied to the polarized piezoelectric relay.
  • the relay itself consists of two units Ila and ilb, each like the element ll of Figs. 1. 4 and 5.
  • the units are each provided with their individual electrodes and are connected electrically in parallel to the charging source.
  • the units are pressed firmly together at the base. They are held in contact along the full length of their contiguous inner surfaces.
  • the effect of the impressed electromotive force is to cause both units to bend in the same direction with a consequent tendency to slippage between their engaging surfaces.
  • Thisfrictional contact is utilized to introduce damping for the purpose of reducing chattering.
  • thin coatings or surfaces of metal, or even of some abrasive material may be employed, as indicated at 49.
  • the double unit Ila-lib bends either to the right or to the left, depending upon the polarity of the impressed electromotive force as determined by the position of switch 44 and, consequently, closing the circuit of the remote controlled apparatus or ll, as the case may be.
  • the moving electric contact member carried by the piezoelectric element is insulatedfrom the coating on the blade.
  • the double unit piezoelectric element of Fig. 8 also has the advantage that it develops an efiective piezoelectric force in four different blades, thus giving rise to a greater energy translation than is readily obtainable with a structure of fewer blades.
  • the device having a greater electrical capacity has a greatly reduced input impedance, which may advantageously be used in connection with certain control circuits.
  • Fig. 9 discloses a piezoelectric relay designed to respond selectively to relatively low frequency alternating currents.
  • the vibrating element is preferably of the general type disclosed in Figs. 1 to 6 inclusive, but the free or contact carrying ends of the piezoelectric blades are enlarged as indicated at II, to give them an increased mass.
  • the natural frequency of the element is reduced in a manner converse to. that in which the natural frequencies of the elements of Figs. 2 and 3 are increased.
  • the ends ill may be made slightly more massive than is necessary and then ground at their outer tips until they attain the exact resonance frequency which is desired.
  • consisting of two piezoelectric blades, as illustrated, is provided with electrical contact elements 52 carried by and insulated from the electrode coatings of the blades and adapted to engage with stationary contacts SI.
  • an alternating electromotive force from source 55 is applied to the piezoelectric element to tend to bend it first to the right and then to the left in an alternating motion which follows thefrequency of the applied electromotive force.
  • the impressed electromotive force is of the natural frequency of the element 5
  • a smoothing filter ll consisting of shunt capacity elements and series inductance elements, as shown, enables the momentary impulses to function eifectively as a continuous unidirectional current. in some cases it may be possible to dispense with the smoothing filter Si and to rely entirely upon the slow-acting relay. Alternatively it is frequently possible to dispense with the slow-acting relay and to operate a relay of the ordinary type in conjunction with the smoothing filter ll.
  • Fig. 10 discloses a two-blade piezoelectric element of the general type disclosed in Fig. 9.
  • the electrical contactor system may,
  • Fig. 11 discloses a structure similar to that of Fig. 9 but differing in that the contact system of Fig. 9 is replaced by a U-shaped tube ll filled with mercury and having a central portion ll of capillary dimensions such that when the tube is vibrated from side to side during the operation of the relay, the capillary threadof mercury is broken and the circuit interrupted at that point. Modifications of this -normally closed circuit to adaptit to the same uses as the normally open circuit of the preceding figures will be obvious to those skilled in the art. It will be understood, of course, that for applied electromotive forces of frequencies to which the vibrating device does not vigorously respond the mechanical excitation of the tube 85 is insumcient to interrupt the capillary column of mercury.
  • Fig. 12 illustrates a modified form of vibrator which may be used in any of the circuits of the preceding figures.
  • the device consists of a single U-shaped vibrator element "I, preferably cut from a Rochelle salt crystal with the principal faces of the element '1 parallel to the B and C axes of the virgin crystal and perpendicular to the A axis.
  • the central longitudinal axis of the element 81 is preferably in a direction inclined 45 to the B or C axes of the virgin crystal.
  • the principal faces of the vibrating element each have two separate or divided conducting coatings IO, 6! of U-shaped form.
  • the input conductors II and H are connected respectively to the back and front of the pair of outer coatings Cl and conversely to the front and back of the pair of inner coatings 60.
  • the device comprises effectively a Rochelle salt tuning fork between coatings N nested within and integral with an outer Rochelle salt tuning fork lying between the coatings I.
  • the impressed electromotive force will tend to elongate the prongs of the inner tuning fork at the same time that it tends to contract the prongs of the other tuning fork, thus causing the prongs of the device as a whole to fiex toward and away from each other.
  • the normally open contacts 12 and II may be simultaneously closed and opened either in series in a single circuit or separately in individual circuits as may be desired
  • the applied frequency was 1520 cycles and an amplitude of motion of the movable contacts of about 6 mils with an applied electromotive force of 30 volts was obtained.
  • the device was operative to close the controlled circuit over a frequency range of about 40 cycles and failed to operate with impressed electromotive forces different more than 20 cycles from its major resonance frequency.
  • Fig. 13 illustrates an application of vibrating piezoelectric relays to a two-party telephone line.
  • subscriber's stations A and B are shown connected to a common pair of conductors leading to central station CS. All circuits are shown in the normal idle condition.
  • At each subscriber's station there is the usual telephone subscriber's set 14 with its normally open switchhook contact Ii.
  • switchhook In an alternate path normally closed by the switchhook is a ringer comprising in series a resistance ii and a piezoelectric vibrating element I1, which carries an insulated clapper II in position to strike two gongs l! and '0, the latter of which is connected electrically at a point between resistance 16 and the vibrating element 11.
