US2110080A - Apparatus foe - Google Patents

Apparatus foe Download PDF

Info

Publication number
US2110080A
US2110080A US2110080DA US2110080A US 2110080 A US2110080 A US 2110080A US 2110080D A US2110080D A US 2110080DA US 2110080 A US2110080 A US 2110080A
Authority
US
United States
Prior art keywords
casings
frame
casing
members
hopper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
Publication date
Application granted granted Critical
Publication of US2110080A publication Critical patent/US2110080A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Definitions

  • This invention relates to apparatus for the manufacture of composite structural members designed to take the place of lumber, and is a division of my copending application Serial No. 39,022, filed September 3, 1935.
  • the resulting product takes a long time to dry. Consequently the product is inferior to that obtained when the volume of water combined with the components of the mixture is such as to avoid over-wetting of the material and when the water is introduced in such a way as to avoid interference with the, hardening action after its commencement.
  • the structural units after filling are laid aside for a time sufficient to allow the filler to cure and the hardening action to continue until the filler becomes transformed into a hard core. This curing action proceeds slowly and, depending upon the nature of the filler, may extend over several weeks or even months.
  • the casing is provided with a multiplicity of perforations, the filling material solidly packed into the casing while in a dry state, and moisture than introduced through the perforations into the filler so as to supply the necessary water of crystallization to the same and render it cohesive.
  • the time interval during which the casing is subjected to the moistening operation is carefully regulated so as to avoid over-wetting of the material.
  • the member is laid aside for a short time to complete the curing and hardening of the filler, during which interval excess moisture evaporates from the confined material through the perforations in the casing.
  • the filling material I prefer to employ a substantially dry mixture of gypsum, Portland becomes plastic and, upon crystallization of the gypsum and cement components and drying out of the sawdust, sets into a comparatively hard mass composing the core of the member.
  • a substantially dry mixture is preferable to one containing silica or other components of a gritty nature in that it is more adhesive, by virtue of which fact it clings more tenaciously to nails which may be driven thereinto and consequently offers appreciable frictional resistance to their withdrawal.
  • the completed structural members may be sawed to length in substantially the same manner as lumber.
  • the perforations formed in the casing are comparatively small in size and extend throughout the length of the member. Preferably they are punched so as to present burrs upon the inner surface of the casing which become embedded in the filler and upon hardening of the latter serve to anchor the casing to the core. These perforations thus serve the dual function of permitting moisture to be slowly absorbed by the enclosed body of cementitious material through the walls of the casing, and allow the removal of excess .30 cement and sawdust. This material when wetted moisture from the material by evaporation. Dehydration of the filler thus takes place at a comparatively uniform and rapid rate, and the member may be safely incorporated in a building structure a relatively short time after its manufacture.
  • Another object of the invention is to provide a composite structural member having perforations formed in its casing adjacent its middle, and pref erably coextensive with its length, to accomplish the purposes above described.
  • a further object of the invention is to provide an improved form of apparatus for carrying out the processherein disclosed, while another object of the invention is to provide an improved form of structural element resulting from the novel process of my invention.
  • Figure l is a composite structural member, of the stud type, resulting from the practice of the process herein disclosed;
  • Figure 2 is a front elevation of the apparatus for filling tubular casings in the manufacture of structural members of the type illustrated in Fig. 1; V
  • Figure 3 is a side elevation of the apparatus of Fig. 2;
  • Figure 4 is an enlarged perspective View of the reciprocating rack case for supporting a series of casings during the introduction of filling material thereinto;
  • Figure 5 illustrates a tub designed for immersion of the structural members
  • Figure 6 is a detail view of the agitator basketsto cause flowing of the material from the hopper
  • Figure 7 is a cross-sectional view of a pair of companion spouts.
  • Figure 8 is a detail View of one of the agitator baskets.
  • Fig. l is shown one form of composite structural member, suitable for use as a. building stud, and adapted to be manufactured. by the process of my invention.
  • Such member comprises generally a casing i of light, nail-penetrable sheet metal and a hardened core 2 of cementitious material into which nails may be driven without cracking or crumbling the material.
  • this form of stud which is more particularly described and claimed in my copending application Serial No. 39,023, the sides 3 of the casing are dished while the top and bottom faces 3a are plane.
  • an elongated strip of sheet metal is passed between suitable forming rolls to bend the sheet into the desired cross-sectional contour and, in the form of structural member shown in the figure, to unite the overlapped edges of the sheet by a lock seam 31) extending lengthwise of the member.
  • Any suitable mechanism for bending the members to shape may be employed, and since such mechanism is well known in the metal working art. a description of the same is unnecessary. Either before, during or after formation of the casing rows of small perforations 4 are punched at closely spaced intervals along the sides of the casing adjacent its top and bottom.
  • the casing l which assumes a tubular shape is adapted to receive a filling material.
  • This filling material is preferably composed of a substantially dry mixture of gypsum, Portland cement and sawdust represented in ap.-
  • the apparatus which I employ for packing the casing with filling material is diagrammatically illustrated in Figs. 2 and 3.
  • This mechanism comprises generally a common hopper 6 into which the filling material is adapted to be initially delivered; a rack case I located below the hopper and designed to support in vertical position a series of tubular sheet metal casings l in such a manner that material flowing out the bottom of the hopper discharges into the upper 'ends of the casings; a waste collector 8 located below the rack box for recovering spilled material; a feeding mechanism 9 for urging the material from the hopper into the open ends of the casings; and a vibrating mechanism H] for reciprocating the rack case I to solidly pack the material within the casings.
