US2183309A - Electron multiplier - Google Patents
Electron multiplier Download PDFInfo
- Publication number
- US2183309A US2183309A US196496A US19649638A US2183309A US 2183309 A US2183309 A US 2183309A US 196496 A US196496 A US 196496A US 19649638 A US19649638 A US 19649638A US 2183309 A US2183309 A US 2183309A
- Authority
- US
- United States
- Prior art keywords
- electron
- aperture
- diaphragm
- stream
- image
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 8
- 238000010894 electron beam technology Methods 0.000 description 8
- 229910052742 iron Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 230000035945 sensitivity Effects 0.000 description 3
- 238000000034 method Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 102100023778 Corepressor interacting with RBPJ 1 Human genes 0.000 description 1
- 241001663154 Electron Species 0.000 description 1
- 101000906759 Homo sapiens Corepressor interacting with RBPJ 1 Proteins 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 230000003116 impacting effect Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J43/00—Secondary-emission tubes; Electron-multiplier tubes
- H01J43/04—Electron multipliers
- H01J43/06—Electrode arrangements
- H01J43/08—Cathode arrangements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J43/00—Secondary-emission tubes; Electron-multiplier tubes
- H01J43/04—Electron multipliers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49826—Assembling or joining
- Y10T29/49861—Sizing mating parts during final positional association
Definitions
- This invention relates .to electron. multipliers and particularly to multipliers in which the number of primary electrons is varied in accordance with a signal.
- Tubes have been constructed hitherto in which a beam of primary electrons of defined. cross section is deflected across an aperture of aidiaphragm or across a boundary 'of a-diaphragm,
- an electron image of a clearly-defined cross section of an electron beam is produced by means of electrostatic lenses and this-electron image is deflected by means of a deflecting system, over a l boundary located in the plane of the electron image.
- the clearly-defined cross section of the electron beam can be gained by means of a suitable aperture in a diaphragmagainst which the' initial stream of electrons isdirected.
- Another i possibility is that the smallest cross section of the electron beam in front of. the cathode, i. e., the first cross-over, is used for electron-optical reproduction. It suflices even that the reproduced cross section is clearly defined andpossesses sharp outlines on one side only. Gener- I ally a uniform intensity of the portion of the reproduced cross section used-for intensity controlis desirable. 4 e
- Anelectron image of a cross sectionof an electron beam of substantiallyuniform electron density is produced by means of cylindrical electrodes forming an electron optical lens system.
- the undeflected position of this electron image lies in close proximity to an aperture in a diaphragm .disposedin the plane of the electron image.
- the electron image is deflected across the aperture, thereby varying the amount of elec- -in the trons passingthrough the aperture into an electron multiplier.
- the amplitudes of the deflecting voltage which is simultaneouslythecontrol .voltage, are chosen to be so'small that only a smalljportion of the electronimage is deflected 5 over-the aperture?
- the amplitude of deflection plane of the'electron image may be, for instance, only 1/100 mm,
- an electrostatic lens for the develop ment of the electron image is preferable because of the lack of current flow therein which increases the simplicity in filtering means over magnetic lenses.
- a shield against extraneous magnetic 'fields must be provided.
- an iron shield which may in part consist of windings of iron wire and which is subjected to an annealing process.
- an electrostatic lens 2 system since the placing of amagnetic electron optical system inside the iron shield would have considerabledisadvantages.
- the combination of a screen against extraneous magnetic fields and an electrostatic lens system highest sensitivity obtainable.
- FIG. 1 is a viewin section longitudinally of the tube.
- Fig. 2 is a view in section along the linear-2 of Fig. 1.
- Fig. 3 is a view of Fig.- 1. I I I
- Fig. 1 shows a vacuum recepin section along the line 3-3 tacle I housing a cathode 2, which is preferably indirectly heated and held at a comparatively low temperature.
- this cathode is an elongated oxide cathode with its axis normal to the axis of the tube.
- Two plates, 3 and l, are disposed on the sides of the cathode, which plates replace the conventional concentrating cylinder. In this arrangement a separate-lead from eachof the plates 3 and l is brought out so that different direct current 120- tentials may be applied to them. In this manner, it is possible to focus theemission from the cathode upon an aperture in a diaphragm 5.
