US2166340A - Plastic zinc alloy of constant dimensions - Google Patents

Plastic zinc alloy of constant dimensions Download PDF

Info

Publication number
US2166340A
US2166340A US170853A US17085337A US2166340A US 2166340 A US2166340 A US 2166340A US 170853 A US170853 A US 170853A US 17085337 A US17085337 A US 17085337A US 2166340 A US2166340 A US 2166340A
Authority
US
United States
Prior art keywords
copper
alloys
per cent
zinc alloy
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US170853A
Inventor
Burkhardt Arthur
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GEORG VON GIESCHE S ERBEN
Original Assignee
GEORG VON GIESCHE S ERBEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GEORG VON GIESCHE S ERBEN filed Critical GEORG VON GIESCHE S ERBEN
Application granted granted Critical
Publication of US2166340A publication Critical patent/US2166340A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C18/00Alloys based on zinc
    • C22C18/02Alloys based on zinc with copper as the next major constituent

Definitions

  • My invention relates to plastic zinc alloys containing aluminium and copper, and, if desired,
  • alloys embodying my invention may have the following compositions in in any alloy of the type described.
  • the separation produces a. change in the properties of, the alloy by which its strength is reduced and its dimensions are varied.
  • the content of copper is exceeded, i. e., if the alloy contains more than 8 per cent copper, it is constant in dimensions but loses some of its good mechanical properties on ageing. This even occurs to some extent with the maximum content of 8 per cent copper.
  • 0.05 per cent magnesium may be added to any one of the alloys in the above table.
  • Zinc alloys for die casting which, besides copper and aluminium, contain a small percentage of magnesium. But in these known die-casting alloys no importance was placed on the observance of a strictly limited proportion of aluminium to copper, since it had not been recognised that by such observance it is possible to produce alloys which are constant in dimensions.
  • a further advantage of my new alloys over the customary extrusion alloys is their higher extrusion velocity.
  • the customary extrusion zinc alloy containing 0.5 to 2.5 per cent copper and 4 per cent aluminium the extrusion velocity is 2 meters per minute, it may be increased to '7 meters per minute with my new alloys.
  • a plastic zinc alloy containing about -l:% copper and about 0.18 to about 0.22% aluminum, the remainder zinc.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Extrusion Of Metal (AREA)

