US2100605A - Radio receiving system - Google Patents
Radio receiving system Download PDFInfo
- Publication number
- US2100605A US2100605A US733816A US73381634A US2100605A US 2100605 A US2100605 A US 2100605A US 733816 A US733816 A US 733816A US 73381634 A US73381634 A US 73381634A US 2100605 A US2100605 A US 2100605A
- Authority
- US
- United States
- Prior art keywords
- circuit
- frequency
- coil
- regenerative
- oscillations
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000010355 oscillation Effects 0.000 description 21
- 230000001172 regenerating effect Effects 0.000 description 12
- 230000008878 coupling Effects 0.000 description 10
- 238000010168 coupling process Methods 0.000 description 10
- 238000005859 coupling reaction Methods 0.000 description 10
- 230000003321 amplification Effects 0.000 description 7
- 238000003199 nucleic acid amplification method Methods 0.000 description 7
- 238000010791 quenching Methods 0.000 description 5
- 230000000171 quenching effect Effects 0.000 description 5
- 230000009471 action Effects 0.000 description 4
- 230000035559 beat frequency Effects 0.000 description 4
- 238000000034 method Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 238000011069 regeneration method Methods 0.000 description 2
- 230000008901 benefit Effects 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 229920000136 polysorbate Polymers 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03D—DEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
- H03D7/00—Transference of modulation from one carrier to another, e.g. frequency-changing
- H03D7/06—Transference of modulation from one carrier to another, e.g. frequency-changing by means of discharge tubes having more than two electrodes
- H03D7/08—Transference of modulation from one carrier to another, e.g. frequency-changing by means of discharge tubes having more than two electrodes the signals to be mixed being applied between the same two electrodes
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03D—DEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
- H03D11/00—Super-regenerative demodulator circuits
- H03D11/02—Super-regenerative demodulator circuits for amplitude-modulated oscillations
Definitions
- This invention relates to radio and like receivers and more particularly to so-called superregenerative receivers.
- the invention has for its object to provide an improved receiver of the super-regenerative type having lr'ghly selective and good amplification qualities.
- the common practice is to detect the received signals (that is, to demodulate them) after the super-regeneration process without 7 further amplification, or at any rate, if any further such amplification is employed, only with low frequency amplification.
- the present invention envisages subjecting the high frequency output from a super-regenerative circuit to a superheterodyne action thus taking advantage of the known properties of the superheterodyne prin- 20 ciple to sharpen up the selectivity of the receiver as a whole.
- a radio or like receiver comprises a super-regenerative stage, means for heterodyning high frequency output 25 from said stage to an intermediate frequency, means for amplifying said intermediate frequency and means for demodulating the output from the intermediate frequency amplifier.
- a single local oscillator is employed 30 to provide both the quenching frequency for the super-regenerative process and the local oscillation frequency for the superheterodyne process the second frequency being a harmonic of the first.
- FIG. 1 which shows one way of carrying out this invention there is employed a triode valve l which is connected'for super-re- 45 generation as well known per se.
- the grid of this valve is connected through a parallel tuned circuit, including a coil 3 shunted by a tuning condenser 36 and thence through a coupling'inductance 4 shunted by a radio frequency by-pass con 50 denser 5 to the cathode and received signal poten- 5 output of a local oscillation generator device Q which may consist of a thermionic oscillator.
- the coil 3 is coupled as shown to a coil 2 inthe anodecir- '5 cuit of valve I this latter coil being in series with an output coil 1 and a source of anode potential 33 between the anode and cathode of the valve in question.
- the output'coil l is coupledto a further coil 3
- a coil 8 in the output circuit of a second local oscillator valve LO which is adjustable infrequencyjthis local oscillator being also of-any known convenient type and providingthe local oscillations for heterodyning.
- this heterodyne local oscillator may be a back coupled valve as shown.
- the tube L0 is provided with an output circuit including in a connection be tween the anode and cathode thereof the coil 8 and a source of anode potential 34.