  • the hopper ii is supported upon a platform l3 located at the top of a tower, indicated generally by the reference numeral II.
  • the top of the hopper opens through the upper side of the platform and is extended in a direction cross-wise thereof.
  • the hopper terminates at its bottom in a series of downwardly depending spouts [2 disposed a substantial distance above the ground level.
  • the series of spouts 12 are arranged in closely spaced pairs and may be of any suitable shape, but desirably corresponding to that shown in Fig. 7.
  • Each pair of companion spouts is designed to feed material into the expanded crosssectional areas of a casing I located upon opposite sides of its constricted mid-section, and the two companion spouts together assume the general contour of the cross-section of a casing, but being smaller in outline.
  • These spouts are adapted to be used in filling all standard sizes and shapes of casings.
  • a bank of casings l is adapted to be supported in upright position within the rack case I.
  • This rack case comprises a frame open at its top and composed of vertical side members I! and a horizontal bottom member l8, to which members are attached a back cover l9 and two hinged outwardly opening doors 2!] constituting a front cover.
  • a series of vertically-extending partition members 2i are attached to the back cover I 9 forming stalls for receiving and supporting a plurality of casings l in upright position within the rack case in alignment with the spouts l2.
  • the thickness of the rack case corresponds approximately to the width of a casing, so that when the casings are introduced laterally into the rack case and the doors 20 are closed, the sides of the casings i will be snugly confined between the front and back covers of the rack case. Latches 22 are provided for holding the doors 2!] closed.
  • the rack case is reciprocable in a. vertical direction and for this purpose there are provided pairs of guide plates 25 upon opposite sides of the rack case rigidly fastened to the tower II and arranged to embrace the side members and slightly overlap the front face of the rack case, as indicated in Fig. 3, but not suificiently far sov asto interfere with the opening and closing of the doors 20.
  • These guide plates insure straight-line vertical reciprocation of the rack case.
  • the. vibrationmechanism I is designed to impart a successionv of sharp vertical impulses or jolts to the rack case during filling of the cas-.
  • This vibrating mechanism comprises a pair of generally horizontally-extending arms 21 each of whichis pivoted at one extremity to a shaft 281 supported within bearings 29 which are, in turn, fastened to the top of a concrete pier 30.
  • the outerfree ends of the arms are provided with eyes.
  • encircling.- trunnions 32 projecting laterally fromthe side members ll of, the rack case.
  • a horizontal shaft 33 supported inv bearings 34 upon the top of" the concrete, block 30 extends transversely below the arms 2-! about midway of their length, and this shaft is rotated by a belt 35 (Big. 4) extending between pulleys 36 and 31 keyed to theshaft 33-and to a power transmis-. sion.
  • This power transmission shaft may-be driven. in any suitable manner, as by a motor 39, and a suitable clutch (not shown) may be provided for operatively disengaging the driving: mechanism from shaft 33.
  • a suitable clutch (not shown) may be provided for operatively disengaging the driving: mechanism from shaft 33.
  • Upon the shaft 33 at suitably spaced intervals are fixed a series of :cams 4.0adapted tobear against the underside of: thepairs. of arms 27, these cams being formed with convolutelcontours, designed, during their rotation, to-impart a lift to the rack case followed by a quick drop through a small vertical distance.
  • a succession of vertical impulses is applied: to the rack case.
  • the feeding mechanism 9 contemplates the provision of a series of reciprocating rods 42 eachextending vertically downwardly into thehopper 6.
  • the open frame of the-basket is encircledby wires 44a at spaced distances lengthwise of the basket which perforin'a cutting action upon the material, when the basket is raised and lowered.
  • a series of chopping strokes is produced which tumbles the filling material down. into and out through the open end of the spout, overcoming any tendency for the material, which'because of possible dampness maybe slightly cohesive and non-fluent, to clog. Since each spout of a pair of spouts delivers material to opposite sides of the constricted width of a casing at approximately the same speed, the filling of each casing proceeds rapidly and uniformly.
  • arms 45 are pivotally mounted at one end upon a shaft 46 mounted within a bearing 41 which may be supported upon a table 48 a suitable distance above the level of the platform [3 so that the arms 45. do not interfere with the delivery of material into the hopper 6.
  • the reciprocating rods 42 are suitably extend-ed vertically upwardly through the eyes of horizontal pins 49 disposed within the hopper, and these rods are united with the free outer ends of the arms 45.
  • These arms are rocked or oscillated through a small are by means. of cams. 5B, keyed to a shaft 5! extending below and transversely of the arms.
  • the shaft 5i: ismounted in suitable bearings upon the table 48.
  • is driven by a belt 52 trained over a sheave 53 upon this shaft and a pulley 54 keyed toa second shaft which latter is directly driven by a motor 55 through suitable speed reduction mechanism.
  • is driven so as to rotate cams 5i] which, acting against wear plates upon the lower facesof the arms 45, impart a succession of'quick rising and falling movements to the arms.
  • weighted blocks 55 are mounted upon the outer ends of the arms.
  • each connected to upright slidable rods llb are provided for lifting the arms 45 clear of the cams 50 to arrest the fiow of material from the hopper.
  • is moved in one direction by an operator stationed on a lowerplatform l3a the rod 4 lb to which the crank is pivoted is projected upwardly into engagement with one of the arms 45 of, the feeding mechanism raising this arm off the cam; while when the crankv is released the rod Mb drops down to out-of-the-way position with respect to this. arm.
  • Suitable means may be provided for limiting the extent of movement in opposite directions of the crank and for retaining it in adjusted position.
  • the bottom of rack case I is formed with cutouts 60 (Fig. 4) lying outside of the area covered by the bottoms of the casings occupying the case, whereby any small amount of material sifting out of the casings through the perforations 5 during. the filling operation falls to the bottom of the rack case and passes out through the clearance afforded by the cut-outs into the collecting bin 8 located below the rack case.
