US2150653A - Normal lead styphnate and a method of making it - Google Patents
Normal lead styphnate and a method of making it Download PDFInfo
- Publication number
- US2150653A US2150653A US165072A US16507237A US2150653A US 2150653 A US2150653 A US 2150653A US 165072 A US165072 A US 165072A US 16507237 A US16507237 A US 16507237A US 2150653 A US2150653 A US 2150653A
- Authority
- US
- United States
- Prior art keywords
- solution
- styphnate
- lead
- crystals
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- WETZJIOEDGMBMA-UHFFFAOYSA-L lead styphnate Chemical compound [Pb+2].[O-]C1=C([N+]([O-])=O)C=C([N+]([O-])=O)C([O-])=C1[N+]([O-])=O WETZJIOEDGMBMA-UHFFFAOYSA-L 0.000 title description 23
- 238000004519 manufacturing process Methods 0.000 title description 7
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 46
- 239000013078 crystal Substances 0.000 description 37
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 30
- 238000000034 method Methods 0.000 description 23
- 239000000047 product Substances 0.000 description 21
- RLJMLMKIBZAXJO-UHFFFAOYSA-N lead nitrate Chemical compound [O-][N+](=O)O[Pb]O[N+]([O-])=O RLJMLMKIBZAXJO-UHFFFAOYSA-N 0.000 description 20
- IXHMHWIBCIYOAZ-UHFFFAOYSA-N styphnic acid Chemical compound OC1=C([N+]([O-])=O)C=C([N+]([O-])=O)C(O)=C1[N+]([O-])=O IXHMHWIBCIYOAZ-UHFFFAOYSA-N 0.000 description 17
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 16
- 229960000583 acetic acid Drugs 0.000 description 16
- 239000000463 material Substances 0.000 description 16
- 239000011734 sodium Substances 0.000 description 16
- 229910052708 sodium Inorganic materials 0.000 description 16
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 10
- 238000001556 precipitation Methods 0.000 description 7
- 239000000725 suspension Substances 0.000 description 6
- GPFIZJURHXINSQ-UHFFFAOYSA-N acetic acid;nitric acid Chemical compound CC(O)=O.O[N+]([O-])=O GPFIZJURHXINSQ-UHFFFAOYSA-N 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 150000002828 nitro derivatives Chemical class 0.000 description 5
- 150000003839 salts Chemical class 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 4
- 230000037452 priming Effects 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- 239000012535 impurity Substances 0.000 description 3
- 230000001376 precipitating effect Effects 0.000 description 3
- PLXBWHJQWKZRKG-UHFFFAOYSA-N Resazurin Chemical compound C1=CC(=O)C=C2OC3=CC(O)=CC=C3[N+]([O-])=C21 PLXBWHJQWKZRKG-UHFFFAOYSA-N 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000013329 compounding Methods 0.000 description 2
- 238000005474 detonation Methods 0.000 description 2
- 239000012467 final product Substances 0.000 description 2
- 239000012362 glacial acetic acid Substances 0.000 description 2
- RSAZYXZUJROYKR-UHFFFAOYSA-N indophenol Chemical compound C1=CC(O)=CC=C1N=C1C=CC(=O)C=C1 RSAZYXZUJROYKR-UHFFFAOYSA-N 0.000 description 2
- 239000003999 initiator Substances 0.000 description 2
- GQPLMRYTRLFLPF-UHFFFAOYSA-N nitrous oxide Inorganic materials [O-][N+]#N GQPLMRYTRLFLPF-UHFFFAOYSA-N 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- GHMLBKRAJCXXBS-UHFFFAOYSA-N resorcinol Chemical compound OC1=CC=CC(O)=C1 GHMLBKRAJCXXBS-UHFFFAOYSA-N 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 239000001117 sulphuric acid Substances 0.000 description 2
- 235000011149 sulphuric acid Nutrition 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 208000027418 Wounds and injury Diseases 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000010961 commercial manufacture process Methods 0.000 description 1
- 239000013065 commercial product Substances 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- 231100001261 hazardous Toxicity 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 238000002386 leaching Methods 0.000 description 1
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 1
- 239000000347 magnesium hydroxide Substances 0.000 description 1
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- MHWLNQBTOIYJJP-UHFFFAOYSA-N mercury difulminate Chemical compound [O-][N+]#C[Hg]C#[N+][O-] MHWLNQBTOIYJJP-UHFFFAOYSA-N 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C06—EXPLOSIVES; MATCHES
- C06B—EXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
- C06B41/00—Compositions containing a nitrated metallo-organic compound
- C06B41/02—Compositions containing a nitrated metallo-organic compound the compound containing lead
- C06B41/08—Compositions containing a nitrated metallo-organic compound the compound containing lead with a metal azide or a metal fulminate
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S149/00—Explosive and thermic compositions or charges
- Y10S149/11—Particle size of a component
- Y10S149/111—Nitrated organic compound
Definitions
- This invention relates to a new explosive and method of making the same.