  • the vibrator circuit comprising the ringing path just de scribed, the line, resistance II and battery ll at the central station corresponds quite closely to the vibrating system illustrated in Fig. I.
  • the electromotive force of the battery 02 normally connected to the line at the central. station is insuflicient to operate the piezoelectric ringer element 'I'I. Accordingly, no current will flow over the-line.
  • a piezoelectric relay It at he centralstation is connected in shunt to the resistance II and is provided with contacts .4 and II to close the circuit of a local source It, which normally passes by way of the upper contact of key 01 to signal lamp II.
  • a subscriber at station A or station B when, in initiating a call, a subscriber at station A or station B removes his telephone receiver from its switchbook he establishes a unidirectional current path through resistance II and the potential diiference between the terminals of the resistance is sumcient to actuate the piezoelectric relay it to close its local circuit and cause signal lamp N to give an indication to the operator at the central station.
  • the switching mechanism and circuits at the central station by which the line of the calling subscriber may be connected to another line also terminating at the central station form no part of the present invention and are, therefore, not illustrated. It will be understood, however, that any suitable switching circuits and apparatus may be employed at the central station for that P rp e.
  • the central station operator is provided with keys .1 and II for the purpose of calling the stations A and B respectively.
  • Each of these keys is, for simplicity, illustrated as a two-pole, two-position switch but is preferably of any of the well-known forms of keys used in telephone practice. These keys are spring biased to the normal idle positions in which they are shown.
  • the line circuit through resistance ll is transferred to the righthand contact of key 81 and passes by way of the connector 90 and a normally closed contact of key I! to positive terminal of source II which is connected ,in series-aiding fashion with source I! to the line circuit.
  • the electromotive force impressed upon the line by the two sources in series is sumciently large and is of the proper polarity to actuate the piezoelectric vibrator 11, the gong II of which corresponds electrically to the short-circuiting contact 25 of the vibrator of Fig. 5. Consequently, as long as the series electromotive force of sources 82 and OI is applied to the line, the bell at the called station continues to ring. when the subscriber at thecalled station answers, the central station operator may connect the line circuit of that station to the calling line circuit by suitable local cord or connecting circuits provided for that purpose but which are not shown.
  • the central station operator desires to call the subscriber at station B she may depress key 89 which carries along with it the key 81.
  • are connected in series-aiding with the line circuit just as in the case in which station A was called but with their polarity reversed with respect tothe line circuit as a result of the operation of the reversing switch associated with key 89. Consequently, vibrator ll of station A will not respond and only the oppositely poled piezoelectric vibrator of station 3 operates.
  • the relay 83 responds to energize solenoid 92, which locks keys 81 and 89 in the ringing position.
  • the line circuit is temporarily opened to deenergize the locking circuit of solenoid l2 and release the keys 8! and 89 to their normal positions.
  • a vibrating device comprising a piezoelectric element, means to apply an electromotive force to said element to cause a deformation thereof and means responsive to said deformation to temporarily remove. the applied electromotive force to permit the piezoelectric element to relieve the distortion.
  • a vibrating device comprising a piezoelectric element, means to apply an electromotive force to said element to cause a deformation thereof, and means responsive to the deformation of the element to effectively withdraw from it the applied electromotive force whereby the element returns to its position prior to deformation.
  • An electrostatic vibrator comprising a piezoelectric plate, a movable-contact carried thereby, a fixed contact with which the movable contact is adapted to engage, a current source having its two terminals connected to said contacts through a series resistance element, and a pair of electrodes associated with the piezoelectric plate and connected respectively to the terminals of the resistance element.
  • An apparatus for ascertaining the polarity of the difference of potential existing between two points in an electric circuit comprising a pair of exploring terminals adapted to be electrically connected with the points whose potential difference is to be studied, a path connecting the exploring terminals including a piezoelectric vibrator responsive to electromotive forces of one polarity, and means for reversing the connections between the vibrator and the exploring terminals.
  • a telephone ringing circuit comprising a piezoelectric vibrator, an armature carried thereby, a signal-producing element with which the armature is adapted to contact during vibration of the vibrator, and means controlled by the contact of the armature and element to sustain vibrations of the vibrator.
  • a vibrating device comprising a piezoelectric element, means to subject the device to an electric field to cause a deformation thereof and means responsive to the deformation to apply a counter electric field to overcome the first applied field and to induce an opposite deformation to restore the device to its original state whereby through the successive actions of the counter fields the device is maintained in vibration.
  • a telephone system comprising a central station having a source of electromotive force, l two-party line terminating at the station, two subscribers stations connected to the line at points electrically remote from the central station, each of said subscribers stations comprising a, piezoelectric vibrator which responds to an electromotive force of one polarity only to produce a cell slam-l whereby the operator at the central station my cell one subscriber by applying an electromotive force or one polarity to the line and the other by applying an electrometive force of opposite polerlty.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Telephone Function (AREA)
  • Connections Arranged To Contact A Plurality Of Conductors (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