  • cutouts 60 Fig. 4
  • the upper ends of the casings may be similarly closed by metal clips or plugs of cementitious material to seal the dry filler within the casings.
  • the casings to be filled are of non-standard length, it is necessary to provide a support for their lower ends above the bottom of the rack case.
  • One such support 56' is shown in. Fig. 4, and comprises a flat foot 51.
  • Plate 59 may be; slid horizontally, into any'pair of a plurality of spaced pairs of slots 59a formedin the sides of the casing stalls, so that by engaging the plate with an appropriate pair of slots and adjusting the screw-threaded shaft of the support, the upper end of a short casing may be disposed in proper relation to the pair of companion spouts l2.
  • the perforated casings After the perforated casings have been packed with material and their ends closed by clips orhardened plugs of cementitious material, they are stacked upon an open frame 64 and the frame is lowered into a tub 65 filled with water, as shown in Fig. 5.
  • the water is introduced into the tubby an inlet pipe 66 and removed therefrom via an outlet pipe 61 flowing to waste, the flow through these pipes being controlled by suitable valves.
  • the structural members are allowed to remain in the bath for about onehalf hour (the time being variable and dependent upon such factors as the number and sizeof the perforations and the cross-sectional dimensions of the members) during which time the water slowly passes through the perforations and permeates the whole body of the material without developing a cutting action or without otherwise interfering with the natural repose of the material within the casing.
  • the members are then removed from the bath and laid aside for several days to allow excess moisture to evaporate from the filling material.
  • Crystallization takes place gradually and uniformly without disruption of the internal structure'of the core, accom panied by a slight swelling to solidly fill out the interior of the casing- Composite structural members according to past practice have required a relatively long period for curing, since (1) the filler necessarily of excess moisture from the material adjacent the middle of the members.
  • My invention is not limited to the production of structural members of the form illustrated'in Fig. 1 but may be used with any type of composite members in which a hardened core fills a protective tubular, metal casing.
  • An apparatus for fabricating composite structural members comprising a, frame for supporting a tubular perforated sheet metalcasing in vertical position, said frame being open at its top and having closures for its sides, means for releasing the closure for one of the sides to permit introducing: and removing casings laterally of the frame, guides located upon opposite sides of the frame for restraining the frame against lateral displacement, av hopper disposed above the frame having a discharge spout located at a point above the frame, and in line with the top of the casing, means closing the bottom of the casing, means for imparting vibratory motion to the frame, and means for insuringa continuous flow of material fromthe hopper into the casing.
  • An apparatus for fabricating composite structural members comprising a frame for supporting a plurality of tubular perforated sheet metal casings in vertical position, said frame being open at its topand having closures for its sides, means for releasing the closure for one casings laterally of the frame, guides located upon opposite sides of the frame for restraining the frame against lateral displacement, a hopper disposed above the frame having'a plurality of ,discharge spouts located above the frame and in line with the tops of thecasings, means closing the bottoms of the casings, means for imparting vibratory motion to the frame, an agitator associated with each spout for insuring a continuous flow of material from the hopper into each casing, and means for selectively arresting certain of said, agitators independently of the other agitators.
  • An apparatus for fabricatingv composite structural members comprising a frame, a rack provided by the frame for supporting. a plurality line with the tops of the casings, means for imparting vibratory movement to the frame comprising a pair of pivoted arms engaging opposite sides of the frame, a cam engaging one of said arms, means for rotating said cam, and agitators associated with each of said spouts for insuring a continuous flow of material from the hopper into each casing, said agitators each comprising a tapered, open basket located within the spout and means for reciprocating the basket.
  • An apparatus for fabricating composite structural members comprising a frame, a rack provided by the frame for supporting a plurality of tubular metal casings in vertical position and permitting the introduction and removal of the casings laterally of the rack, guides located upon opposite sides of the frame for restraining the frame against lateral displacement, a hopper disposed above the frame having a plurality of discharge spouts located above the frame and in line with the tops of the casings, means for imparting vibratory motion to the frame, agitators for insuring a continuous flow of material from the hopper into each casing, said agitators each comprising a tapered basket having strands of Wire Wrapped thereon in spaced relation and means for reciprocating the agitator.
  • An apparatus for fabricating composite structural members comprising a rectangular box-shaped frame for supporting a plurality of tubular metal casings in vertical position, said frame being open at its top and having closures for its sides, means releasably retaining the closure for one of the sides to permit introducing and removing casings laterally of the frame, guides located upon opposite sides of the frame for restraining the frame against lateral displacement, a hopper disposed above the frame having a plurality of discharge spouts located above the frame and in line with the tops of the casings, a supporting platform upon the frame closing the bottoms of the casings, a plurality of spacing members upon the frame to retain the casings in separated upright position and means for imparting vibratory motion to the frame.
  • spacing members comprise portions for dividing the frame into a plurality of stalls each designed to snugly receive a casing.
  • the spacing members comprise portions for dividing the frame into a plurality of stalls each designed to snugly receive a casing and a plate adapted to be adjustably positioned at different elevations within a stall for supporting a casing of shorter than standard length.

