US2275170A - Manufacture of styphnic acid salts - Google Patents
Manufacture of styphnic acid salts Download PDFInfo
- Publication number
- US2275170A US2275170A US367608A US36760840A US2275170A US 2275170 A US2275170 A US 2275170A US 367608 A US367608 A US 367608A US 36760840 A US36760840 A US 36760840A US 2275170 A US2275170 A US 2275170A
- Authority
- US
- United States
- Prior art keywords
- acid
- styphnic
- crystals
- resorcine
- manufacture
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- IXHMHWIBCIYOAZ-UHFFFAOYSA-N styphnic acid Chemical class OC1=C([N+]([O-])=O)C=C([N+]([O-])=O)C(O)=C1[N+]([O-])=O IXHMHWIBCIYOAZ-UHFFFAOYSA-N 0.000 title description 24
- 238000004519 manufacturing process Methods 0.000 title description 10
- 239000013078 crystal Substances 0.000 description 28
- 150000003839 salts Chemical class 0.000 description 22
- GHMLBKRAJCXXBS-UHFFFAOYSA-N resorcinol Chemical compound OC1=CC=CC(O)=C1 GHMLBKRAJCXXBS-UHFFFAOYSA-N 0.000 description 13
- WETZJIOEDGMBMA-UHFFFAOYSA-L lead styphnate Chemical compound [Pb+2].[O-]C1=C([N+]([O-])=O)C=C([N+]([O-])=O)C([O-])=C1[N+]([O-])=O WETZJIOEDGMBMA-UHFFFAOYSA-L 0.000 description 12
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 9
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 9
- 229910017604 nitric acid Inorganic materials 0.000 description 9
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 8
- YCIMNLLNPGFGHC-UHFFFAOYSA-N catechol Chemical compound OC1=CC=CC=C1O YCIMNLLNPGFGHC-UHFFFAOYSA-N 0.000 description 8
- 239000001117 sulphuric acid Substances 0.000 description 8
- 235000011149 sulphuric acid Nutrition 0.000 description 8
- 239000002253 acid Substances 0.000 description 7
- 238000000034 method Methods 0.000 description 7
- BGJSXRVXTHVRSN-UHFFFAOYSA-N 1,3,5-trioxane Chemical group C1OCOCO1 BGJSXRVXTHVRSN-UHFFFAOYSA-N 0.000 description 6
- 239000003795 chemical substances by application Substances 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 4
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- RLJMLMKIBZAXJO-UHFFFAOYSA-N lead nitrate Chemical compound [O-][N+](=O)O[Pb]O[N+]([O-])=O RLJMLMKIBZAXJO-UHFFFAOYSA-N 0.000 description 3
- 238000006396 nitration reaction Methods 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 2
- 229960000583 acetic acid Drugs 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000012362 glacial acetic acid Substances 0.000 description 2
- 239000008103 glucose Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 230000035939 shock Effects 0.000 description 2
- 101000843155 Capsicum annuum Histone H4 Proteins 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 229910006069 SO3H Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- -1 basic lead styphnate Chemical class 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C201/00—Preparation of esters of nitric or nitrous acid or of compounds containing nitro or nitroso groups bound to a carbon skeleton
- C07C201/06—Preparation of nitro compounds
- C07C201/10—Preparation of nitro compounds by substitution of functional groups by nitro groups
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07B—GENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
- C07B2200/00—Indexing scheme relating to specific properties of organic compounds
- C07B2200/13—Crystalline forms, e.g. polymorphs
Definitions
- This invention relates to the manufacture of styphnic acid and certain of its salts, and contemplates improvements and refinementsin the production of styphnic acid, the practice of which results in a product adapted to be made into'l salts having certain desirable properties and characteristics.
- the invention contemplates the control of the shape and form of the crystals of certain salts of styphnic acid, particularly basic lead styphnate, and certain methods in the manufacture of styphnic acid which enable the acid to form salts having novel and desirable crystal shapes.
- the temperature is maintained between 60 and 70 C., and the styphnic acid-sodium hydroxide solution is at first droppedinto the lead nitrate solution very slowly.
- the first precipitate is a previously known yellow amorphous or partly amorphous basic lead styphnate which, if the sodium hydrcxide-styphnic acid solution is at first introduced quite slowly, changes over to a heavier red crystalline basic lead styphnate which quickly settles out.
- the crystals of basic lead styphnate are rather thick hexagonal plates. They are less fragile and sensitive to friction and shock than the previously known yellow needle crystals.
- the present invention comprises the discovery of other crystalline forms of basic lead styphnate, and methods for producing basic lead styphnate in these forms.