w. P. MASON VIBRATING PIEZOELECTRIC RELAY med Nov. 10, 1937 2 Sheets-Sheet 1 FIGS FIG?
FIG-6 LOAD /NVENTOR By "(R/JASON ATTORNEY Ap" 2, 1940. w. P. MASON VIBRATING PIEZOELECTRIC RELAY FilQd NOV. 10, 1937 2 Sheets-Sheet 2 lNVENTOR WPMASON 4 v M FIG 10 A T TORNE Y Patented Apr. 2, 1940 UNITED sures PATENT orries w g vmaa'rmo rmzonacrarc may Warren 1'. Mason. West Orange. J., asllgnor to Bell Telephone This invention relates to vibratinl mectric relays and more particularly to ringing Cir, cuits employing such relays. a An object of the invention is to provide a vibrating device that may be operated over a relatively high resistance circuit such asa long telegraph conductor or submarine cable system.
Another object of the invention is to provide a device which will vibrate in response to a unidirectional electromotive force of a given polarity but not in response to one of opposite polarity whereby the polarity of the terminals of condensers and other apparatus may be ascertained.
is An additional object is to provide an electromechanical vibrator, the rate of vibration of which may be readily varied. M
Another object of the invention is to provide a vibrating piezoelectric circuit breaker in which the separation of the circuit-breaking contacts may be made as large as is desirable.
A further object of the invention is to produce an alternating current relay which is highly selective to currents of a given frequency.
A still further object of the invention is to decrease chattering of the contacts of piezoelectric relays. j
Piezoelectric relays of various types, together with circuits for controlling their speed of operation, are described and claimed in the copending application of W. P. Mason (Case 37), Serial No. 131,160, filed March 16, 1937. The present invention has to do with additional improvements in 45 erence to the following description taken in connection with the accompanying drawings, in which Fig. 1 illustrates a circuit employing a remotely-controlled mechanical biased piezoelectric vibrator to serve as a source of alternating current;
Figs, 2 and 3 illustrate two difi'erent modifications ofvthe shape which the vibrating piezoelectric element itself may take 55 Fig. 4 shows a modification of the circuit of f r1 11 awman s. electrically biased piesoelectric ement is; employed;
mgisflshows another modification of the cir- 1 in which a mechanically biased piezoelectric element is provided with contacts I! normallyo'pened instead of normally closed, as in Fig. 6 illustrates a circuit arrangement for employing vibrating apparatus similar to that of Fig. 5 to indicate the polarity of the terminals of 10 a condenser or other electrical element which is charged or which is traversed by electric current;
Fig. 7 discloses a system utilizing a quartz piezoelectric relay operating by virtue of extenl6 sional or longitudinal displacement to serve as a polarized relay;
Fig. 8 discloses a multi-element polarized relay having pairs of piezoelectric elements in frictional engagement with each other to provide damping; 50
Fig. 9 shows a frequency selective piezoelectric relay actuated by alternating current;
Fig. 10 discloses a modification of the apparatus of Fig. 9;
Fig. 11 discloses a piezoelectric relay having a 5 circuit closer of the mercury column type;
Fig. 12 illustrates a piezoelectric vibrator of U-shape provided with electrodes to operate it effectively as a pair of integrally connected tuning forks, and 30 Fig. 13 illustrates a two-party telephone circuit with a central ringing or calling station.
Referring to Fig. 1, there is shown key I I, together 'with its contact and electric source i8 and a relatively long circuit i1 connecting the key and source to a remote piezoelectric vibrator Ill in series with the primary winding of alternating current transformer i9 to the secondary winding of which load 20 is connected. The vibrator element preferably comprises two thlnvfiat blades of piezoelectric material as, for example, Rochelle salt, clamped and held in juxtaposition as indicated by a base member 2!. The clamping base member may be of the type disclosed in application Serial No. 131,160, to which reference has been made. The blades of Rochelle salt are preferably coated on their two flat faceswith conducting material such as a thin film of metal or of aquadag, a colloidally fine suspension of carbon. The two outer conducting faces are connected by a conductor 22 which is also electrically connected to a contact member 23 insulated from but carried by one of the piezoelectric elements. The contiguous faces of the piezoelectric blades are likewise coated with conducting material and s5 are then preferably shellacked to protect the Rochelle salt against atmospheric moisture and to cause the juxtaposed surfaces of the two blades to adhere throughout their length. The coating! or electrodes on the contiguous faces are electrically connectedby thin foil or in any other suitable manner to a conductor 24. An adjustable contact member 2| is mounted adjacent the contact member 28 and may be adjusted to such a position that the base 2i serves to mechanically bias the piezoelectric device II in such manner as to hold the contact 22 in close engagement with the contact 2|. It will be apparent, therefore, that when key I at the remote position is closed, current will flow from the source i| over the line and by way of conductors 22 and 24 to the outer and inner coatings respectively, of the two blades of Rochelle salt constituting the piece electric element It. If the blades are cut in wellknown manner so that upon application M an electromotive force to their opposite faces they tend to change their longitudinal dimension, and if the source I! be so poled as to cause the righthand blade to contract, it will simultaneously tend to cause the left-hand blade to which an oppositely poled electromotive force is applied to elongate. Under these circumstances, the piezoelectric element II as a whole is caused to warp to the right in the manner of the well-known bimetallic thermostat, thus withdrawing contact 2| from engagement with the adjustable contact 2|. There is connected in shunt to the piezoelectric element I8 and between conductors 22 and 24, a path including a variable resistor 2|. It will be appreciated that upon separation of the contacts 23 and 25 the individual blades of the element ll, together with their conductive coatings, behave as condensers which have been charged by current flowing over the line from the source i0. As long as the charge upon these condensers persists, the piezoelectric force produced will hold the contact 22 out of engagement with the contact 25. However, the path through resistance 26 enables the charge to be discharged at a rate depending upon the magnitude of that resistance. As explained in copending application, Serial No. 131,160, to which reference has been previously made, the duration of the period in which the element It is maintained in the operated position with the contacts 23 and 2| disengaged, may be determined by adjustment of the magnitude of resistance 26. It is possible in a. practical case to vary that period from a minute portion of a second up to a duration of several seconds. When finally the charge has been dissipated to an extent sumcient to permit the element II to return to a position at which contact 23 reengages contact 25, the capacity elements comprising the capacitances of the blades of element I8 will again receive a charge and the operation just described will be repeated. In this manner pulses of charging current pass through the primary winding of transformer "upon each engagement of the contacts. An alternating electromotive force is, therefore, induced in the secondary winding of the transformer II and impressed upon the load 20.
The blades of element ll may be of the rectangular type disclosed in application, Serial No. 131,160, with the planes of their principal faces parallel to the B and C axes of the virgin Rochelle salt crystal and perpendicular to the A axis. They are preferably so cut that the central longitudinal axis of the blade is in a direction inclined 45totheBandCaxuofthevirgincrystal.