Landscapes

  • Devices For Post-Treatments, Processing, Supply, Discharge, And Other Processes (AREA)

Description

1, 1938. E. D. CODDINGTON 2,119,980
APPARATUS FOR FABRICATION OF COM POSITE STRUCTURAL MEMBERS Original Filed Sept. 3, 1935 2 Sheets-Sheet l gwvmtoe E. D. CODDINGTON 2,110,080
APPARATUS FOR FABRICATION OF COMPOSITE STRUCTURAL MEMBERS Original Fil ed Sept. 3, 1935 2 Sheets-Sheet 2 i ml ii/mmaw/dzl /w al komq Patented Mar. 1, 1938 APPARATUS FOR FABRICATION 0F (10M- POSITE STRUCTURAL IWEMBERS Edwin D. Coddington, Douglaston, N. TL, assignor to Reynolds Corporation, New York, N. Y., a corporation of Delaware Original application September 3, 1935, Serial No. 39,022. Divided and this application February 24, 1936, Serial No. 65,481
8 Claims.
This invention relates to apparatus for the manufacture of composite structural members designed to take the place of lumber, and is a division of my copending application Serial No. 39,022, filed September 3, 1935.
In the manufacture of such structural members it is common practice to stuff the imperiorate sheet metal tubes or casings with a plastic cementitious filling material. This cementitious filling material, in order to render it sufficiently fluent for penetration into all the corners of the casings (which may assume various cross-sectional shapes) is combined with an excess of water over that required for hardening. Notwithstanding this surplus of water, hardening of the material commences almost immediately after the introduction of water and it has been found by experience very difficult to avoid adding more Water to the mixture and remixing in order tomaintain proper plasticity during the filling step. This additional water is unnecessary to promote the hardening action and remixing disturbs the particles of material which have at- :tained. intermediate stages of hardness, and by reason of this excess of moisture the resulting product takes a long time to dry. Consequently the product is inferior to that obtained when the volume of water combined with the components of the mixture is such as to avoid over-wetting of the material and when the water is introduced in such a way as to avoid interference with the, hardening action after its commencement. The structural units after filling are laid aside for a time sufficient to allow the filler to cure and the hardening action to continue until the filler becomes transformed into a hard core. This curing action proceeds slowly and, depending upon the nature of the filler, may extend over several weeks or even months.
Since the excess moisture contained in the filler can evaporate only through the open ends of the tube, the curing progresses from the ends inwardly of the tube toward its middle. And, because it requires a longer time for the moisture adjacent the middle of the tube to effect its escape than that nearer its ends, it sometimes happens that' a structural member is prematurely incorporated ina building before the drying has proceeded to completion and before the member possesses sufficient strength to carry the load it is called upon to sustain. Thus, a structural member that may test satisfactorily at points adjacent its ends may conceivably fail at its middle when placed under compression due to lack of homogeneity of the filler. Or, owing to incomplete drying, the filler may not securely retain nails that are driven into it as, for example, in the attachment of lathing to the building framework.
While it has been heretofore proposed to utilize as an ingredient of the filling material hydraulic cement which has the capacity to set in the presence of water, this expedient does not wholly avoid the difficulty because of the presence of other components of the filler, such as sawdust, which are unfavorably affected by a surplus of moisture.
It is an object of my invention to provide a process for forming composite structural members which overcomes the above objections. According to this process the casing is provided with a multiplicity of perforations, the filling material solidly packed into the casing while in a dry state, and moisture than introduced through the perforations into the filler so as to supply the necessary water of crystallization to the same and render it cohesive. The time interval during which the casing is subjected to the moistening operation is carefully regulated so as to avoid over-wetting of the material. The member is laid aside for a short time to complete the curing and hardening of the filler, during which interval excess moisture evaporates from the confined material through the perforations in the casing.
As the filling material, I prefer to employ a substantially dry mixture of gypsum, Portland becomes plastic and, upon crystallization of the gypsum and cement components and drying out of the sawdust, sets into a comparatively hard mass composing the core of the member. Such a mixture is preferable to one containing silica or other components of a gritty nature in that it is more adhesive, by virtue of which fact it clings more tenaciously to nails which may be driven thereinto and consequently offers appreciable frictional resistance to their withdrawal. In addition, the completed structural members may be sawed to length in substantially the same manner as lumber.
The perforations formed in the casing are comparatively small in size and extend throughout the length of the member. Preferably they are punched so as to present burrs upon the inner surface of the casing which become embedded in the filler and upon hardening of the latter serve to anchor the casing to the core. These perforations thus serve the dual function of permitting moisture to be slowly absorbed by the enclosed body of cementitious material through the walls of the casing, and allow the removal of excess .30 cement and sawdust. This material when wetted moisture from the material by evaporation. Dehydration of the filler thus takes place at a comparatively uniform and rapid rate, and the member may be safely incorporated in a building structure a relatively short time after its manufacture.
Another object of the invention is to provide a composite structural member having perforations formed in its casing adjacent its middle, and pref erably coextensive with its length, to accomplish the purposes above described.
A further object of the invention is to provide an improved form of apparatus for carrying out the processherein disclosed, while another object of the invention is to provide an improved form of structural element resulting from the novel process of my invention.
The invention will be more clearly understood from the following detailed description of one preferred mode of practicing my process, refer ence being had to the annexed drawingsin which:
Figure l is a composite structural member, of the stud type, resulting from the practice of the process herein disclosed;
Figure 2 is a front elevation of the apparatus for filling tubular casings in the manufacture of structural members of the type illustrated in Fig. 1; V
Figure 3 is a side elevation of the apparatus of Fig. 2;