- the aperture in the diaphragm S possesses the shape of an elongated rectangle, and is so small that the electron den-- sity of the electron beam passing through it is substantially uniform.
- a screeningelectrode 6 is disposed, possessing a larger aperture, which .alone renders the 25- is held at the same potential as the diaphragm 5 and a cylindrical electrode I. This prevents the field between the diaphragm 5 and the oathode 2 from reaching through the aperture of 5 the diaphragm 5 and, thereby, distorting the electron image.
- the electron-optical system consists of a series of three cylinders, I, 8 and 9, which are provided with annular discs at their ends. These 10 cylinders are aligned along the tube axis and are so dimensioned that the magnification factor with which the electron image is created in the plane I0 is approximately unity, or smaller.
- the space between the electrodes 9 and I0 is taken up by deflection fields generated by potentials applied to the deflecting plates II and i2.
- potential applied to electrodes 9 and I0 may be approximately 1,000 volts positive with respect to the cathode. Because of the very weak defleeting voltages (smaller than one millivolt), it
- the interior of the vacuum receptacle with an electrostatic screen for prevention of wall charges.
- This screen can be omitted in the adjacent multiplier structure.
- the size of the aperture in electrode I0 is accurately matched to the electron image of the aperture in the diaphragm 5, which is produced in the plane of electrode [0. It is, how- ,ever, preferable to make this aperture as narrow as possible because it is then possible to prevent interfering electrons from entering the multiplying chamber.
- the long side of the aperture in electrode I0 can be made smaller than the long side of the aperture in the diaphragm 5.
- the electrode l3 nearer the cathode is held at apotential of 980 volts, whereas the electrode ll is held at a potential of only 50 volts.
- the electrode l3 prevents secondary electrons which are liberated from the electrode l0 by unutilized portions of the electron beam from passing through the aperture in the electrode I0.
- Electrode l4 prevents the passage of secondary electrons into the multiplying chamber which are liberated from the electrode 5 and pass through its aperture into the deflecting space. Ifthe electrode 5 is held at a potential of '70 volts, secondary electrons liberated therefrom are so highly decelerated in the plane of the disc I4 that their passage into the multiplying chamber is prevented.
- the electrode M can simultaneously be used ing it with high frequency currents. Contrary to conventional practice in cathode ray tubes, the distance between the deas the first secondary emitting electrode of the multiplier system by covering its opening with a wire meshwork capable of secondary emission. The impacting velocity of the electrons emitted by .the cathode and passing through the aperture in the electrode I0 is approximately 50 volts and is sufficient for secondary emission at a ratio greater than unity. Any known type of electron multiplier can be located behind electrode M. In the present case, a number of secondarily emissive grids 18 are shown in back of which a collector plate I! is disposed.
- the diaphagm I0 is preferably so mounted that it can be moved or rotated in order to align it to the exact position of the electron image.
- it may be held by a drop of metal of low melting point (for instance, lead or tin) which is held in a smaller receptacle l5. If necessary, this metal drop can be melted by heat-
- the position of the diaphragm can then be adjusted in vacuo by means of the force of gravity. It is then held in the new position by the congealed metal.
- the remaining electrodes can be fixed upon glass rods 16 and I1. It is necessary that all electrodes consist of completely non-magnetic material.
- Electron multiplier comprising means for generating a primary electron stream, means for producing an electron image of a defined cross section of said electron stream in a plane, 9. diaphragm in said plane possessing an aperture having dimensions substantially proportional to the cross-sectional dimensions of said beam image and an area approximately equal to said beam image, means for deflecting said electron image across said aperture, means for amplifying by electron multiplication that portion of said electron stream passing through said aper ture, and means for collecting the amplified porand means for collecting the amplified portion of 1 said electron stream.
- Electron multiplier comprising an elongated oxide cathode for generating a primary electron stream, a diaphragm in front of said cathode possessing a rectangular aperture, the axis of said cathode being parallel to the longitudinal axis of said rectangular aperture, means for producing an electron image of the cross section of said electron stream passing through said rectangular aperture, in a plane, a second diaphragm in said plane possessing an aperture, means for deflecting said electron image across said last-named aperture, means for amplifying by electron mul-- I tiplication that portion of said electron stream' passing through said last-named aperture, and
- Electron multiplier comprising means for generating a primary electron stream, means for producing an electron image of a defined cross section of said electron stream in a plane, a dia-.