areas" in some instances. however, it may be desirable to increase the natural resonance frequency of the crystal. This may be done by decreasing the mass of material near the free or vibrating end increased to 206 cycles.
devicesimilartothatofl'igi, whichthevibratingelement llisnormallyin neutral position such that its contact 2| is disengaged from the adjustable stationary contact Akey2lineerieswithanelectricalbiasing andavariableresistancefl servestc Upon closure of the key 21, force is applied to the blades of element ll, causing it to bend in such direction as to bring the contacts into engagement. The rate of operation of the relay is determined by the time in which the capacities of the blades are charged through the variable resistance 2|. Upon engagement of the contacts a path is established by way of conductor 2|, source ll and the primary winding of transformer II. The charge impressed by the biasing source 2| is quickly neutralized by a counter-charge impressed by the oppositely poled source 2!. Upon a:
reversal of its-charge the element ll bends in such direction es to break the engagement with the contacts, whereupon is gradually overcome and reversed by the source 2| until finally the element II is caused to bend again in the direction to engage contact 22 with the stationary contact 2|. The successive charging impulses from the source 2i serve to build up in the secondary winding of transformer I! an alternating electromotive force which is impressed upon the load 2|.
Fig. 5 shows an alternative apparatus in which the element II- is normally mechanically biased to an open position. Upon closure of the key 22 the capacitances associated with the blades are so charged as to initiate an action tending to bring the contact 23 into engagement with the contact 2|. The time required for the relay to close its contacts after the circuit has been closed by the key I2 may be regulated by adjusting the magnitude of the variable series resistance and the position of the adjustable contact 2|. Upon engagement of the contacts a short-circulting action immediately takes place over 'the path afforded by conductor 82, thus permitting the mechanically biased element ll to return to its initial position. .Thereupon the charging process begins again. The device, therefore, functionsinthesamemannerasthoseofl lgs. lands to supply alternating current to impress an alternating electromotive force upon the load 2|.
Fig. 6 illustrates an apparatus included within the broken line rectangle for ascertaining the polarity of the terminals of an electrical device which is charged or traversed by unidirectional current. In the particular example illustrated in Fig, 6, there is shown a condenser 24 possessing an electrical charge, the polarity of which is to be ascertained. Piezoelectric relay element ll may be identical with that of Pig. 6. The chargthe remanent charge ingcircuit diflersfromthato'fl'lgdonlyinthst the transformer II is omitted and that in lieu of the charging source 8!, the charge of unknown" polarity on the condenser 84 is employed. 'Ihe charging circuit is provided with a key I! and a reversing switch 8|. Connections are established between the terminals of condenser 84 and of the reversing switch 36, in any simple manner as, for example, by means of conducting clips 31. It will be apparent, therefore, that if the polarity of thecharge on the condenser I4 is correct and its magnitude sumclent, that upon closure of the key 32 the element II will be actuated in the same manner as in the apparatus of Fig. 5. A visual indication will, therefore, be had from the operation of the vibrating element it. If for any reason it may be inconvenient to depend upon such a visual indication, there may be included in the path of the short-circuiting conductor 33 a galvanometer G shunted by a smoothing condenser I, as illustrated. If, upon closure of the key 82, the element It does not vibrate, the reversing switch 36 may be thrown into its alternate position whereupon the relay ll will be actuated to vibrate if the electromotive force across the terminals of the device 34 is sufficiently high. Since the element l8 vibrates only under the condition that an electromotive force of a particular polarity is applied to its terminals, the polarity of charge on the condenser II is definitely indicated. It is obvious that the apparatus is not limited toindication of polarity of the charge on a condenser but may equally well be applied to determine the polarity of the difierence of potential existing between any two points in an electric circuit.
Fig. 7 illustrates a piezoelectric relay comprising a quartz element cut from a plane perpendicular to the natural face of a virgin crystal and parallel to the optical axis. It has been found that the maximum value of the piezoelectric constant d1! which relates the longitudinal extension along the Y axis to the electric field, applied in a direction along an X axis perpendicular to the principal or electrode faces, occurs for a righthanded quartz crystal-defined as one which rotates the plane of polarization of plane polarized light traveling along the optic or Z axis in the manner of a right-handed screw or in a clockwise direction when viewed along the optic axis from the same side of the crystal as that on which the source of light is placed-when the rectangular strip or element has its length or principal longitudinal dimension Y in a direction at an angle of l with respect to the Y axis and counter-clockwise with respect to the electrical axis X when viewed from the positive (by compression) terminal of that axis. For a lefthanded crystal, the rotation about the x axis is l clockwise with the positive (by compression) end of the X axis pointed toward the observer. The quartz element is indicated at II with one end fixed to the base 39 in any desired manner and the other end connected by a link ll, preferably of insulating material, to armature ll with which are associated inner and outer contacts 42 and 43, which may preferably be ofthe adjustable type, such as indicated at 25 in Fig. 1. If switch 44 be operated in one direction to impress an electromotive force upon the element 38, armature ll will be moved to engagement with one contact whereas an opposite motion of switch 44 will cause the relay to move its armature into engagement with the other contact. It follows that the remotely controlled devices .and 40 may be selectively energized by so operating switch 44 as to apply an electromotive force of the proper polarity to the polarized piezoelectric relay.
Fig. 8 discloses a system corresponding in its function to that of Fig. 'l in that it enables selective energization of devices 41 and 48 by actuation of a switch N in accordance with the polarity of the electromotive force applied to the polarized piezoelectric relay. The relay itself consists of two units Ila and ilb, each like the element ll of Figs. 1. 4 and 5. The units are each provided with their individual electrodes and are connected electrically in parallel to the charging source. The units are pressed firmly together at the base. They are held in contact along the full length of their contiguous inner surfaces. The effect of the impressed electromotive force is to cause both units to bend in the same direction with a consequent tendency to slippage between their engaging surfaces. Thisfrictional contact is utilized to introduce damping for the purpose of reducing chattering. In order to prevent a considerable wearing which might take place between the surfaces in frictional engagement,- it is desirable to coat these surfaces with some wear-resisting material. For this purpose thin coatings or surfaces of metal, or even of some abrasive material, may be employed, as indicated at 49. In operation, the double unit Ila-lib bends either to the right or to the left, depending upon the polarity of the impressed electromotive force as determined by the position of switch 44 and, consequently, closing the circuit of the remote controlled apparatus or ll, as the case may be. It will, of course, be understood that in this instance as in that of the previous disclosures, the moving electric contact member carried by the piezoelectric element is insulatedfrom the coating on the blade. The double unit piezoelectric element of Fig. 8 also has the advantage that it develops an efiective piezoelectric force in four different blades, thus giving rise to a greater energy translation than is readily obtainable with a structure of fewer blades. Moreover, the device having a greater electrical capacity, has a greatly reduced input impedance, which may advantageously be used in connection with certain control circuits.