- the burning test consists of taking a quantity of the material to be tested containing from 15 to 30 percent of water, placing black powder on it and lighting the powder. If the material does not burn, it is considered safe to use in the compounding of priming mixtures by the Wet process. but if the material does burn under such conditions, it is an indication that it is apt to deflagrate or detonate in the wet state while being handled and is therefore considered unsafe.
- styphnic acid containing an impurity or adulterant we employ the nitrated product or products of one or more of the compounds formed by reaction of nitrous and nitric oxides Wth resorcine. These include the nitro derivatives of resorufin, the nitro derivatives of indo-phenol and the nitro derivatives of resazurin. Salts of these compounds may also be used, such as the lead salt of nitroresorufin. Mixtures of the above materials may also be used.
- the dark brown material may be employed and the desired results obtained whereas if the light product is employed, a requisite amount of one or more of the nitrated products of the above mentioned compounds must be added to it.
- styphnic acid containing the requisite amount of one of the adulterants referred to above is suspended in water and then mixed with a solution of sodium hydroxide.
- One feature of the invention is the use of a suspension of styphnic acid and a solution of sodium hydroxide which will produce a relatively concentrated solution of sodium styphnate.
- sodium styphnate' solutions of about twice the strength of those employed in the old process.
- the sodium styphnate solution which we employ is at slightly less than the saturation point at room temperature.
- the process is carried out at an elevated temperature, no difliculty is experienced in keeping the sodium styphnate in solution.
- the temperature of the material is maintained at about 55 C.
- a solution of lead nitrate containing glacial acetic acid is then added to the first solution.
- the lead nitrate solution is first added slowly at a temperature between 54 and 56 C. and the temperature is then raised to 60 C. During the latter part of the precipitation the lead nitrate addition is speeded up.
- this method of precipitating lead styphnate is followed, the material first begins to precipitate as a gel.
- this gel With continuous stirring this gel, during the further addition of the lead nitrate solution, begins to break up and form a thick slurry which eventually changes from a yellow to a brown color and at the same time dissolves.
- the lead styphnate finally precipitates in the form of substantially hexagonal plate-like crystals. These crystals are thin and have a large ratio of surface area to volume. When subjected to the burning test, they do not burn when they contain 15 percent or more of water. Because of the safe condition of this product in the wet state in which it is normally used during the compounding of priming mixtures, it possesses a marked advantage over the old form of lead styphnate heretofore employed in priming mixtures.
- the largest crystals measure .022 cm. along the longest axis, .020 cm. in width and approximately .003 cm. in thickness.
- the average size of the crystals in the batch from which the above measurements were obtained was .008 cm. x .006 cm. x .001 cm.
- the ratio of surface to volume in such crystals is more than twice that of the prismatic crystal of comparable size and this is a possible explanation of the difference in the burning properties of the two crystals. In the hexagonal plate-like crystal this ratio remains substantially constant because the smallest dimension, the thickness does not change greatly with increase in size, whereas in the prismatic crystal the ratio is an inverse function of the size, the shape of the crystal being the same for all sizes.