- the novel crystal shapes result from the use of styphnic acid made in accordance with certain procedures constituting a part of the present invention. The manufacture of ordinary styphnic acid will first be briefly described:
- the raw material is resorcine (CaH4(OH)2).
- resorcine is sulphonated to resorcine-di-sulphonic acid, C6Hz(OI-I)2(SO3H)2.
- the resorcine-di-sulphonic acid is then nitrated with concentrated nitric acid.
- the precipitated styphnic acid is separated from the residue by centrifugal action or by filtration, and subsequently washed, first with a dilute mineral acid and then with water. If the sulphonation of the resorcine is complete, the resulting product is pure styphnic acid of a bright yellow color and low gravimetric density, from which crystalline salts are formed only with great difficulty.
- the present invention comprises the discovery that the character of the styphnic acid may be altered in such a way as to control the crystal shape of the salts which it formsby the addition, during the operation of sulphonating, of small amounts of certain foreign substances.
- Such variations in the styphnic acid and in the crystal shape of its salts, particularly the basic lead salt are produced by the use of any one of anumber
- each substance has the property of producing its own characteristic effects and crystal shape, each of these shapes differing from the others. For example, if to a batch comprising grams of resorcine and 460 c. c. of 98% sulphuric acid there be added 10 c. c.
- styphnic acid which yields its basic lead salt in crystals of a shape differing very substantially from the usual crystals of this salt;
- Said crystals are somewhat elongated square or rectangular prisms, as distinguished from the usual hexagonal plates, and appear to be more sensitive to shock and friction than the hexagonal plates.
- Two opposite faces of the rectangular prismatic crystals appear to be substantially square, while the other faces are rectangles having a length of the general order of three or four times their width.
- the use of catechol in place of tri-oxy-methylene produces a styphnic acid whose basic lead salt likewise forms in square prismatic crystals, but these crystals are much shorter (more nearly cubical) than those resulting from tri-oxy-methylene.
- the procedure is as follows: The crystal controlling agent is preferably introduced into the sulphonating sulphuric acid. Just as With tri-oxy-methylene, improved results are secured if a small amount of nitric acid is also used.
- glacial acetic acid as an addition agent produces a striking effect in that the salt crystals are short, rectangular prisms with rounded corners, somewhat resembling the crystals of normal lead styphnate.
- Such crystals are produced from styphnic acid, in the preparation of which about 5 c. .c. of glacial acetic acid and c. c. of concentrated nitric acid have been added to 460 c. c. of 98% sulphuric acid, which
- the use of water as an addition agent produces a salt in crystals which are nearly cubical and exceptionally firm and dense.
- Such crystals are produced from styphnic acid in the preparation of which about c. c. of water and 10 c. c. of concentrated nitric acid are added to 460 c. c. of 98% sulphuric acid, which is then used for the sulphonation of grams of resorcine.
- the foreign substance is introduced in the sulphonation operation in the preparation of styphnic acid, and that the described crystal shapes are those of the salts, particularly the basic lead salt, of the acid produced by the nitration of resorcine-di-sulphonic acid made in the presence of the foreign substance.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Description
Patented Mar. 3, 1942 MANUFACTURE STYPHNIC ACID SALTS Willi Briin, Bridgeport, Conn, assignor to Remington Arms Company, Inc., a corporation of Delaware No Drawing. Application November 28, 1940,
' Serial No. 367,608
2 Claims.
This invention relates to the manufacture of styphnic acid and certain of its salts, and contemplates improvements and refinementsin the production of styphnic acid, the practice of which results in a product adapted to be made into'l salts having certain desirable properties and characteristics. 1
,The present application is a continuation in part of my prior co-pending application, Serial No. 207,781, filed May 13, 1938, which is a division of application Serial No. 674,049, filed June 2,
1933, now Patent No. 2,137,234, November 22,
More specifically, the invention contemplates the control of the shape and form of the crystals of certain salts of styphnic acid, particularly basic lead styphnate, and certain methods in the manufacture of styphnic acid which enable the acid to form salts having novel and desirable crystal shapes.
The manufacture of basic lead styphnate, and particularly a red crystalline form thereof, is described in this applicant's PatentNo. 1,942,274, January 2, 1934. as follows:
A solution of styphnic acid and sodium hydroxide, in the proportions of 12.2 grams of styphnic acid and 8 grams of sodium hydroxide in 400 c. c. of water, is dropped into a lead nitrate solution of the concentration of about grams of lead nitrate in 350 c. c. of water. The temperature is maintained between 60 and 70 C., and the styphnic acid-sodium hydroxide solution is at first droppedinto the lead nitrate solution very slowly. The first precipitate is a previously known yellow amorphous or partly amorphous basic lead styphnate which, if the sodium hydrcxide-styphnic acid solution is at first introduced quite slowly, changes over to a heavier red crystalline basic lead styphnate which quickly settles out.