Fig. 9 discloses a piezoelectric relay designed to respond selectively to relatively low frequency alternating currents. The vibrating element is preferably of the general type disclosed in Figs. 1 to 6 inclusive, but the free or contact carrying ends of the piezoelectric blades are enlarged as indicated at II, to give them an increased mass. Thus, the natural frequency of the element is reduced in a manner converse to. that in which the natural frequencies of the elements of Figs. 2 and 3 are increased. In order to produce a device which willbe resonant at a definite predetermined frequency, the ends ill may be made slightly more massive than is necessary and then ground at their outer tips until they attain the exact resonance frequency which is desired. It has been found readily possible to produce such piezoelectric relays of Rochelle salt to resonate at a frequency of 20 cycles. The vibrating element 5| consisting of two piezoelectric blades, as illustrated, is provided with electrical contact elements 52 carried by and insulated from the electrode coatings of the blades and adapted to engage with stationary contacts SI. Whenthe key N is closed an alternating electromotive force from source 55 is applied to the piezoelectric element to tend to bend it first to the right and then to the left in an alternating motion which follows thefrequency of the applied electromotive force. If the impressed electromotive force is of the natural frequency of the element 5|, the motion of the element will build up to such an extent that it closes its contacts first to the right and then to the left in alternation. Upon each closure of a pair of contacts the circult of source 58 is closed to transmit an impulse to slow-acting relay ll which actuates an armature 58 associated with stationary contact I9 and circuit 60. A smoothing filter ll, consisting of shunt capacity elements and series inductance elements, as shown, enables the momentary impulses to function eifectively as a continuous unidirectional current. in some cases it may be possible to dispense with the smoothing filter Si and to rely entirely upon the slow-acting relay. Alternatively it is frequently possible to dispense with the slow-acting relay and to operate a relay of the ordinary type in conjunction with the smoothing filter ll.
It has been found possible to tune such relays to respond and to operate effectively at a definite frequency of, for example, cycles, with as small an input power as 5 milliwatts and not to respond to currents of frequencies differing by as little as a single cycle from the desired response frequency.
Fig. 10 discloses a two-blade piezoelectric element of the general type disclosed in Fig. 9. In
- order to still further increase the mass of the trated. The electrical contactor system may,
however, be identical with that disclosed" in Fig.
' 9. It is'found that the resonance frequency and the effective response of the piezoelectric vibrator, particularly in the case of Rochelle salt, are somewhat subject to temperature change. In order to compensate for this effect mica dielectric strips 04 may be cemented to the outer faces of the piezoelectric blades and the outer conductive coatings to which the conductor 22 is connected may be applied to the exterior surface of the mica. This effectively introduces in series with each piezoelectric blade the capacity of the condensers of which the mica sheet forms the dielectric. The series capacitances tend to stabilize the response frequency of the device with varying temperature. This is for the reason that Rochelle salt has a maximum capacitance and piezoelectric response at about 24.5 0., hence at that temperature most of the driving force is expended across the series condenser and the response of the piezoelectric device is reduced. As the temperature changes from 24.5 C., the effective capacity across the piezoelectric blade itself falls away rapidly and soon it becomes less than that of the series condenser so that the relative portion of the driving voltageeifective on the piezoelectric element is increased in such manner as to tend to compensate for its reduced piezoelectric sensitivity. The
broad idea of compensating for the effects of temperature changes upon the response of piezoelectric devices is disclosed and claimed in the copending application, Serial No. 131,160. It will, of course, be understood that the temperature compensating feature of the device of Fig.
10 is applicable to eachof the Rochelle salt vibrators disclosed in the preceding figures and the drawings of these figures are to be deemed as including that feature in all instances in which temperature compensation is an important factor.
Fig. 11 discloses a structure similar to that of Fig. 9 but differing in that the contact system of Fig. 9 is replaced by a U-shaped tube ll filled with mercury and having a central portion ll of capillary dimensions such that when the tube is vibrated from side to side during the operation of the relay, the capillary threadof mercury is broken and the circuit interrupted at that point. Modifications of this -normally closed circuit to adaptit to the same uses as the normally open circuit of the preceding figures will be obvious to those skilled in the art. It will be understood, of course, that for applied electromotive forces of frequencies to which the vibrating device does not vigorously respond the mechanical excitation of the tube 85 is insumcient to interrupt the capillary column of mercury.
Fig. 12 illustrates a modified form of vibrator which may be used in any of the circuits of the preceding figures. The device consists of a single U-shaped vibrator element "I, preferably cut from a Rochelle salt crystal with the principal faces of the element '1 parallel to the B and C axes of the virgin crystal and perpendicular to the A axis. The central longitudinal axis of the element 81 is preferably in a direction inclined 45 to the B or C axes of the virgin crystal. The principal faces of the vibrating element each have two separate or divided conducting coatings IO, 6! of U-shaped form. The input conductors II and H are connected respectively to the back and front of the pair of outer coatings Cl and conversely to the front and back of the pair of inner coatings 60. It will be apparent that the device comprises effectively a Rochelle salt tuning fork between coatings N nested within and integral with an outer Rochelle salt tuning fork lying between the coatings I. It will also be apparent that with the connections as indicated, the impressed electromotive force will tend to elongate the prongs of the inner tuning fork at the same time that it tends to contract the prongs of the other tuning fork, thus causing the prongs of the device as a whole to fiex toward and away from each other. In this manner the normally open contacts 12 and II may be simultaneously closed and opened either in series in a single circuit or separately in individual circuits as may be desired In an example of an apparatus in which such a device was used, the applied frequency was 1520 cycles and an amplitude of motion of the movable contacts of about 6 mils with an applied electromotive force of 30 volts was obtained. The device was operative to close the controlled circuit over a frequency range of about 40 cycles and failed to operate with impressed electromotive forces different more than 20 cycles from its major resonance frequency.