- the factors which control the precipitation of the lead styphnate as a hydrated gel are apparently the control of temperature and regulation of the addition of the lead nitrate-acetic acid solution together with the correct ratio of sodium hydroxide to acetic acid. After the complete precipitation of the lead salt as a hydrated gel, a rapid transformation to the crystalline state is necessary. This may be controlled by either an increase in the concentration of acetic acid or an increase in temperature or both.
- Another factor is the strength of the sodium styphnate solution.
- we preferably employ a solution slightly less than the saturation point at room temperature. This may be varied, however. A concentration one-half as strong as that set forth herein is unsuitable and, a concentration percent higher, while workable, tends to become too stiff during the gel stage and is therefore not as convenient to handle.
- the principal controlling factors are, therefore, concentration of the sodium'styphnate solution, time of addition of solutions, temperatures, and ratio of acetic acid to sodium hydroxide. If one of these factors is changed, the other three may be varied to compensate for this change. It is necessary in all.
- acetic acid solution is added.
- the acetic acid increases the solubility and therefore permits the formation of the separate plate-like crystals without further growth into the prismatic crystals.
- a suspension of styphnic acid in water is first prepared. If the styphnic acid is the relatively impure material characterized by dark brown color, the desired results can be obtained without any additional material being added to it. If it is relatively pure styphnic acid characterized by a light color, 8 grams of nitroresorufin are added to each 450 grams of styphnic acid.
- a typical example may consist of the addition of 450 grams of styphnic acid to 5 liters of 'water. This is placed in a pail or container and preferably located in a water bath to control the temperature. A solution of 1500 cc. of water containing 500 grams of sodium hydroxide is then prepared. This solution is stirred until the sodium hydroxide is completely dissolved and 520 grams of it is added to the styphnic acid suspension. The sodium hydroxide solution is added slowly to the styphnic acid suspension with a temperature of the latter at about 50 C. The sodium hydroxide solution is at a temperature of about 60 C. and upon its addition to the suspension the temperature of the pail or container rises. It should be maintained at about C.
- a solution of lead nitrate is prepared by adding 13,800 grams of lead nitrate to 36 liters of water. This solution is prepared without agitation and is preferably placed in the tank containing the water in a leaching box and allowed to stand over night. When the lead nitrate solution is complete, 2280 cc. of glacial acetic acid are added for a period of one minute with stirring. The solution is then stirred for about five minutes and quantities of 2500 cc. each are run into calibrated delivery flasks.
- lead nitrate solution prepared as described and with the sodium styphnate solution at a temperature of about 55 0., precipitation of lead styphnate is begun.
- the lead nitrate solution is allowed to drip into the sodium styphnate solution slowly.
- the first 600 cc. of lead nitrate solution is added in approximately twelve minutes'and the remainder in about thirty-five minutes.
- the temperature is maintained between 54 C. and 56 C. for the first twelve minutes and is then raised to 60 C. for the remainder of the addition.
- the gel begins to break up and form a thick slurry which eventually changes from a yellow to a brown color and at the same time dissolves.
- 'Solution' of the gel is apparently complete when approximately 2000 cc. of the lead nitrate solution has been added 'and'no visible change occurs from this point to starting temperature is about 56 C. and during the gel stage the temperature drops to about 51 to 52 C. but as stirring becomes more efiicient, the temperature rises to approximately 55 C.
- the time of addition is ten minutes for the first 500 cc. of lead nitrate-acetic acid solution. This rate is continued until about 750 cc. has been added. At this point the gel begins to break up and the addition is speeded up so that the entire solution is added in 30 to 35 minutes.
- the process heretofore outlined produces a new product in that the lead styphnate is in the form of plate-like crystals having a large ratio of surface area to volume, as distinguished from the prismatic crystals heretofore produced.
- the lead styphnate is in the form of plate-like crystals having a large ratio of surface area to volume, as distinguished from the prismatic crystals heretofore produced.
