US2135701A - Electric gaseous discharge device - Google Patents
Electric gaseous discharge device Download PDFInfo
- Publication number
- US2135701A US2135701A US159430A US15943037A US2135701A US 2135701 A US2135701 A US 2135701A US 159430 A US159430 A US 159430A US 15943037 A US15943037 A US 15943037A US 2135701 A US2135701 A US 2135701A
- Authority
- US
- United States
- Prior art keywords
- electrode
- electrodes
- discharge
- tube
- starting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- QVQLCTNNEUAWMS-UHFFFAOYSA-N barium oxide Chemical compound [Ba]=O QVQLCTNNEUAWMS-UHFFFAOYSA-N 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 229910052753 mercury Inorganic materials 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- 239000003870 refractory metal Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- IATRAKWUXMZMIY-UHFFFAOYSA-N strontium oxide Chemical compound [O-2].[Sr+2] IATRAKWUXMZMIY-UHFFFAOYSA-N 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- 241000290143 Pyrus x bretschneideri Species 0.000 description 1
- 206010041953 Staring Diseases 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000009849 deactivation Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J61/00—Gas-discharge or vapour-discharge lamps
- H01J61/02—Details
- H01J61/54—Igniting arrangements, e.g. promoting ionisation for starting
- H01J61/545—Igniting arrangements, e.g. promoting ionisation for starting using an auxiliary electrode inside the vessel
Definitions
- the present invention relates to electric gaseous discharge devices and particularly to devices having thermionic electrodes.
- a particular object of the invention is to pro- 5 vide a novel gaseous discharge device having a long useful life.
- Another object of the invention is to provide means to shift the discharge from one electrode to another within a discharge device after a desired interval. Still other objects and advantages of the invention will appear from the following detailed specification or from an inspection of the accompanying drawing.
- the necessary transfer between the electrodes was accomplished by connecting the starting and running electrodes in parallel, with the arc path to the uncoated running electrode shorter than that to the coated electrode.
- the vapor pressure increases after starting the voltage gradient increases and the running electrodes. are also heated at the same time by the discharge, increasing their thermionic emission until eventually the discharge transfers to these running electrodes due to the shorter arc path, the moment of transfer being determined by the spacing between the starting and running electrodes.
- the tube In alternating current operation, the tube is provided with two sets of starting and running electrodes; with direct current one such set of electrodes is sufficient which is used as cathode, 20 while the anode is constructed in a conventional manner, where desired.
- the discharge first attaches itself to the activated starting electrode (which is heated by a special heater current, or 25 more expediently by the discharge), so that the current flows over the resistance.
- the tube heats up, whereby the vapor pressure and the voltage gradient (voltage drop per unit of length of the discharge path) rise.
- the time interval between the ignition and this transfer is regulated in our novel structure by adjusting the size of the resistance, and 35 is preferably adjusted in such a manner that the auxiliary electrode conducts the current in the low pressure operation and the main electrode in the high pressure operation of the discharge.
- Our novel structure has the further 40 advantage that this adjustment of the resistance can be undertaken after the lamp has been sealed off, so that the above mentioned time interval can be changed after finishing the tube, without the need of changing anything inside of the tube.
- the distance between the main electrode and the auxiliary electrode is so chosen, independent of the above mentioned time interval between the ignition and the passing over of the discharge, 50 to be most favorable in regard to the ignition voltage and the heating of the tube.
- Fig. 1 shows a longitudinal section of this tube
- Fig. 2 shows a main running electrode of this tube in perspective.
- the discharge tube I consisting of quartz and suited for emitting visible light or ultra-violet rays, is cylindrical and contains at each end a helical starting electrode 2 arranged along the axis of the tube.
- This starting electrode is covered with an activated coating, such as a mixture of barium oxide and strontium oxide.
- a main running electrode 3 which consists of a tungsten wire that has an approximately circular part 4 which lies in a plane perpendicular to the tube axis (see Fig.2) and a projecting part 5 lying in the tube axis.
- the tube I preferably further has two quartz screens or bailies 6, each of which has a central opening I, each bafile being located a short distance from the projecting electrode part 5.' To facilitate equalization of the gas pressure and vapor pressure in the various parts of the tube 1 the screens 6 are further provided, where desired, with one or more openings at their rims.
- a resistance I0 is connected, preferably outside of the discharge space.
