US2096440A - Automatic charging device - Google Patents

Automatic charging device Download PDF

Info

Publication number
US2096440A
US2096440A US36154A US3615435A US2096440A US 2096440 A US2096440 A US 2096440A US 36154 A US36154 A US 36154A US 3615435 A US3615435 A US 3615435A US 2096440 A US2096440 A US 2096440A
Authority
US
United States
Prior art keywords
contact
resistance
charging
battery
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US36154A
Inventor
Wetzer Rudolf
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Application granted granted Critical
Publication of US2096440A publication Critical patent/US2096440A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/007182Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage

Definitions

  • the charging condition of accumulators or storage batteries can be controlled depending on the voltageas,generally known from the German patent 551,443 and the English patent 386,- 354-by keeping the voltage of the battery constant within predetermined limits.
  • These patents show an arrangement as follows: The battery is charged with currents of two diflerent strengths, the smaller one of which may even be zero. When the batteryis charged with the higher current the voltage will increase to a certain maximum point. Thereupon a contact is made which short-circuits a series resistance thus increasing the contact pressure. This re-' sistance forms the winding of a polarized electromagnet, the armature of which releases and consequently reduces the charging current by changing the charging resistance.
  • the present invention develops the above idea and gives a simpler solution of the problem, whereby the minimum contact becomes unnecessary and whereby an ordinary electromagnet with only one coil may be used instead of the polarized electromagnet with its two diflerent windings.
  • Figure 2 is a top view of the moving coil, showing the electric connections inside the relay R more clearly than in Figure 1;
  • Figure 3 is a side view of the relay.
  • Figure 1 shows how the series resistance W1 forms the only winding of the electromagnetic relay F. This relay is controlled by contact m of the maximum contact relay R.
  • a and A1 are the axles of the moving coil B. They are insulated from each other and connect with the beginning and the end of the windings of the moving coil B.' C is the pointer, D the front retarding spring, E the rear the drawing shows the general retarding spring.
  • the points I and 2 are identi-' cal in Figures 1, 2, and 3.
  • the electric connections are as follows: The current comes in at point I and goes tothe outer end of the rear retarding spring E. From the inner end of this spring it goes through B to the inner end of the iront retarding spring D. From there one way goes to the pointer C, the other through D to 2.
  • the resistance W1 is selected so that the current in the moving coil B increases by the same amount when W1 is short-circuited as it decreases when, as a consequence of the smaller charging rate, the voltage of the battery b drops to its lowest point. At this minimum voltage the pointer C opens its contact m.
  • the electromagnet F is energized again, its armature closes s and the higher charging rate attained by short-circuiting part of the charging resistance 1', provides an increasing battery voltage; and the whole process begins again.
  • Relay mechanism to automatically maintain the voltage of a storage battery constant within two predetermined limits, comprising a source of charging current, a charging circuit for said battery, an electromagnet with its armature forming part of said charging circuit and holding the latter closed as long as the magnet is energized, and a control circuit for said charging circuit, including a single short-circuit contact, 8. volt meter relay adapted to close said contact when the voltage across the battery exceeds the predetermined maximum voltage, and to open the contact, when the voltage drops below the predetermined minimum, and a resistance in series with said volt meter relay during the open position of said short-circuit contact, and so connected that it will be shunted out during the closed position of.
  • said short circuit contact said resistance forming the winding of said electromagnet and being adapted to reduce the voltage of the passing current to such an extent that the contact closing operation of the a charging resistance
  • an electromagnet having its armature arranged in series with said source of charging current and battery to cut out part of said charging resistance as long as the magnet is energized and a control circuit for said charging circuit including a single short-circuit contact, a volt meter relay adapted to close said charge.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Relay Circuits (AREA)

Abstract

446,229. Charging batteries; automatic control systems. WETZER, R., Pfronten, Bavaria, Germany. Aug. 16, 1935, No. 23077. [Class 38 (iv)] The voltage of a battery is maintained within two predetermined limits by supplying current at high or low charging rates controlled by a one contact relay which closes and opens at maximum and minimum voltage respectively, the contact pressure being increased by cutting out a series resistance after contact is made. The battery b is charged from the supply terminals k through the charging resistance r, part of which. may be short circuited by contact s actuated by resistance W1 to give the high charging rate. Contact m is then open and current flows from the battery of the relay R through moving coil B and resistance W1. When the voltage rises to the predetermined maximum, contact m closes and short circuits resistance W1, the increased current through coil B increasing the pressure of the contact. Contact S also opens and resistance r is then included in the charging circuit.