- Electron multiplier comprising means forgenerating a primary stream of electrons, means for selecting a cross section of said electron stream, said means comprising a diaphragm possessing an aperture and means for producing a substantially equipotential space about said aperture, means for producing an electron image of said cross section in a plane, a second diaphragm in said plane possessing an aperture, means for deflecting said electron image across said lastnamed aperture, means for amplifying by electron multiplication that portion of the electron stream passing through said last-named aperture, and means for collecting the amplified portion of said electron stream.
- Electron multiplier comprising means for generating a primary stream of electrons, concentrating means comprising a plurality of electrodes positioned about said electron generating means, means for selecting a cross section of said electron stream, means for producing an electron image of a defined cross section 01' said electron stream in a plane, a diaphragm in said plane possessing an aperture, means for deflecting said electron image across said laperture, means for amplifying by electron multiplication that portion of said electron stream passing through said aperture, and means for collectingthe amplified portion of said electron stream.
- Electron multiplier comprising means for generating a primary electron stream, means for selecting a defined cross-sectional portion of said electron stream and producing an electron image of said defined cross sectional portion in a plane,
- a diaphragm in said plane possessing an aperture having an area of the order of said defined cross- ,sectional portion, means for deflecting said electron image across said aperture, means for aniplifying by electron multiplication that portion of said electron streampassing through said aperture, and means for collecting the amplifiedportion of said electron stream.
- Electron multiplier comprising means for generating a primary electron stream, means for producing an electron image of a defined cross section of said electron stream in a plane, a diaphragm in said plane possessing an aperture, means for deflecting said electron image across said'aperture, means for amplifying by electron multiplication that portion of said electron stream passing through said aperture, means-located between said apertured diaphragm and said electron multiplying means for preventing undesirable secondary electrons from entering the multiplication chamber, and means for collecting the amplified portion of said electron stream.
- Electron multiplier as set forth in claim 1, possessing an electrostatic shield for prevention of wall charge.
- the method of electron multiplication comprising the steps of generating a primary stream of electrons, selecting-a cross section of said stream of uniform electron density, pro- .ducing an electron image of saidportion of said cross section, deflecting said electron image over a distance equal to a fraction of its size across an aperture disposed in said plane, subjecting the electrons passing through said aperture to multiplication by secondary emission, and collecting the multiplied electron stream.
Landscapes
- Electron Sources, Ion Sources (AREA)
- Image-Pickup Tubes, Image-Amplification Tubes, And Storage Tubes (AREA)
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| DE835462X | 1937-03-19 | ||
| DE493751X | 1937-04-08 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US2183309A true US2183309A (en) | 1939-12-12 |
Family
ID=34105296
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US196496A Expired - Lifetime US2183309A (en) | 1937-03-19 | 1938-03-17 | Electron multiplier |
Country Status (4)
| Country | Link |
|---|---|
| US (1) | US2183309A (de) |
| AT (1) | AT160907B (de) |
| FR (1) | FR835462A (de) |
| GB (1) | GB493751A (de) |
Cited By (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2439504A (en) * | 1944-03-09 | 1948-04-13 | Emi Ltd | Flat beam cathode-ray tube and circuit |
| US2452620A (en) * | 1946-11-14 | 1948-11-02 | Rca Corp | Electrode support in television tubes |