- the input circuit of the tube LO comprises a connection between the grid and cathode which connection includes the coil 32 shunted by a variable condenser 40.
- FIG. 35 In a preferred modification shown in Figure 35 the arrangement of Figure 1 is simplified some-, what by dispensing witha separate second oscillator LO for the superheterodyne action.
- the same valve generator arrangement Q is employed both to provide the 40 V coupling coil 4 in the gridcircuit of the superregenerative valve l and is also coupled to a fur- .ther coupling coil 21 in a link circuit In which is tuned as shown by an adjustable condenser 22 to aharmonic of the quenching frequency.
- the valve generator arrangement Q is employed both to provide the 40 V coupling coil 4 in the gridcircuit of the superregenerative valve l and is also coupled to a fur- .ther coupling coil 21 in a link circuit In which is tuned as shown by an adjustable condenser 22 to aharmonic of the quenching frequency.
- super-regenerative tube I is Provided with an output circuit connected between the anode and cathode thereof and including the feedback coil 2, the output coil 1 and the source of anode potential 33.
- the input of the tube l is connected between the grid electrode and the cathode thereof and comprises the input coil 3 shunted by the variable tuning condenser 36 and the coil 4 shunted by condenser 5.
- Coil 3 is in coupling relationship with the antenna coil 30.
- the link circuit contains also a further coupling coil 8 variably coupled to the input circuit of the intermediate frequency amplifier through the coil 3
- the source Q of quenching frequency should be made variable as shown by the arrow through Q.
- the condenser 22 provided for tuning purposes in the link circuit 10 and the adjustment means for controlling the quenching frequency and the said condenser may be mechanically-connected to one another for gang control and-also, if desired, with the condenser for tuning the grid circuit 3 of the superregenerative valve I.
- full gang control i. e. where as shown, one single tuning knob is employed means should of course be provided for ensuring that the difference between the natural frequencyof thegrid circuit of the super-regenerative valve and the superheterodyne local frequency is constant and equal to the intermediate frequency throughout the range of adjustment, and any suitable means known per se may be employed for this purpose.
- An electric amplification system comprising a regenerative circuit embodying an electron discharge device, having coupled input and output circuits, said regenerative circuit being adjusted near the point of oscillation, a source of oscillations, means coupling the source of oscillations .and said regenerative circuit for periodically varying the conductance of the electron discharge device and thereby periodically start and stop the oscillations in-the regenerative circuit, whereby super-regenerative action is obtained, means comprising a source of oscillations coupled to the regenerative circuit for producing a beat frequency which is a product of the output of the regenerative circuit and the oscillations from said means, a beat frequency utilizing circuit and means for coupling the output circuit of said electron discharge device to said utilizing circuit.
- An electric amplification system comprising a regenerative circuit provided with an electron discharge device having coupled input and output circuits, said input circuit being provided with a variable tuning means for tuning the input circuit to any one of a band of signal frequencies, said regenerative circuit being adjusted near the point of oscillation, a local source of oscillations, means coupling said local source of oscillations to the regenerative circuit for periodically starting and stopping the oscillations in the regenerative circuit, whereby super-regenerative action is obtained, said source of oscillations being 7 provided with means for varying the frequency of the oscillations, an additional coupling between the source of oscillations and the regenerative circuit, said additional coupling comprising a tunable circuit including a variable tuning instrumentality for tuning the tunable circuit to a harmonic of the frequency generated by the source of oscillations, whereby there is produced in the regenerative circuit a beat frequency which is a product of said harmonic frequency and the frequency of the received incoming signal oscillations, and a beat frequency utilizing circuit coupled to the output circuit of said