Fig. 13 illustrates an application of vibrating piezoelectric relays to a two-party telephone line. In this circuit subscriber's stations A and B are shown connected to a common pair of conductors leading to central station CS. All circuits are shown in the normal idle condition. At each subscriber's station there is the usual telephone subscriber's set 14 with its normally open switchhook contact Ii. In an alternate path normally closed by the switchhook is a ringer comprising in series a resistance ii and a piezoelectric vibrating element I1, which carries an insulated clapper II in position to strike two gongs l! and '0, the latter of which is connected electrically at a point between resistance 16 and the vibrating element 11. It will be observed that the vibrator circuit comprising the ringing path just de scribed, the line, resistance II and battery ll at the central station corresponds quite closely to the vibrating system illustrated in Fig. I. However, the electromotive force of the battery 02 normally connected to the line at the central. station is insuflicient to operate the piezoelectric ringer element 'I'I. Accordingly, no current will flow over the-line. A piezoelectric relay It at he centralstation is connected in shunt to the resistance II and is provided with contacts .4 and II to close the circuit of a local source It, which normally passes by way of the upper contact of key 01 to signal lamp II. when, in initiating a call, a subscriber at station A or station B removes his telephone receiver from its switchbook he establishes a unidirectional current path through resistance II and the potential diiference between the terminals of the resistance is sumcient to actuate the piezoelectric relay it to close its local circuit and cause signal lamp N to give an indication to the operator at the central station. The switching mechanism and circuits at the central station by which the line of the calling subscriber may be connected to another line also terminating at the central station form no part of the present invention and are, therefore, not illustrated. It will be understood, however, that any suitable switching circuits and apparatus may be employed at the central station for that P rp e.
The central station operator is provided with keys .1 and II for the purpose of calling the stations A and B respectively. Each of these keys is, for simplicity, illustrated as a two-pole, two-position switch but is preferably of any of the well-known forms of keys used in telephone practice. These keys are spring biased to the normal idle positions in which they are shown. Upon depression of key 81 to call station A, the line circuit through resistance ll is transferred to the righthand contact of key 81 and passes by way of the connector 90 and a normally closed contact of key I! to positive terminal of source II which is connected ,in series-aiding fashion with source I! to the line circuit. The electromotive force impressed upon the line by the two sources in series is sumciently large and is of the proper polarity to actuate the piezoelectric vibrator 11, the gong II of which corresponds electrically to the short-circuiting contact 25 of the vibrator of Fig. 5. Consequently, as long as the series electromotive force of sources 82 and OI is applied to the line, the bell at the called station continues to ring. when the subscriber at thecalled station answers, the central station operator may connect the line circuit of that station to the calling line circuit by suitable local cord or connecting circuits provided for that purpose but which are not shown.
When the operator at the central station depresses key 81 to call station A she initiates vibration of the piezoelectric vibrator relay 'l'l at the called station as has been explained. This produces an impulse current over the line which operates the relay .3 to close its contacts thus energizing holding solenoid 92. As shown in the drawing the solenoid I2 is connected in a looking circuit associated with the armature or switch member of key 81 to lock the key ll in depressed position. This is effected by a latch 93 carried by the moving element of the solenoid, when energized, into such position as to hold either or both of keys I! and 89 that happen at the time to be depressed. When the called subscriber in answering actuates his switchhook he momentarily opens the line circuit interrupting the operation of his own bell and permitting solenoid 82 to deenergize and release keys 8'! and 88, which thereupon return to their normal positions.
If the central station operator desires to call the subscriber at station B she may depress key 89 which carries along with it the key 81. In this instance the sources 82 and 9| are connected in series-aiding with the line circuit just as in the case in which station A was called but with their polarity reversed with respect tothe line circuit as a result of the operation of the reversing switch associated with key 89. Consequently, vibrator ll of station A will not respond and only the oppositely poled piezoelectric vibrator of station 3 operates. As before, the relay 83 responds to energize solenoid 92, which locks keys 81 and 89 in the ringing position. As soon as the called party at station B responds and lifts his receiver from its hook, the line circuit is temporarily opened to deenergize the locking circuit of solenoid l2 and release the keys 8! and 89 to their normal positions.
What is claimed is:
l. A vibrating device comprising a piezoelectric element, means to apply an electromotive force to said element to cause a deformation thereof and means responsive to said deformation to temporarily remove. the applied electromotive force to permit the piezoelectric element to relieve the distortion.
2. A vibrating device comprising a piezoelectric element, means to apply an electromotive force to said element to cause a deformation thereof, and means responsive to the deformation of the element to effectively withdraw from it the applied electromotive force whereby the element returns to its position prior to deformation.
3. An electrostatic vibrator comprising a piezoelectric plate, a movable-contact carried thereby, a fixed contact with which the movable contact is adapted to engage, a current source having its two terminals connected to said contacts through a series resistance element, and a pair of electrodes associated with the piezoelectric plate and connected respectively to the terminals of the resistance element.
4. An apparatus for ascertaining the polarity of the difference of potential existing between two points in an electric circuit comprising a pair of exploring terminals adapted to be electrically connected with the points whose potential difference is to be studied, a path connecting the exploring terminals including a piezoelectric vibrator responsive to electromotive forces of one polarity, and means for reversing the connections between the vibrator and the exploring terminals.
5. A telephone ringing circuit comprising a piezoelectric vibrator, an armature carried thereby, a signal-producing element with which the armature is adapted to contact during vibration of the vibrator, and means controlled by the contact of the armature and element to sustain vibrations of the vibrator.
6. A vibrating device comprising a piezoelectric element, means to subject the device to an electric field to cause a deformation thereof and means responsive to the deformation to apply a counter electric field to overcome the first applied field and to induce an opposite deformation to restore the device to its original state whereby through the successive actions of the counter fields the device is maintained in vibration.
"I. A telephone system comprising a central station having a source of electromotive force, l two-party line terminating at the station, two subscribers stations connected to the line at points electrically remote from the central station, each of said subscribers stations comprising a, piezoelectric vibrator which responds to an electromotive force of one polarity only to produce a cell slam-l whereby the operator at the central station my cell one subscriber by applying an electromotive force or one polarity to the line and the other by applying an electrometive force of opposite polerlty.
WARREN P. MASON.
US173770A 1937-11-10 1937-11-10 Vibrating piezoelectric relay Expired - Lifetime US2195417A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US173770A US2195417A (en) 1937-11-10 1937-11-10 Vibrating piezoelectric relay
GB31244/38A GB520267A (en) 1937-11-10 1938-10-28 Vibrating piezoelectric relays