| US2460381A (en) * | 1946-02-07 | 1949-02-01 | Rca Corp | Multiplier unit and supporting means |
| US2462496A (en) * | 1942-04-24 | 1949-02-22 | Rca Corp | Electron discharge device |
| US2520152A (en) * | 1943-11-18 | 1950-08-29 | Farnsworth Res Corp | Radiant energy receiving device |
| US2701320A (en) * | 1950-05-26 | 1955-02-01 | Rca Corp | Electron gun structure and method for making the same |
| US2846607A (en) * | 1956-09-20 | 1958-08-05 | Thomas Electronics Inc | Electron gun |
| US2943227A (en) * | 1956-07-06 | 1960-06-28 | Itt | Electron gun support |
| US2947897A (en) * | 1958-01-08 | 1960-08-02 | Itt | Electron gun structure |
| US3004183A (en) * | 1957-12-03 | 1961-10-10 | Itt | Electron gun |
| US3047759A (en) * | 1959-03-30 | 1962-07-31 | Gen Dynamics Corp | Cathode-ray tube structure |
| US3066235A (en) * | 1959-11-12 | 1962-11-27 | Gen Dynamics Corp | Means for influencing selectively the cross section and the horizontal and vertical position of a cathode ray electron beam |
-
1938
- 1938-03-17 US US196496A patent/US2183309A/en not_active Expired - Lifetime
- 1938-03-19 AT AT160907D patent/AT160907B/de active
- 1938-03-19 FR FR835462D patent/FR835462A/fr not_active Expired
- 1938-04-08 GB GB10799/38A patent/GB493751A/en not_active Expired
Cited By (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2462496A (en) * | 1942-04-24 | 1949-02-22 | Rca Corp | Electron discharge device |
| US2520152A (en) * | 1943-11-18 | 1950-08-29 | Farnsworth Res Corp | Radiant energy receiving device |
| US2439504A (en) * | 1944-03-09 | 1948-04-13 | Emi Ltd | Flat beam cathode-ray tube and circuit |
| US2460381A (en) * | 1946-02-07 | 1949-02-01 | Rca Corp | Multiplier unit and supporting means |
| US2452620A (en) * | 1946-11-14 | 1948-11-02 | Rca Corp | Electrode support in television tubes |
| US2701320A (en) * | 1950-05-26 | 1955-02-01 | Rca Corp | Electron gun structure and method for making the same |
| US2943227A (en) * | 1956-07-06 | 1960-06-28 | Itt | Electron gun support |
| US2846607A (en) * | 1956-09-20 | 1958-08-05 | Thomas Electronics Inc | Electron gun |
| US3004183A (en) * | 1957-12-03 | 1961-10-10 | Itt | Electron gun |
| US2947897A (en) * | 1958-01-08 | 1960-08-02 | Itt | Electron gun structure |
| US3047759A (en) * | 1959-03-30 | 1962-07-31 | Gen Dynamics Corp | Cathode-ray tube structure |
| US3066235A (en) * | 1959-11-12 | 1962-11-27 | Gen Dynamics Corp | Means for influencing selectively the cross section and the horizontal and vertical position of a cathode ray electron beam |
Also Published As
| Publication number | Publication date |
|---|---|
| AT160907B (de) | 1943-08-24 |
| GB493751A (en) | 1938-10-13 |
| FR835462A (fr) | 1938-12-22 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US2181850A (en) | Cathode ray tube | |
| US2183309A (en) | Electron multiplier | |
| US2259507A (en) | Electronic relay device | |
| US2138928A (en) | Electron discharge device | |
| US2288402A (en) | Television transmitting tube | |
| US2190069A (en) | Space discharge device | |
| US2579351A (en) | Isocon pickup tube | |
| US2203048A (en) | Shielded anode electron multiplier | |
| US2905847A (en) | High compression beam generating system especially for velocity modulated tubes | |
| US2760096A (en) | Television pickup tube | |
| US2248977A (en) | Electro-optical device | |
| US2213174A (en) | Television transmitting tube | |
| US2256462A (en) | Television transmitting device | |
| US2840755A (en) | Large storage low noise image tube | |
| US2412086A (en) | Image dissector tube | |
| GB768021A (en) | Improvements in or relating to electronic storage tubes and circuit arrangements therefor | |
| US2266621A (en) | Cathode ray tube system | |
| US2540637A (en) | Pickup tube system | |
| US2213176A (en) | Television transmitting tube | |
| US2971108A (en) | Electron discharge device | |
| US2822493A (en) | Graphechon storage tube | |
| US2617954A (en) | Pickup tube | |
| US2292111A (en) | Image dissector | |
| EP0084915B1 (de) | Fernsehkameraröhre | |
| US2520240A (en) | Cathode-ray tube |