- This resistance is conveniently arranged in the conventional base (not shown) so that the finished discharge tube has only two contacts which, as shown in the drawing, are attached to an alternating current source 12 through an external choke coil 1 l.
- the tube is provided with a rare gas filling, such as argon at a pressure of the order of 5 mm. mercury, and moreover contains a quantity of mercury, which preferably is so limited that the entire amount is already vaporized before the tube has reached its normal operating temperature, so that the mercury vapor is unsaturated during operation and the vapor pressure changes only a little during fluctuations of the supply voltage or during changes in the cooling conditions.
- a rare gas filling such as argon at a pressure of the order of 5 mm. mercury
- a quantity of mercury which preferably is so limited that the entire amount is already vaporized before the tube has reached its normal operating temperature, so that the mercury vapor is unsaturated during operation and the vapor pressure changes only a little during fluctuations of the supply voltage or during changes in the cooling conditions.
- the current flows first between the starting electrodes 2.
- the discharge which proceeds from these auxiliary electrodes is constricted by the screens 6 and is conducted along the electrode parts 5 which are heated up by the discharge.
- the discharge passes over from the starting electrodes 2 onto the main running electrodes 3, where it is largely confined to the ends of the electrode parts 5, whereby the position of the discharge is stabilized.
- the starting electrodes 2 carry no current or only a negligibly small current.
- the time interval between the ignition and the transfer of the discharge depends on the size of the resistances l0, and is thus readily controlled.
- the distance between the electrode parts 5 was about 18 cm. and the distance between the auxiliary electrodes was about 19 cm., while the resistances II) had a value of about 5 ohms and the current strength of the tube amounted to 4.5 amp. after reaching the normal operating condition.
- the burning voltage of the discharge shortly after ignition was about 20 volts, whereas the burning voltage in the normal operating condition was volts, while it amounted to about 0 volts at the moment when the discharge passed over from the auxiliary electrodes onto the main-electrodes.
- the starting electrodes are shown as being of a type heated by the discharge, but it is to be understood that these electrodes may also be heated where desired by means of a special heater current which is switched off after the discharge has transferred to the main runningelectrodes.
- a special heater current which is switched off after the discharge has transferred to the main runningelectrodes.
- the latter construction however is not as simple as the one shown.
- An electric gaseous discharge device comprising a sealed envelope containing a gaseous atmosphere consisting in part of vaporizable material, at least three electrodes within said envelope, one of said electrodes being at one end of said envelope and the other two near the opposite end of said envelope but at different distances from the first electrode,'the electrode which is nearer said first mentioned electrode being an unactivated electrode of a refractory metal capable of thermionic emission when heated while the more remote of said electrodes is an activated thermionic-cathode, and a resistance connected between the two latter electrodes and traversed only by the current to the activated cathode which facilitates the transfer of a discharge from the activated starting electrode to the unactivated running electrode after the latter has been heated up by the discharge.
- An electric gaseous discharge device comprising a sealed envelope containing a gaseous atmosphere consisting in part of vaporizable ma-- terial, at least three electrodes within said envelope, one of said electrodes being at one end of said envelope but at different distances from the first electrode, the electrode which is nearer said first mentioned electrode being an unactivated electrode of a refractory metal capable of thermionic emission when heated while the more remote of said electrodes is an activated thermionic cathode, a resistance connected between the two latter electrodes and traversed only by the current to the activated cathode which facilitates the transfer of a discharge from the activated starting electrode to the unactivated running electrode after the latter has been heated up by the discharge and a shield extending across the discharge path within said envelope close to the unactivated electrode on the side away from the activated starting cathode, said shield having a small central opening therethrough which constricts the discharge in the vicinity of the unactivated electrode and thereby increases the heating thereof by the discharge.