Description

1 9, 1937'. R. WETZER I 2,096,440
AUTOMATIC CHARGING DEVICE Filed Aug. 14, 1935 AAAAAAA AA 1 pi w Rudb If. We tzer I NVE N TO E.
{M ATTY.
Patented Oct. 19, 1937 PATENT OFFICE AUTOMATIC CHARGING DEVICE Rudolf Wetzer, Ptronten, Germany Application August 14, 1935, Serial No. 36,154 In Germany September 12, 1933 2 Claims.
The charging condition of accumulators or storage batteries can be controlled depending on the voltageas,generally known from the German patent 551,443 and the English patent 386,- 354-by keeping the voltage of the battery constant within predetermined limits. These patents show an arrangement as follows: The battery is charged with currents of two diflerent strengths, the smaller one of which may even be zero. When the batteryis charged with the higher current the voltage will increase to a certain maximum point. Thereupon a contact is made which short-circuits a series resistance thus increasing the contact pressure. This re-' sistance forms the winding of a polarized electromagnet, the armature of which releases and consequently reduces the charging current by changing the charging resistance. The voltage thereupon drops and the moment a minimum contact is reached another resistance is switched parallel to the relay thus again increasing the contact pressure. 'Il iis--.parallel resistance is also used as the second winding of the above mentioned polarized electromagnet which by moving its armature provides again the heavy charging of. the battery thereby increasing its voltage.
The present invention develops the above idea and gives a simpler solution of the problem, whereby the minimum contact becomes unnecessary and whereby an ordinary electromagnet with only one coil may be used instead of the polarized electromagnet with its two diflerent windings.
Figure 1 of 35 arrangement;
Figure 2 is a top view of the moving coil, showing the electric connections inside the relay R more clearly than in Figure 1; and
Figure 3 is a side view of the relay.
Figure 1 shows how the series resistance W1 forms the only winding of the electromagnetic relay F. This relay is controlled by contact m of the maximum contact relay R.
A and A1 (Figures 2 and 3) are the axles of the moving coil B. They are insulated from each other and connect with the beginning and the end of the windings of the moving coil B.' C is the pointer, D the front retarding spring, E the rear the drawing shows the general retarding spring. The points I and 2 are identi-' cal in Figures 1, 2, and 3. The electric connections are as follows: The current comes in at point I and goes tothe outer end of the rear retarding spring E. From the inner end of this spring it goes through B to the inner end of the iront retarding spring D. From there one way goes to the pointer C, the other through D to 2. Assuming the voltage of the battery b to be increasing by virtue of being charged from the slipply it through the charging resistance r, the moment the pointer C of the relay R reaches a certain predetermined position a. contact m is closed. This short-circuits the resistance W1 and increases the current in B thereby increasing the contact pressure and releasing the armature of the electromagnet F. This causes contact 3 to open and thus the charging current is diminished or entirely interrupted. The resistance W1 is selected so that the current in the moving coil B increases by the same amount when W1 is short-circuited as it decreases when, as a consequence of the smaller charging rate, the voltage of the battery b drops to its lowest point. At this minimum voltage the pointer C opens its contact m. The electromagnet F is energized again, its armature closes s and the higher charging rate attained by short-circuiting part of the charging resistance 1', provides an increasing battery voltage; and the whole process begins again.
The above explanation shows that the arrangement consists only 01'. one maximum relay with one contact for weak current and one ordinary electromagnet with one power current contact. It is understood that the invention is not limited to the exact embodiment disclosed in the above description and modifications may be made without departing from my invention and I, therefore, aim in the following claims to cover all such modiflcations'as fall within the true spirit and scope of my invention.
What I claim is:
1. Relay mechanism to automatically maintain the voltage of a storage battery constant within two predetermined limits, comprising a source of charging current, a charging circuit for said battery, an electromagnet with its armature forming part of said charging circuit and holding the latter closed as long as the magnet is energized, and a control circuit for said charging circuit, including a single short-circuit contact, 8. volt meter relay adapted to close said contact when the voltage across the battery exceeds the predetermined maximum voltage, and to open the contact, when the voltage drops below the predetermined minimum, and a resistance in series with said volt meter relay during the open position of said short-circuit contact, and so connected that it will be shunted out during the closed position of. said short circuit contact, said resistance forming the winding of said electromagnet and being adapted to reduce the voltage of the passing current to such an extent that the contact closing operation of the a charging resistance, an electromagnet having its armature arranged in series with said source of charging current and battery to cut out part of said charging resistance as long as the magnet is energized and a control circuit for said charging circuit including a single short-circuit contact, a volt meter relay adapted to close said charge.
contact when the voltage across the battery exceeds the predetermined maximum voltage, and to open the contact, when the voltage drops below the predetermined minimum, and a resistance in series with said voltmeter relay during the open position of said short-circuit contact, and so connected that it will be shunted out during the closed position of said short circuit contact, said resistance forming the winding of said electromagnet and being adapted to reduce the voltage of. the passing current to such an extent that the contact closing operation of the relay is checked until the battery has received its maximum RUDOLF W'ETZER.
US36154A 1935-08-16 1935-08-14 Automatic charging device Expired - Lifetime US2096440A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB23077/35A GB446229A (en) 1935-08-16 1935-08-16 Improvements in apparatus for automatically controlling the charging of secondary electric batteries