Figure 4 is an enlarged perspective View of the reciprocating rack case for supporting a series of casings during the introduction of filling material thereinto; I
Figure 5 illustrates a tub designed for immersion of the structural members;
Figure 6 is a detail view of the agitator basketsto cause flowing of the material from the hopper;
Figure 7 is a cross-sectional view of a pair of companion spouts; and
Figure 8 is a detail View of one of the agitator baskets.
In Fig. l is shown one form of composite structural member, suitable for use as a. building stud, and adapted to be manufactured. by the process of my invention. Such member comprises generally a casing i of light, nail-penetrable sheet metal and a hardened core 2 of cementitious material into which nails may be driven without cracking or crumbling the material. In this form of stud which is more particularly described and claimed in my copending application Serial No. 39,023, the sides 3 of the casing are dished while the top and bottom faces 3a are plane. I
In the preliminary stage of manufacture of such structural members, an elongated strip of sheet metal is passed between suitable forming rolls to bend the sheet into the desired cross-sectional contour and, in the form of structural member shown in the figure, to unite the overlapped edges of the sheet by a lock seam 31) extending lengthwise of the member. Any suitable mechanism for bending the members to shape may be employed, and since such mechanism is well known in the metal working art. a description of the same is unnecessary. Either before, during or after formation of the casing rows of small perforations 4 are punched at closely spaced intervals along the sides of the casing adjacent its top and bottom.
The casing l which assumes a tubular shape is adapted to receive a filling material. This filling material, as already stated, is preferably composed of a substantially dry mixture of gypsum, Portland cement and sawdust represented in ap.-
proximately the proportions, by weight, 55:20z9. This material after moistening solidifies into a relatively hard nailable mass possessing many of the desirable characteristics of wood, such as lightness, nailability, sawability and strength,
The apparatus which I employ for packing the casing with filling material is diagrammatically illustrated in Figs. 2 and 3. This mechanism comprises generally a common hopper 6 into which the filling material is adapted to be initially delivered; a rack case I located below the hopper and designed to support in vertical position a series of tubular sheet metal casings l in such a manner that material flowing out the bottom of the hopper discharges into the upper 'ends of the casings; a waste collector 8 located below the rack box for recovering spilled material; a feeding mechanism 9 for urging the material from the hopper into the open ends of the casings; and a vibrating mechanism H] for reciprocating the rack case I to solidly pack the material within the casings.
The hopper ii is supported upon a platform l3 located at the top of a tower, indicated generally by the reference numeral II. The top of the hopper opens through the upper side of the platform and is extended in a direction cross-wise thereof. The hopper terminates at its bottom in a series of downwardly depending spouts [2 disposed a substantial distance above the ground level. The series of spouts 12 are arranged in closely spaced pairs and may be of any suitable shape, but desirably corresponding to that shown in Fig. 7. Each pair of companion spouts is designed to feed material into the expanded crosssectional areas of a casing I located upon opposite sides of its constricted mid-section, and the two companion spouts together assume the general contour of the cross-section of a casing, but being smaller in outline. These spouts are adapted to be used in filling all standard sizes and shapes of casings.
A bank of casings l is adapted to be supported in upright position within the rack case I. This rack case comprises a frame open at its top and composed of vertical side members I! and a horizontal bottom member l8, to which members are attached a back cover l9 and two hinged outwardly opening doors 2!] constituting a front cover. A series of vertically-extending partition members 2i are attached to the back cover I 9 forming stalls for receiving and supporting a plurality of casings l in upright position within the rack case in alignment with the spouts l2. The thickness of the rack case corresponds approximately to the width of a casing, so that when the casings are introduced laterally into the rack case and the doors 20 are closed, the sides of the casings i will be snugly confined between the front and back covers of the rack case. Latches 22 are provided for holding the doors 2!] closed. When the casings are assembled in the rack case with the latter in its lowermost position the lower ends of the standard length casings bear upon the bottom member l8, while the upper ends of the casings project above the top of the rack case to a position spaced a slight distance below the spouts l2. When the rack case moves to its upper limit of motion the spouts protrude a short distance within the casings, as indicated in Fig. 6.
The rack case is reciprocable in a. vertical direction and for this purpose there are provided pairs of guide plates 25 upon opposite sides of the rack case rigidly fastened to the tower II and arranged to embrace the side members and slightly overlap the front face of the rack case, as indicated in Fig. 3, but not suificiently far sov asto interfere with the opening and closing of the doors 20. These guide plates insure straight-line vertical reciprocation of the rack case.
In order to compact the material introduced intothe casings through their upper ends, and to. avoid the. production of "air pockets in the core, the. vibrationmechanism I is designed to impart a successionv of sharp vertical impulses or jolts to the rack case during filling of the cas-.
ings. This vibrating mechanism comprises a pair of generally horizontally-extending arms 21 each of whichis pivoted at one extremity to a shaft 281 supported within bearings 29 which are, in turn, fastened to the top of a concrete pier 30. The outerfree ends of the arms are provided with eyes. 3| encircling.- trunnions 32 projecting laterally fromthe side members ll of, the rack case. A horizontal shaft 33 supported inv bearings 34 upon the top of" the concrete, block 30 extends transversely below the arms 2-! about midway of their length, and this shaft is rotated by a belt 35 (Big. 4) extending between pulleys 36 and 31 keyed to theshaft 33-and to a power transmis-. sion. shaft 38; This power transmission shaft may-be driven. in any suitable manner, as by a motor 39, and a suitable clutch (not shown) may be provided for operatively disengaging the driving: mechanism from shaft 33. Upon the shaft 33 at suitably spaced intervals are fixed a series of :cams 4.0adapted tobear against the underside of: thepairs. of arms 27, these cams being formed with convolutelcontours, designed, during their rotation, to-impart a lift to the rack case followed by a quick drop through a small vertical distance. Thus, when the shaft 331s rotated at ordinary speed, a succession of vertical impulses is applied: to the rack case.