When in the practice of the process above outlined ordinary styphnic acid is used, the crystals of basic lead styphnate are rather thick hexagonal plates. They are less fragile and sensitive to friction and shock than the previously known yellow needle crystals. The present invention comprises the discovery of other crystalline forms of basic lead styphnate, and methods for producing basic lead styphnate in these forms. The novel crystal shapes result from the use of styphnic acid made in accordance with certain procedures constituting a part of the present invention. The manufacture of ordinary styphnic acid will first be briefly described:
The raw material is resorcine (CaH4(OH)2). By treatment with concentrated sulphuric acid, resorcine is sulphonated to resorcine-di-sulphonic acid, C6Hz(OI-I)2(SO3H)2. The resorcine-di-sulphonic acid is then nitrated with concentrated nitric acid. The precipitated styphnic acid is separated from the residue by centrifugal action or by filtration, and subsequently washed, first with a dilute mineral acid and then with water. If the sulphonation of the resorcine is complete, the resulting product is pure styphnic acid of a bright yellow color and low gravimetric density, from which crystalline salts are formed only with great difficulty.
It may be briefly summarized.
of different substances.
ical properties.
The present invention comprises the discovery that the character of the styphnic acid may be altered in such a way as to control the crystal shape of the salts which it formsby the addition, during the operation of sulphonating, of small amounts of certain foreign substances. Such variations in the styphnic acid and in the crystal shape of its salts, particularly the basic lead salt, are produced by the use of any one of anumber Moreover, each substance has the property of producing its own characteristic effects and crystal shape, each of these shapes differing from the others. For example, if to a batch comprising grams of resorcine and 460 c. c. of 98% sulphuric acid there be added 10 c. c. of concentrated nitric acid, the resulting styphnic acid is darker in color and less voluminous and its salts have difierent phys- The further addition of .1 gram of tri-oxy-methylene results in a styphnic acid which yields its basic lead salt in crystals of a shape differing very substantially from the usual crystals of this salt; Said crystals are somewhat elongated square or rectangular prisms, as distinguished from the usual hexagonal plates, and appear to be more sensitive to shock and friction than the hexagonal plates. Two opposite faces of the rectangular prismatic crystals appear to be substantially square, while the other faces are rectangles having a length of the general order of three or four times their width.
The use of catechol in place of tri-oxy-methylene produces a styphnic acid whose basic lead salt likewise forms in square prismatic crystals, but these crystals are much shorter (more nearly cubical) than those resulting from tri-oxy-methylene. The procedure is as follows: The crystal controlling agent is preferably introduced into the sulphonating sulphuric acid. Just as With tri-oxy-methylene, improved results are secured if a small amount of nitric acid is also used. In
460 c. c. of 98% sulphuric acid there is mixed 10 c. c. of concentrated nitric acid and .5 gram of crystalline catechol. The acid thus prepared is poured over 110 grams of resorcine, this being the usual procedure in the sulphonation of resorcine. The manufacture of styphnic acid and the salts thereof, such as the basic lead styphnate, is then completed in the manner heretofore described.
The use of glucose in place of tri-oxy-methylene or catechol as above described produces greatly elongated rectangular crystals of the salts. For this purpose, crystalline glucose is used in exactly the same manner as tri-oxymethylene or catechol, .25 gram thereof being a desirable quantity for additional to 460 c. c. of
I 98% sulphuric acid and 10 c. c. of concentrated nitric acid, the mixture being used in the sulphonation of 110 grams of resorcine.
The use of phenol in place of any of the addition agents above-mentioned likewise produces a characteristic crystal, difiering from that produced by any of the other addition agents. These crystals are substantially .rectangular in cross section and extremely long. A desirable quantity is 1 gram of crystalline phenol with '10 c. c. of concentrated nitric acid in 460 c. c. of 98% sulphur-ic acid, the mixture sulphonati-ng 110 grams of resorcine.
The use of aluminum in the same manner produces crystals which are very nearly cubical and exceptionally clean. 1 gram of powder of alu- 'minum and 10 c. c. of concentrated nitric acid are added to 460 c. c. of 98% sulphuric acid, which is then used for the sulphonation of 110 grams of resorcine.