- the product is more uniform.
- the crystals are either uniformly large or uniformly small within a given batch, the extreme variation is quite small.
- the method allows the precipitation of larger quantities in each working batch.
- the data given above with respect to the size of crystals relates to crystals from a single batch.
- Typical average size crystals. obtained from many batches is .007 cm. along the longest axis, .005 cm. in width and approximately .0015 cm in thickness.
- the ratio of square centimeters of area to cubic centimeters of volume is approximately 24 to 1. This is more than twice that in the prismatic crystal.
- the ratio of square centimeters of area to cubic centimeters of volume is approximately to 1.
- the ratio for the prismatic decreases as the size of the crystals increases but remains substantially the same for all size of crystals of the hexagonal type.
- sodium styphnate isintended to include the commercial product which is a dark brown material containing as impurities or adulterants one or more of the nitro derivatives of resorufin, indophenol and resazurin.
- the herein described method which comprises forming a solution of sodium styphnate, adding a solution of lead nitrate and acetic acid, concentrated with regard to lead nitrate and dilute with regard to acetic acid, thereto at such temperature that a gel is precipitated, and continuing the addition of the lead nitrate-acetic acid solution until lead styphnate is precipitated in crystalline form.
- the sodium styphnate solution is prepared from styphnic acid containing an adulterant. from the group consisting of the nitro derivatives of resorufin, indo-phenol and resazurin.
- the herein described process which comprises adding sodium hydroxide to styphnate acid at a temperature of substantially 55 C., then adding a solution of lead nitrate and acetic acid, concentrated with regard to lead nitrate and dilute with regard to acetic acid, thereto at such temperature that a gel is precipitated and then continuing the addition of the lead nitrate-acetic acid solution until lead styphnate is precipitated in crystalline form.
- the herein described process which comprises preparing a solution of sodium styphnate, adding a solutions of lead nitrate and acetic acid, concentrated with regard to lead nitrate and dilute with regard to acetic acid, thereto at a temperature of substantially 55 C. until a gel is precipitated, and adding additional lead nitrate-acetic acid solution thereto at a temperature substantially 60 C. until lead styphnate is precipitated in the form of crystals.
- the steps comprising precipitating a gel from a solution of sodium styphnate, and then adding a concentrated lead nitrate-dilute acetic acid solution thereto at a temperature of substantially 60 C. to precipitate the lead styphnate in crystalline form.
- the steps comprising precipitating a gel from a solution of sodium styphnate and then adding a concentrated lead nitrate-dilute acetic acid solution thereto to precipitate the lead styphnate in: crystalline form.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
BE430296D BE430296A (e) | 1937-09-22 | ||
US165072A US2150653A (en) | 1937-09-22 | 1937-09-22 | Normal lead styphnate and a method of making it |
GB27465/38A GB519340A (en) | 1937-09-22 | 1938-09-20 | Improved explosive and process of making the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US165072A US2150653A (en) | 1937-09-22 | 1937-09-22 | Normal lead styphnate and a method of making it |
Publications (1)
Publication Number | Publication Date |
---|---|
US2150653A true US2150653A (en) | 1939-03-14 |
Family
ID=22597297
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US165072A Expired - Lifetime US2150653A (en) | 1937-09-22 | 1937-09-22 | Normal lead styphnate and a method of making it |
Country Status (3)
Country | Link |
---|---|
US (1) | US2150653A (e) |
BE (1) | BE430296A (e) |