For insuring continuous feeding of material from the hoppers into the-casings, the feeding mechanism 9contemplates the provision of a series of reciprocating rods 42 eachextending vertically downwardly into thehopper 6. Each rod 42 adjacent its lower end splits into two parallel branches 'd3-(E'ig. 6-) and fastened upon the bottom of each branch is a fiat sided agitator-basket 44' 'of open frame construction having its sides tapered at an angle corresponding to the inclination of the downwardly converging walls. of the spouts '12. One of these baskets-is illustrated in Fig. 8. As shown in this figure the open frame of the-basket is encircledby wires 44a at spaced distances lengthwise of the basket which perforin'a cutting action upon the material, when the basket is raised and lowered. Angled rods flit-attached to the vertical rod 42 and extending to a position adjacent the middle-of the hopper, serve to jostle the material above the bottom of the hopper. Thus, upon raising and lowering thebasket in rapid succession a series of chopping strokes is produced which tumbles the filling material down. into and out through the open end of the spout, overcoming any tendency for the material, which'because of possible dampness maybe slightly cohesive and non-fluent, to clog. Since each spout of a pair of spouts delivers material to opposite sides of the constricted width of a casing at approximately the same speed, the filling of each casing proceeds rapidly and uniformly.
In order to reciprocatethe rods 42; I provide a mechanism somewhat. similar to thevibrating, mechanism l0. I hat is, a series ofthorizontal;
arms 45 are pivotally mounted at one end upon a shaft 46 mounted within a bearing 41 which may be supported upon a table 48 a suitable distance above the level of the platform [3 so that the arms 45. do not interfere with the delivery of material into the hopper 6. The reciprocating rods 42 are suitably extend-ed vertically upwardly through the eyes of horizontal pins 49 disposed within the hopper, and these rods are united with the free outer ends of the arms 45. These arms, are rocked or oscillated through a small are by means. of cams. 5B, keyed to a shaft 5! extending below and transversely of the arms. The shaft 5i: ismounted in suitable bearings upon the table 48. Shaft 5| is driven by a belt 52 trained over a sheave 53 upon this shaft and a pulley 54 keyed toa second shaft which latter is directly driven by a motor 55 through suitable speed reduction mechanism. Thus, by operation of the motor, shaft. 5| is driven so as to rotate cams 5i] which, acting against wear plates upon the lower facesof the arms 45, impart a succession of'quick rising and falling movements to the arms. In order to hold the arms in engagement with they wipers, weighted blocks 55 are mounted upon the outer ends of the arms. In those situations where the: filling of certain of the casings outruns or precedes the others, individually-operable cranks 4| (Fig. 3) each connected to upright slidable rods llb are provided for lifting the arms 45 clear of the cams 50 to arrest the fiow of material from the hopper. When the crank 4| is moved in one direction by an operator stationed on a lowerplatform l3a the rod 4 lb to which the crank is pivoted is projected upwardly into engagement with one of the arms 45 of, the feeding mechanism raising this arm off the cam; while when the crankv is released the rod Mb drops down to out-of-the-way position with respect to this. arm. Suitable means may be provided for limiting the extent of movement in opposite directions of the crank and for retaining it in adjusted position.
The bottom of rack case I is formed with cutouts 60 (Fig. 4) lying outside of the area covered by the bottoms of the casings occupying the case, whereby any small amount of material sifting out of the casings through the perforations 5 during. the filling operation falls to the bottom of the rack case and passes out through the clearance afforded by the cut-outs into the collecting bin 8 located below the rack case. In customary practice the lower end of each casing before its assembly in the rack case will be closed by a metal clip or by a plug of plastic cementitious filling material which has been allowed to harden so as to prevent the passage of filling material out the end of the casing. Following the filling operation, either before or after the packed casings are removed from the rack case, the upper ends of the casings may be similarly closed by metal clips or plugs of cementitious material to seal the dry filler within the casings. Where the casings to be filled are of non-standard length, it is necessary to provide a support for their lower ends above the bottom of the rack case. One such support 56' is shown in. Fig. 4, and comprises a flat foot 51.
upon which the lower end of a casing is adapted to rest. This foot is attached atits bottom to a screw-threaded shaft 58 freely passing through a plate 59' and retained in vertical adjustment with respect thereto by nuts mounted upon said, shaft and engaging the top and bottom-of this:
plate. Plate 59 may be; slid horizontally, into any'pair of a plurality of spaced pairs of slots 59a formedin the sides of the casing stalls, so that by engaging the plate with an appropriate pair of slots and adjusting the screw-threaded shaft of the support, the upper end of a short casing may be disposed in proper relation to the pair of companion spouts l2.
After .the casings have been filled the door of the rack case is openedand the structural members are removed onto a platform 6 l, these members'now being ready for the introduction of moisture into the filling material. In order to obtain a structural member in which the core is of maximum strength. and of homogeneous consistency throughout its length, it is necessary that .the introduction of water into and removal of'exce'ss moisture from the core should proceed in a gentle and uniform manner. For example, instead of flooding the core, best results are obtained if the water is allowed to gradually percolate into the body of material and in limited quantity so as not to greatly exceed the amount required for complete hydration of the gypsum and cement. This objective I accomplish by virtue of the perforations 4 provided in the casing.