Landscapes
- Discharge Lamp (AREA)
- Discharge Lamps And Accessories Thereof (AREA)
- Circuit Arrangements For Discharge Lamps (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DEN39815D DE681041C (de) | 1936-09-01 | 1936-09-01 | Hochdruckmetalldampfentladungsroehre |
Publications (1)
Publication Number | Publication Date |
---|---|
US2135701A true US2135701A (en) | 1938-11-08 |
Family
ID=6542346
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US159430A Expired - Lifetime US2135701A (en) | 1936-09-01 | 1937-08-16 | Electric gaseous discharge device |
Country Status (5)
Country | Link |
---|---|
US (1) | US2135701A (en:Method) |
DE (1) | DE681041C (en:Method) |
FR (1) | FR826103A (en:Method) |
GB (1) | GB479011A (en:Method) |
NL (1) | NL50279C (en:Method) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3369143A (en) * | 1967-02-28 | 1968-02-13 | Westinghouse Electric Corp | Instant-start fluorescent lamp having mixed fill gas and improved electrode structure |
DE19516049A1 (de) * | 1995-05-04 | 1996-11-07 | Walter Holzer | Zünd- und Stromversorgungsschaltung für Gasentladungslampen |
DE19515592A1 (de) * | 1995-05-02 | 1996-11-07 | Walter Holzer | Gasentladungslampe mit Schonstart |
WO2004068532A3 (en) * | 2003-01-30 | 2004-09-16 | Koninkl Philips Electronics Nv | Fluorescent lamp with a second ballast for dimmed lighting mode |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE754219C (de) * | 1938-04-24 | 1954-03-15 | Quarzlampen G M B H | Metalldampfhochdrucklampe, insbesondere Quecksilberhochdrucklampe, mit festen, nichtaktivierten Aufheizelektroden |
DE968579C (de) * | 1941-09-02 | 1958-03-06 | Felix Mueller Dr Ing | Elektrische Hochdruck-Entladungsroehre fuer Beleuchtungs- und Strahlungszwecke |
-
1936
- 1936-09-01 DE DEN39815D patent/DE681041C/de not_active Expired
-
1937
- 1937-08-16 US US159430A patent/US2135701A/en not_active Expired - Lifetime
- 1937-08-28 GB GB23626/37A patent/GB479011A/en not_active Expired
- 1937-08-30 FR FR826103D patent/FR826103A/fr not_active Expired
- 1937-08-30 NL NL83967A patent/NL50279C/xx active
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3369143A (en) * | 1967-02-28 | 1968-02-13 | Westinghouse Electric Corp | Instant-start fluorescent lamp having mixed fill gas and improved electrode structure |
DE19515592A1 (de) * | 1995-05-02 | 1996-11-07 | Walter Holzer | Gasentladungslampe mit Schonstart |
DE19516049A1 (de) * | 1995-05-04 | 1996-11-07 | Walter Holzer | Zünd- und Stromversorgungsschaltung für Gasentladungslampen |
WO2004068532A3 (en) * | 2003-01-30 | 2004-09-16 | Koninkl Philips Electronics Nv | Fluorescent lamp with a second ballast for dimmed lighting mode |
Also Published As
Publication number | Publication date |
---|---|
DE681041C (de) | 1939-09-13 |
GB479011A (en) | 1938-01-28 |
NL50279C (en:Method) | 1941-05-15 |
FR826103A (fr) | 1938-03-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0040547B1 (en) | Illumination system including a low pressure arc discharge lamp | |
US2262177A (en) | Lighting and radiating tube | |
US2733371A (en) | Internally conducttvely coated | |
US2267118A (en) | Fluorescent tube | |
US2765420A (en) | Lamp electrode | |
US2020737A (en) | Gaseous electric discharge arc lamp | |
US2315286A (en) | Gaseous discharge lamp | |
US2135701A (en) | Electric gaseous discharge device | |
US2429415A (en) | Circuit for electric discharge devices | |
US4398123A (en) | High pressure discharge lamp | |
US2252474A (en) | Discharge device | |
US3558964A (en) | High current thermionic hollow cathode lamp | |
US2248979A (en) | Discharge lamp | |
US3356884A (en) | Electrode starting arrangement having a coiled heating element connected to the retroverted portion of the electrode | |
US2010879A (en) | Gaseous electric discharge device | |
US2394436A (en) | Starting control for electric discharge device | |
US2267821A (en) | High-pressure metal vapor discharge tube | |
US2177696A (en) | Gaseous electric discharge lamp device | |
US2022219A (en) | Electric lamp | |
US2205000A (en) | Electric lamp | |
US2245406A (en) | Artificially cooled high-pressure mercury-vapor discharge tube | |
US4097774A (en) | Arc discharge flash lamp and shielded cold cathode therefor | |
US1872567A (en) | Discharge tube | |
US2007922A (en) | High potential radiator | |
US2930934A (en) | Discharge lamp |