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Superheterodyne Receivers (AREA)
- Circuits Of Receivers In General (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB20642/33A GB422866A (en) | 1933-07-21 | 1933-07-21 | Improvements in or relating to radio and other modulated carrier or like receivers |
Publications (1)
Publication Number | Publication Date |
---|---|
US2100605A true US2100605A (en) | 1937-11-30 |
Family
ID=10149284
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US733816A Expired - Lifetime US2100605A (en) | 1933-07-21 | 1934-07-05 | Radio receiving system |
Country Status (4)
Country | Link |
---|---|
US (1) | US2100605A (en(2012)) |
FR (1) | FR774887A (en(2012)) |
GB (1) | GB422866A (en(2012)) |
NL (1) | NL40239C (en(2012)) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2579338A (en) * | 1948-03-16 | 1951-12-18 | Hazeltine Research Inc | Superregenerative wave-signal translating system |
US2609492A (en) * | 1948-03-13 | 1952-09-02 | Hazeltine Research Inc | Tunable superheterodyne superregenerative receiver |
US2614212A (en) * | 1948-11-19 | 1952-10-14 | Hazeltine Research Inc | Frequency converter system for radio receivers |
US2623166A (en) * | 1946-08-07 | 1952-12-23 | Hazeltine Research Inc | Superregenerative superheterodyne wave-signal receiver |
US2748267A (en) * | 1952-05-16 | 1956-05-29 | Hazeltine Research Inc | Superregenerative superheterodyne wave-signal receiver |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB453135A (en) * | 1935-03-04 | 1936-09-04 | Marconi Wireless Telegraph Co | Improvements in or relating to television and like receivers |
-
0
- NL NL40239D patent/NL40239C/xx active
-
1933
- 1933-07-21 GB GB20642/33A patent/GB422866A/en not_active Expired
-
1934
- 1934-06-23 FR FR774887D patent/FR774887A/fr not_active Expired
- 1934-07-05 US US733816A patent/US2100605A/en not_active Expired - Lifetime
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2623166A (en) * | 1946-08-07 | 1952-12-23 | Hazeltine Research Inc | Superregenerative superheterodyne wave-signal receiver |
US2609492A (en) * | 1948-03-13 | 1952-09-02 | Hazeltine Research Inc | Tunable superheterodyne superregenerative receiver |
US2579338A (en) * | 1948-03-16 | 1951-12-18 | Hazeltine Research Inc | Superregenerative wave-signal translating system |
US2614212A (en) * | 1948-11-19 | 1952-10-14 | Hazeltine Research Inc | Frequency converter system for radio receivers |
US2748267A (en) * | 1952-05-16 | 1956-05-29 | Hazeltine Research Inc | Superregenerative superheterodyne wave-signal receiver |
Also Published As
Publication number | Publication date |
---|---|
NL40239C (en(2012)) | |
GB422866A (en) | 1935-01-21 |
FR774887A (fr) | 1934-12-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US2107395A (en) | Radio receiving system | |
US2091546A (en) | Short wave converter | |
US2151810A (en) | Superheterodyne receiver | |
US2100605A (en) | Radio receiving system | |
US2038879A (en) | Reduction of interference in thermionic valve circuits | |
GB434902A (en) | Improvements in or relating to radio and like receivers | |
US2662171A (en) | Superheterodyne receiving arrangement for use at ultrashort waves | |
US2451291A (en) | Superregenerative receiver | |
US2812433A (en) | Plural band frequency converter with intermediate frequency trapping means | |
US2032675A (en) | Radio receiver | |
US2508048A (en) | Frequency converter circuits | |
US2616035A (en) | Radio receiver employing a single tube amplifier-converter | |
US2488606A (en) | Frequency modulation receiver | |
US2162883A (en) | Automatic frequency control system | |
US2280187A (en) | Carrier-signal receiver | |
USRE19765E (en) | Badioreceiveb | |
GB611626A (en) | Improvements in radio-telegraphy | |
GB625908A (en) | Multi-range oscillator system | |
US2205359A (en) | Superheterodyne receiver | |
US1931338A (en) | Oscillator-modulator circuit | |
US2337392A (en) | Frequency modulated carrier wave receiver circuit | |
US2066940A (en) | Radio receiving system | |
US2647992A (en) | Frequency stabilized radio receiving system | |
US1972189A (en) | Radioreceiver | |
US1828094A (en) | Electrical frequency-changing apparatus of the thermionic type |