Description

Patented July 18,1939
UNITEDYSTATES PATENT OFFICE.
PLASTIC ZINC ALLOY or CONSTANT DIMENSIONS Arthur Burkhardt, Berlin-Lichterfelde, Germany, assignor to Georg von Giesches Erben, Breslau, Germany, a corporation of Germany No Drawing. Application October 25, 1937, Se-
rial No. 170,853. In Germany November 6,
4 Claims.
My invention relates to plastic zinc alloys containing aluminium and copper, and, if desired,
a small percentage of magnesium.
It is an object of my invention to provide an 5 alloy of the kind described which possesses a constancy of dimensions heretofore unat d (c1. va-ns) any dimensional change, even after long continued artificial ageing at 95 centigrade.
By way of example, alloys embodying my invention may have the following compositions in in any alloy of the type described.
To this end, in an alloy having a copper content of 2 to 8 per cent, i so determine the content of aluminium that it corresponds to the proportion of 18 to 22 parts of copper to 1 part per than when in the same condition at room temperature. The consequence is that during the cooling of the alloy after its production, or after, a treatment carried out at elevated temperature, certain quantities of aluminium and 25 copper separate out.
The separation produces a. change in the properties of, the alloy by which its strength is reduced and its dimensions are varied.
The change in dimensions is particularly inconvenient in practice since it is difierent in parts of various sizes and sections. If such parts are to be assembled, this necessitates much fitting work.
It was not known heretofore that the influence of the separation on the dimensions is diiierent in extruding and in casting alloys.
In extruding alloys, the separation of aluminium results in an increase in length, and that of, copper in a shrinkage. In casting alloys, the influence of the two constituents is the reverse. According to the composition of the alloys and to the degree of supersaturation, the dimensional changes are more or less considerable.
45 I have made the surprising discovery that by suitably selecting the content of copper and aluminium the increase in length and the shrinkage canbe so determined that they compensate one another.
It has been found that only alloys in which the content of copper is 2 to 8 per cent, and the proportion of aluminium to copper is between 1 to 18 and 1 to 22, possess absolute constancy of dimensions. Thus, alloys in which the said proportion is 1 to 20, were found not to exhibit per cent:
' Copper Aluminum 1 2 0.1 2 4 0.2 a c 0.3 4 s 0.4
The remainder in all cases is zinc of high purity, at least 99.99 per cent.
It is advisable that the percentage of aluminium in such alloys should not be under 0.1 per cent, as otherwise they attack iron strongly in molten'conditionand must not be melted in iron containers.
If the content of copper is exceeded, i. e., if the alloy contains more than 8 per cent copper, it is constant in dimensions but loses some of its good mechanical properties on ageing. This even occurs to some extent with the maximum content of 8 per cent copper.
grammes per square millimeter. vary only very slightly upon ageing.
These values On the other hand, in an extruding alloy having 8 per cent copper and 0.4 aluminium, (4) of the above table, the tensile strength is as high as 41 to 43 kilogrammes per square millimeter, the elongation is only 5 to 10, the reduction in area is 20 to 30 per cent, and the impact bending strength is 8 to 12 centimeter kilogrammes per square millimeter, in the initial condition of the alloy. After ageing, this alloy still possesses absolute constancy of dimensions but its tensile ,strength is only to 37 kilogrammes per square millimeter, the elongation is 3 to 6 per cent, the reduction in area is 10 to 20 per cent, and the impact bending strength is 2 to 5 centimeter kilogrammes per square millimeter.
- An addition of small quantities of magnesium in the limits of 0.03 to 0.1 per cent has a favorable eflect on the tensile strength which is increased tor about 10 per cent while, on the other hand, the-elongation drops to about half the value of the alloy without magnesium.
By way of example, 0.05 per cent magnesium may be added to any one of the alloys in the above table.
Zinc alloys for die casting are known which, besides copper and aluminium, contain a small percentage of magnesium. But in these known die-casting alloys no importance was placed on the observance of a strictly limited proportion of aluminium to copper, since it had not been recognised that by such observance it is possible to produce alloys which are constant in dimensions.
Nor had it been recognised that aluminium and copper, as stated above, behave differently with respect to dimensional change in extruding I and in die-casting alloys.
A further advantage of my new alloys over the customary extrusion alloys is their higher extrusion velocity. Thus, while with the customary extrusion zinc alloy containing 0.5 to 2.5 per cent copper and 4 per cent aluminium, the extrusion velocity is 2 meters per minute, it may be increased to '7 meters per minute with my new alloys.
I claim:
1. A plastic zinc alloy containing 2to 8% copper and about 0.09 to about 0.45% aluminum, the contents of' copper and aluminum having a mutual proportion of 18 to 22 parts of copper to 1 part of aluminum, the remainder zinc.
2. A plastic zinc alloy containing about -l:% copper and about 0.18 to about 0.22% aluminum, the remainder zinc.
3. A plastic zinc alloy containing 4% copper and 0.2% aluminum, the remainder zinc.
4. A plastic zinc alloy containing 2 to 8% copper and 0.1 to 0.4% aluminum, the remainder zinc.
ARTHUR BURKHARD'I'.
US170853A 1936-11-06 1937-10-25 Plastic zinc alloy of constant dimensions Expired - Lifetime US2166340A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE2166340X 1936-11-06

Publications (1)

Publication Number Publication Date
US2166340A true US2166340A (en) 1939-07-18

Family

ID=7988183

Family Applications (1)

Application Number Title Priority Date Filing Date
US170853A Expired - Lifetime US2166340A (en) 1936-11-06 1937-10-25 Plastic zinc alloy of constant dimensions

Country Status (1)

Country Link
US (1) US2166340A (en)

Similar Documents

Publication Publication Date Title
US1945288A (en) Zinc base alloy
US3567436A (en) Compression resistant zinc base alloy
US2204567A (en) Magnesium alloy of high strength
US2166340A (en) Plastic zinc alloy of constant dimensions
US3419385A (en) Magnesium-base alloy
US2073515A (en) Alloy
US2317980A (en) Magnesium-base alloy
US2098081A (en) Aluminum alloy
US2947624A (en) High temperature alloy
US2564044A (en) Aluminum-magnesium casting alloys
US1986827A (en) Free cutting alloy
US2139246A (en) Castings of aluminium alloys
US2026551A (en) Free cutting alloys
US1932838A (en) Aluminum alloys
US3183083A (en) Magnesium-base alloy
US2302968A (en) Magnesium base alloy
US1886251A (en) Magnesium-manganese-zinc alloys
US2811439A (en) Aluminum casting alloys
US2243827A (en) Zinc alloy
US2189054A (en) Casting zinc alloy
US1942041A (en) Alloy
US1932853A (en) Aluminum alloys
US1572503A (en) Composition of matter
US1815071A (en) Nonferrous alloy
US2233953A (en) Magnesium base alloy