The use of glacial acetic acid as an addition agent produces a striking effect in that the salt crystals are short, rectangular prisms with rounded corners, somewhat resembling the crystals of normal lead styphnate. Such crystals are produced from styphnic acid, in the preparation of which about 5 c. .c. of glacial acetic acid and c. c. of concentrated nitric acid have been added to 460 c. c. of 98% sulphuric acid, which The use of water as an addition agent produces a salt in crystals which are nearly cubical and exceptionally firm and dense. Such crystals are produced from styphnic acid in the preparation of which about c. c. of water and 10 c. c. of concentrated nitric acid are added to 460 c. c. of 98% sulphuric acid, which is then used for the sulphonation of grams of resorcine.
It should be remembered that the foreign substance is introduced in the sulphonation operation in the preparation of styphnic acid, and that the described crystal shapes are those of the salts, particularly the basic lead salt, of the acid produced by the nitration of resorcine-di-sulphonic acid made in the presence of the foreign substance.
No satisfactory theoretical explanation of these effects can be offered. The foreign substances which cause them do not fall within any recognized class, or appear to have any property in common other than their ability to change the crystal shape of basic lead styphnate from hexagonal to generally rectangular. Limited oxidation of the resorcine or the resorcine-di-sulphonic acid may be a factor, but oxidation alone cannot account for effects which are individual to the different addition agents.
What is claimed is:
1. 'In the manufacture of a lead salt of styphnic .acid by the sulphonation and nitration of resorcine to styphnic acid and the subsequent formation of a crystalline salt therefrom, the step which comprises the addition of phenol to the sulphonating acid, whereby in a subsequent step said salt leadis formed in crystals of a configuration characteristic to said addition.
2. In the manufacture of basic lead styphnate by a process including the sulphonation and nitration of resorcine to styphnic acid and the subsequent formation of a crystalline salt therefrom, the step which comprises the, addition of phenol to the sulphonating acid, whereby in a subsequent .step said basic lead styphnate is formed in crystals of a configuration characteris then used for thesulphonation of 110 grams-0f 45 istic to said additionresorcine.
WILLI BaiJ'N.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US367608A US2275170A (en) | 1940-11-28 | 1940-11-28 | Manufacture of styphnic acid salts |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US367608A US2275170A (en) | 1940-11-28 | 1940-11-28 | Manufacture of styphnic acid salts |
Publications (1)
Publication Number | Publication Date |
---|---|
US2275170A true US2275170A (en) | 1942-03-03 |
Family
ID=23447877
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US367608A Expired - Lifetime US2275170A (en) | 1940-11-28 | 1940-11-28 | Manufacture of styphnic acid salts |
Country Status (1)
Country | Link |
---|---|
US (1) | US2275170A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2480141A (en) * | 1944-08-22 | 1949-08-30 | Fed Cartridge Corp | Primer mixture |
-
1940
- 1940-11-28 US US367608A patent/US2275170A/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2480141A (en) * | 1944-08-22 | 1949-08-30 | Fed Cartridge Corp | Primer mixture |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US2275170A (en) | Manufacture of styphnic acid salts | |
US2137234A (en) | Basic lead styphnate and process of making it | |
US2275173A (en) | Manufacture of styphnic acid salts | |
US2275169A (en) | Manufacture of styphnic acid salts | |
US2275171A (en) | Manufacture of styphnic acid salts | |
US2275172A (en) | Manufacture of styphnic acid salts | |
US2238210A (en) | Manufacture of styphnic acid salts | |
US2408059A (en) | Manufacture of diazodinitrophenol | |
US2534562A (en) | Method of preparing zinc selenide | |
US2150653A (en) | Normal lead styphnate and a method of making it | |
US3350167A (en) | Method of preparing hydrated nickel carbonate and the product thereof | |
US2391166A (en) | Lead salicylate compositions and process of preparing same | |
US2226568A (en) | Process for manufacturing iodoalkaloids | |
US2380779A (en) | Method of preparing sodium perborate of low bulk density | |
KR100200429B1 (en) | Process of preparation for diazodinitrophenol | |
US2563442A (en) | Process | |
DE656205C (en) | Process for the preparation of diazo compounds containing nitro groups from 2-amino-1-oxynaphthalenesulfonic acids | |
US1914530A (en) | Method of producing noncrystalline explosive azide | |
Raju | Dendritic structures in gel grown Gypsum | |
US2099293A (en) | Chemical compound and use therefor | |
US2384365A (en) | Manufacture of 2,4-dinitro-6-cyclohexyl-phenol | |
US2711361A (en) | Process for the recovery of uranium | |
US1922205A (en) | 2-carboxy-5-amino diphenyl | |
US2020665A (en) | Process of making basic lead trinitroresorcinol | |
US1630072A (en) | Manufacture of mercuri-mononitro-ortho-cresol and its salts |