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US173770A US2195417A (en) 1937-11-10 1937-11-10 Vibrating piezoelectric relay

Publications (1)

Publication Number Publication Date
US2195417A true US2195417A (en) 1940-04-02

Family

ID=22633413

Family Applications (1)

Application Number Title Priority Date Filing Date
US173770A Expired - Lifetime US2195417A (en) 1937-11-10 1937-11-10 Vibrating piezoelectric relay

Country Status (2)

Country Link
US (1) US2195417A (en)
GB (1) GB520267A (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2719929A (en) * 1955-10-04 brown
US2836738A (en) * 1956-05-02 1958-05-27 Joseph W Crownover Prestressed piezo crystal
US2867701A (en) * 1955-02-15 1959-01-06 Clevite Corp Device for providing reproducible mechanical motions
US2883486A (en) * 1954-03-09 1959-04-21 Bell Telephone Labor Inc Piezoelectric switching device
US2928409A (en) * 1955-01-31 1960-03-15 Textron Inc Non-magnetic electro hydraulic transfer valve
US2950368A (en) * 1957-11-04 1960-08-23 Gulton Ind Inc Resonant reed relay
US3110824A (en) * 1960-10-31 1963-11-12 Eastman Kodak Co Piezoelectric actuating element
US3183516A (en) * 1958-02-21 1965-05-11 Ibm Data recording apparatus
US3336529A (en) * 1962-12-03 1967-08-15 Lockheed Aircraft Corp Vibrating reed frequency responsive device
US3416135A (en) * 1965-09-09 1968-12-10 Motorola Inc False signal prevention system including mechanical member physically displaceable by vibration and shock
US3501745A (en) * 1965-07-15 1970-03-17 Lear Siegler Inc Frequency selective resonant reed detector
US4131816A (en) * 1973-12-22 1978-12-26 Nihon Dempa Kogyo Co., Ltd. Mechanism and method for supporting a tuning fork-type quartz crystal element
USRE30506E (en) * 1975-03-12 1981-02-03 Nihon Dempa Kogyo Co., Ltd. Tuning fork-type quartz crystal oscillator and method for stabilizing the vibration frequency thereof
US4395651A (en) * 1981-04-10 1983-07-26 Yujiro Yamamoto Low energy relay using piezoelectric bender elements
US4399385A (en) * 1982-02-11 1983-08-16 Rca Corporation Rotative motor using a triangular piezoelectric element
US4399386A (en) * 1982-02-11 1983-08-16 Rca Corporation Rotative motor using plural arrays of piezoelectric elements
US4422001A (en) * 1981-06-05 1983-12-20 Gerhart Weiss Crystal vibrator actuated relay
US4568849A (en) * 1983-09-01 1986-02-04 Omron Tateisi Electronics Co. Driving circuit for piezoelectric bi-morph
US4658154A (en) * 1985-12-20 1987-04-14 General Electric Company Piezoelectric relay switching circuit
US6507141B2 (en) * 1999-09-15 2003-01-14 Bei Technologies, Inc. Inertial rate sensor tuning fork