Publications (1)

Publication Number Publication Date
US2096440A true US2096440A (en) 1937-10-19

Family

ID=50002932

Family Applications (1)

Application Number Title Priority Date Filing Date
US36154A Expired - Lifetime US2096440A (en) 1935-08-16 1935-08-14 Automatic charging device

Country Status (3)

Country Link
US (1) US2096440A (en)
DE (1) DE626936C (en)
GB (1) GB446229A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2423134A (en) * 1943-12-08 1947-07-01 Int Standard Electric Corp Accumulator charging system
US2506340A (en) * 1949-02-23 1950-05-02 Gen Electric Apparatus for charging batteries
US2509252A (en) * 1945-07-30 1950-05-30 Standard Telephones Cables Ltd Battery charging system
US2519463A (en) * 1946-08-09 1950-08-22 Bell Telephone Lab Incorproate Mercury type relay
US2543314A (en) * 1950-02-25 1951-02-27 Union Switch & Signal Co Battery-charging apparatus
US2549854A (en) * 1949-07-20 1951-04-24 Standard Telephones Cables Ltd Battery charger
US2627060A (en) * 1947-12-23 1953-01-27 Charles B Berg Controlling means for battery chargers

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU767044B2 (en) * 2000-04-14 2003-10-30 Zip Charge Corporation Charging apparatus, charging method, charging system and recording medium

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2423134A (en) * 1943-12-08 1947-07-01 Int Standard Electric Corp Accumulator charging system
US2509252A (en) * 1945-07-30 1950-05-30 Standard Telephones Cables Ltd Battery charging system
US2519463A (en) * 1946-08-09 1950-08-22 Bell Telephone Lab Incorproate Mercury type relay
US2627060A (en) * 1947-12-23 1953-01-27 Charles B Berg Controlling means for battery chargers
US2506340A (en) * 1949-02-23 1950-05-02 Gen Electric Apparatus for charging batteries
US2549854A (en) * 1949-07-20 1951-04-24 Standard Telephones Cables Ltd Battery charger
US2543314A (en) * 1950-02-25 1951-02-27 Union Switch & Signal Co Battery-charging apparatus

Also Published As

Publication number Publication date
DE626936C (en) 1937-11-25
GB446229A (en) 1936-04-27

Similar Documents

Publication Publication Date Title
US2096440A (en) Automatic charging device
US2272745A (en) Means for charging electric batteries
US2249488A (en) Timing device
US3470440A (en) Storage battery charging equipment
US2296924A (en) Battery charger
US2013618A (en) Storage battery charging system
US2509252A (en) Battery charging system
USRE19848E (en) Emergency lighting system
US3153186A (en) Multiple battery chargers
US1791156A (en) Method of and apparatus for controlling the charge of storage batteries
GB520487A (en) Improvements in or relating to the control of battery-charging generators for use invehicle installations
US3812415A (en) Ferroresonant battery charger circuit
US2070541A (en) Storage battery charge control
US2334289A (en) Arrangement for charging secondary electric batteries
US1885908A (en) Apparatus for charging storage batteries
US1538588A (en) Charging of lead storage batteries
US2525872A (en) Condenser discharge system
US2053218A (en) Reverse current relay lock-out
US1842781A (en) Battery charging apparatus
US3599072A (en) Battery charger regulator circuit for periodically supplying charging current to a battery
US2028734A (en) Train lighting system
US1745519A (en) Electrical system of distribution
US1919892A (en) Means for control of the charge of a storage rattery
US2425743A (en) Electronic control for charging circuits
US3076127A (en) Automatic battery charger control circuit