GB (1) | GB519340A (e) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2456583A (en) * | 1944-05-05 | 1948-12-14 | American Cyanamid Co | Method for preparing lead nitroaminoguanidine |
DE2328895A1 (de) * | 1972-06-09 | 1973-12-20 | Secr Defence Brit | Verfahren zur herstellung von bleistyphnat |
US3928405A (en) * | 1972-11-09 | 1975-12-23 | Imp Metal Ind Kynoch Ltd | Methods of manufacturing heavy metal trinitro resorcinate |
US3983149A (en) * | 1974-07-18 | 1976-09-28 | Remington Arms Company, Inc. | Ammunition priming mixtures and method of forming same |
US4029530A (en) * | 1974-07-18 | 1977-06-14 | Remington Arms Company, Inc. | Method of forming lead styphnate ammunition priming mixture |
RU2554649C1 (ru) * | 2014-05-20 | 2015-06-27 | Акционерное общество "Муромский приборостроительный завод" | Способ получения коллоидного гелеобразного тринитрорезорцината свинца |
-
0
- BE BE430296D patent/BE430296A/xx unknown
-
1937
- 1937-09-22 US US165072A patent/US2150653A/en not_active Expired - Lifetime
-
1938
- 1938-09-20 GB GB27465/38A patent/GB519340A/en not_active Expired
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2456583A (en) * | 1944-05-05 | 1948-12-14 | American Cyanamid Co | Method for preparing lead nitroaminoguanidine |
DE2328895A1 (de) * | 1972-06-09 | 1973-12-20 | Secr Defence Brit | Verfahren zur herstellung von bleistyphnat |
US3953486A (en) * | 1972-06-09 | 1976-04-27 | The Secretary Of State For Defence In Her Britannic Majesty's Government Of The United Kingdom Of Great Britain And Northern Ireland | Manufacture of lead styphnate |
US3928405A (en) * | 1972-11-09 | 1975-12-23 | Imp Metal Ind Kynoch Ltd | Methods of manufacturing heavy metal trinitro resorcinate |
US3983149A (en) * | 1974-07-18 | 1976-09-28 | Remington Arms Company, Inc. | Ammunition priming mixtures and method of forming same |
US4029530A (en) * | 1974-07-18 | 1977-06-14 | Remington Arms Company, Inc. | Method of forming lead styphnate ammunition priming mixture |
RU2554649C1 (ru) * | 2014-05-20 | 2015-06-27 | Акционерное общество "Муромский приборостроительный завод" | Способ получения коллоидного гелеобразного тринитрорезорцината свинца |
Also Published As
Publication number | Publication date |
---|---|
GB519340A (en) | 1940-03-21 |
BE430296A (e) |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3234258A (en) | Sulfation of alpha olefins | |
US2150653A (en) | Normal lead styphnate and a method of making it | |
US1280622A (en) | Process for manufacturing oxalates. | |
US2295104A (en) | Manufacture of normal lead trinitroresorcinate and double salts thereof | |
US3262801A (en) | Process of preparing finely divided silicas of varied properties | |
US2246963A (en) | Manufacture of styphnic acid | |
US1942274A (en) | Priming mixture | |
US2265230A (en) | Basic lead styphnate and a process of making it | |
US2177657A (en) | Explosive | |
US1914530A (en) | Method of producing noncrystalline explosive azide | |
Orbovic et al. | Production of Exploding Materials for Detonators: Control of Crystal Growth of Lead and Barium 2, 4, 6‐trinitroresorcinate | |
US4123303A (en) | Ignitable compositions | |
US2653971A (en) | Manufacture of anthranilic acid | |
DE112015002246T5 (de) | Verfahren zur Herstellung von Silberazid | |
US2048168A (en) | Nitrated ortho-alkyl-phenolic compounds | |
US2346493A (en) | Manufacture of calcium chromate | |
US2960536A (en) | Process for the production of nitrosamines | |
US2137234A (en) | Basic lead styphnate and process of making it | |
US2275170A (en) | Manufacture of styphnic acid salts | |
DE1000386B (de) | Verfahren zur Herstellung neuer Chinazolinderivate | |
US2099293A (en) | Chemical compound and use therefor | |
US2275173A (en) | Manufacture of styphnic acid salts | |
Bausor et al. | CLXI.—Interaction of ethylene and selenium monochloride | |
US2493551A (en) | Production of normal lead dinitroresorcinate | |
US3102784A (en) | Process for making anhydrous lithium perchlorate and lithium perchlorate trihydrate |