After the perforated casings have been packed with material and their ends closed by clips orhardened plugs of cementitious material, they are stacked upon an open frame 64 and the frame is lowered into a tub 65 filled with water, as shown in Fig. 5. The water is introduced into the tubby an inlet pipe 66 and removed therefrom via an outlet pipe 61 flowing to waste, the flow through these pipes being controlled by suitable valves. The structural members are allowed to remain in the bath for about onehalf hour (the time being variable and dependent upon such factors as the number and sizeof the perforations and the cross-sectional dimensions of the members) during which time the water slowly passes through the perforations and permeates the whole body of the material without developing a cutting action or without otherwise interfering with the natural repose of the material within the casing. The members are then removed from the bath and laid aside for several days to allow excess moisture to evaporate from the filling material. Crystallization takes place gradually and uniformly without disruption of the internal structure'of the core, accom panied by a slight swelling to solidly fill out the interior of the casing- Composite structural members according to past practice have required a relatively long period for curing, since (1) the filler necessarily of excess moisture from the material adjacent the middle of the members.
As a consequence, such structural members have often been incorporated in buildings before they have possessed sufficient strength to enable them to with stand the loads, either in. compression or shear, for which they were designed. And even if the member did not completely fail, nevertheless such delayed curing'and drying of the members have given rise to other objections, such as theinability of the members. to frictionally retain nails driven thereinto in the attachment of lathing, wall boards or secondary framing members to the members.
, According to the present method of fabrication, these objections are eliminated for the reason that the perforations. not only provide for the most effective introduction of liquid into the filling material, but they also contribute to the rapid and uniform abstraction of moisture therefrom, enabling a member to be safely incorporated in a building a short time after its manufacture. Furthermore, while curing of the core may continue after the member is placed into service, nevertheless by virtue ofaeration of. the filler by the perforations i, complete'curing is attained much more speedily than has been possible in the past with composite structural members employing imperforate casings.v
My invention is not limited to the production of structural members of the form illustrated'in Fig. 1 but may be used with any type of composite members in which a hardened core fills a protective tubular, metal casing.
It will'be obvious'that variations in the mode of practicing the process described abovegand that various changes in-structure and design of the mechanism for carrying out the process, as well as in the product obtained therefrom; may be made without departing from the spirit of my invention.
What I claim is: I 1. An apparatus for fabricating composite structural members comprising a, frame for supporting a tubular perforated sheet metalcasing in vertical position, said frame being open at its top and having closures for its sides, means for releasing the closure for one of the sides to permit introducing: and removing casings laterally of the frame, guides located upon opposite sides of the frame for restraining the frame against lateral displacement, av hopper disposed above the frame having a discharge spout located at a point above the frame, and in line with the top of the casing, means closing the bottom of the casing, means for imparting vibratory motion to the frame, and means for insuringa continuous flow of material fromthe hopper into the casing.
2. An apparatus for fabricating composite structural members comprising a frame for supporting a plurality of tubular perforated sheet metal casings in vertical position, said frame being open at its topand having closures for its sides, means for releasing the closure for one casings laterally of the frame, guides located upon opposite sides of the frame for restraining the frame against lateral displacement, a hopper disposed above the frame having'a plurality of ,discharge spouts located above the frame and in line with the tops of thecasings, means closing the bottoms of the casings, means for imparting vibratory motion to the frame, an agitator associated with each spout for insuring a continuous flow of material from the hopper into each casing, and means for selectively arresting certain of said, agitators independently of the other agitators.
3. An apparatus for fabricatingv composite structural members comprising a frame, a rack provided by the frame for supporting. a plurality line with the tops of the casings, means for imparting vibratory movement to the frame comprising a pair of pivoted arms engaging opposite sides of the frame, a cam engaging one of said arms, means for rotating said cam, and agitators associated with each of said spouts for insuring a continuous flow of material from the hopper into each casing, said agitators each comprising a tapered, open basket located within the spout and means for reciprocating the basket.
4. An apparatus for fabricating composite structural members comprising a frame, a rack provided by the frame for supporting a plurality of tubular metal casings in vertical position and permitting the introduction and removal of the casings laterally of the rack, guides located upon opposite sides of the frame for restraining the frame against lateral displacement, a hopper disposed above the frame having a plurality of discharge spouts located above the frame and in line with the tops of the casings, means for imparting vibratory motion to the frame, agitators for insuring a continuous flow of material from the hopper into each casing, said agitators each comprising a tapered basket having strands of Wire Wrapped thereon in spaced relation and means for reciprocating the agitator.
5. An apparatus for fabricating composite structural members comprising a rectangular box-shaped frame for supporting a plurality of tubular metal casings in vertical position, said frame being open at its top and having closures for its sides, means releasably retaining the closure for one of the sides to permit introducing and removing casings laterally of the frame, guides located upon opposite sides of the frame for restraining the frame against lateral displacement, a hopper disposed above the frame having a plurality of discharge spouts located above the frame and in line with the tops of the casings, a supporting platform upon the frame closing the bottoms of the casings, a plurality of spacing members upon the frame to retain the casings in separated upright position and means for imparting vibratory motion to the frame.
6. An apparatus as defined in claim 5 in which the spacing members comprise portions for dividing the frame into a plurality of stalls each designed to snugly receive a casing.
7. An apparatus as defined in claim 5 in which a pair of discharge spouts are arranged so as to deliver material into the upper ends of a single casing for the uniform filling of casings having cross-sections of varying widths.
8. An apparatus as defined in claim 5 in which the spacing members comprise portions for dividing the frame into a plurality of stalls each designed to snugly receive a casing and a plate adapted to be adjustably positioned at different elevations within a stall for supporting a casing of shorter than standard length.
EDWIN D. CODDINGTON.
US2110080D Apparatus foe Expired - Lifetime US2110080A (en)