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE954182C (en) * 1952-04-01 1956-12-13 Kieler Howaldtswerke Ag Crystal contact breaker for converting low to extremely low direct voltages into alternating voltages
DE1031638B (en) * 1954-10-12 1958-06-04 Salfret Ltd Electrically driven diaphragm pump, especially for liquids

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2719929A (en) * 1955-10-04 brown
US2883486A (en) * 1954-03-09 1959-04-21 Bell Telephone Labor Inc Piezoelectric switching device
US2928409A (en) * 1955-01-31 1960-03-15 Textron Inc Non-magnetic electro hydraulic transfer valve
US2867701A (en) * 1955-02-15 1959-01-06 Clevite Corp Device for providing reproducible mechanical motions
US2836738A (en) * 1956-05-02 1958-05-27 Joseph W Crownover Prestressed piezo crystal
US2950368A (en) * 1957-11-04 1960-08-23 Gulton Ind Inc Resonant reed relay
US3183516A (en) * 1958-02-21 1965-05-11 Ibm Data recording apparatus
US3110824A (en) * 1960-10-31 1963-11-12 Eastman Kodak Co Piezoelectric actuating element
US3336529A (en) * 1962-12-03 1967-08-15 Lockheed Aircraft Corp Vibrating reed frequency responsive device
US3501745A (en) * 1965-07-15 1970-03-17 Lear Siegler Inc Frequency selective resonant reed detector
US3416135A (en) * 1965-09-09 1968-12-10 Motorola Inc False signal prevention system including mechanical member physically displaceable by vibration and shock
US4131816A (en) * 1973-12-22 1978-12-26 Nihon Dempa Kogyo Co., Ltd. Mechanism and method for supporting a tuning fork-type quartz crystal element
USRE30506E (en) * 1975-03-12 1981-02-03 Nihon Dempa Kogyo Co., Ltd. Tuning fork-type quartz crystal oscillator and method for stabilizing the vibration frequency thereof
US4395651A (en) * 1981-04-10 1983-07-26 Yujiro Yamamoto Low energy relay using piezoelectric bender elements
US4422001A (en) * 1981-06-05 1983-12-20 Gerhart Weiss Crystal vibrator actuated relay
US4399385A (en) * 1982-02-11 1983-08-16 Rca Corporation Rotative motor using a triangular piezoelectric element
US4399386A (en) * 1982-02-11 1983-08-16 Rca Corporation Rotative motor using plural arrays of piezoelectric elements
US4568849A (en) * 1983-09-01 1986-02-04 Omron Tateisi Electronics Co. Driving circuit for piezoelectric bi-morph
EP0229343A2 (en) * 1985-12-12 1987-07-22 General Electric Company Piezoelectric relay switching circuit
EP0229343A3 (en) * 1985-12-12 1989-08-23 General Electric Company Piezoelectric relay switching circuit
US4658154A (en) * 1985-12-20 1987-04-14 General Electric Company Piezoelectric relay switching circuit
US6507141B2 (en) * 1999-09-15 2003-01-14 Bei Technologies, Inc. Inertial rate sensor tuning fork

Also Published As

Publication number Publication date
GB520267A (en) 1940-04-18

Similar Documents

Publication Publication Date Title
US2195417A (en) Vibrating piezoelectric relay
US2166763A (en) Piezoelectric apparatus and circuits
US3110824A (en) Piezoelectric actuating element
US685956A (en) Apparatus for utilizing effects transmitted through natural media.
US2167254A (en) Piezoelectric vibrator oscillator
US2272998A (en) Slow-operate electrical circuit
US2182340A (en) Signaling system
US2630482A (en) Tuned vibrating reed selective circuit
US3109153A (en) Adjustable piezoelectric wave filter having two resonance peaks
US1672049A (en) Alternating-current relay
US2469837A (en) Wave translating system
US2133456A (en) Regenerative telegraph repeater
US2659869A (en) Electrical signal delay device
US2957950A (en) Transistor selective ringing circuit
US2088317A (en) Electric discharge tube testing and measuring circuit
US2871463A (en) Method and apparatus for transmission of intelligence
US2465185A (en) Distributor phase corrector circuit
US2688248A (en) Balanced pressure engine indicator
US2731626A (en) carolus
US2864079A (en) Pulse signaling circuit
US2303564A (en) Alternating current generator
US2105675A (en) Means for delivering an intermittent electrical current
US2523717A (en) Correction of distortion in telegraph signals
US1769360A (en) Piezo-electric translating device
US3903508A (en) Centralized controlling apparatus having control frequencies