Publications (1)

Publication Number Publication Date
US2110080A true US2110080A (en) 1938-03-01

Family

ID=3429281

Family Applications (1)

Application Number Title Priority Date Filing Date
US2110080D Expired - Lifetime US2110080A (en) Apparatus foe

Country Status (1)

Country Link
US (1) US2110080A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070220824A1 (en) * 2004-04-28 2007-09-27 Tomoya Hasegawa Board Building Material, Board Building Material Producing Method, Board Building Material Installation Method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070220824A1 (en) * 2004-04-28 2007-09-27 Tomoya Hasegawa Board Building Material, Board Building Material Producing Method, Board Building Material Installation Method
US7661511B2 (en) * 2004-04-28 2010-02-16 Yoshino Gypsum Co., Ltd. Board building material, board building material producing method, board building material installation method

Similar Documents

Publication Publication Date Title
US2407168A (en) Apparatus for molding concrete
US2092106A (en) Fabrication of composite structural
US1694563A (en) Method of molding ceramic materials
US2264948A (en) Method and apparatus for making building blocks
US2165671A (en) Apparatus for manufacturing plastic articles
US2110080A (en) Apparatus foe
US2099265A (en) Process for the manufacture of molded pieces from mortar or concrete
US1974013A (en) Concrete spreader
US1792844A (en) Machine for making artificial building stone
US2134361A (en) Method of producing plastic concrete
US1632286A (en) Concrete-molding machine
USRE18626E (en) white
US1343572A (en) Concrete-mold
US2039204A (en) Machine for making reenforced concrete beams
DE874120C (en) Process for the production of a pipe from concrete or similar material
US2096326A (en) Molding plant
US1163107A (en) Nail-keg-packing machine.
US1096103A (en) Method and apparatus for mixing concrete.
EP0175038A1 (en) Method of making building blocks with at least one cavity and apparatus for carrying out this method
US1810125A (en) Apparatus for aging plastic mixtures
DE844566C (en) Process for the production of moldings from clay, loam, earth mixtures u. like
US1374392A (en) Machine for forming hollow concrete blocks
US2560722A (en) Concrete block molding machine
US945607A (en) Method of manufacturing concrete articles.
DE850712C (en) Method and device for mixing concrete