US2054398A - Zinc alloys - Google Patents

Zinc alloys Download PDF

Info

Publication number
US2054398A
US2054398A US510059A US51005931A US2054398A US 2054398 A US2054398 A US 2054398A US 510059 A US510059 A US 510059A US 51005931 A US51005931 A US 51005931A US 2054398 A US2054398 A US 2054398A
Authority
US
United States
Prior art keywords
zinc
alloys
copper
chromium
rolled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US510059A
Inventor
Leland E Wemple
John R Daesen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US510059A priority Critical patent/US2054398A/en
Application granted granted Critical
Publication of US2054398A publication Critical patent/US2054398A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C18/00Alloys based on zinc
    • C22C18/02Alloys based on zinc with copper as the next major constituent

Definitions

  • the alloys are prepared by adding to 100 parts of zinc from to 2% parts of metallic copper and from 1/100 to part of chromium.
  • the alloys should be free from aluminum or mag.- nesium, preferably completely, but in any event in proportion so substantial as to aflect adversely their valuable characteristics hereinafter de- 1 scribed.
  • the zinc used in the production of the alloys may be'either a high grade zinc, such as electrolytic zinc, or, the lower'grades of commercial evena small trace of aluminum causes the alloys,
  • the exact proportion of copper and of the third metal will depend upon theparticular qualities of the alloys to be produced and also upon the various conditions of the process, for instance, rolling, to which the alloys are to be subjected. The particular proportions may easily be adjusted by simple experiment until the correct proportions suitable for the desired alloys are determined.
  • Example v 2 pounds of electrolytic grade of commercial zinc (99.99% 'zinc) were melted in an electrically heated crucible, then 14 grains of copper and 140 grains of a copper-chromium alloy containing 14 grains of chromium and 126 grains of copper were added and thoroughly mixed with the molten zinc.
  • the molten alloy was cast into slabs and cross rolled to .050" thickness as in the rolling of commercial sheet zinc.
  • the assay and physical properties of therolled alloy compared with commercial zinc rolled in the same way to like gauge were as given in the table below under the column marked chromium and electrolytic zinc respectively.
  • the advantages of our alloy begin to diminish.
  • the copper and third metal are, when used within the limits herein specified,- held in solid solution by the zinc grains or produce compounds with one another or with the zinc itself which are in turn held in solid solution by the zinc grain.
  • the copper and the third metal 60 should not, for best results, be used in so large an amount as would result in the production oi a secondary crystalline structure in the alloys, thus destroying their homogeneity and rendering them brittle. It is, however, to be understood that the temperature conditions under which the alloys are cast or mechanically worked may influence the degree of solubility of these metals in the zinc grain.
  • composition of matter a homogeneous alloy having substantially greater hardness than zinc and approximately the same ductility, said alloy being capable of being rolled, stamped, and

Description

Patented Sept. 15, 1936 UNITED-STATES ZINC ALLOYS Leland E. Wemple, Chicago, Ill., and John R.
Daesen, Wilkes-Barre, Pa.
No Drawing. Application January 20, 1931, Serial No. 510,059
2 Claims.
Our invention relates to new and useful alloys of zinc whose advantages will be hereinafter set forth. The alloys are prepared by adding to 100 parts of zinc from to 2% parts of metallic copper and from 1/100 to part of chromium. The alloys should be free from aluminum or mag.- nesium, preferably completely, but in any event in proportion so substantial as to aflect adversely their valuable characteristics hereinafter de- 1 scribed.
The use of zinc, particularly when rolled into the form of sheets or strips, is limited because of its low tensile strength, its slight hardness, and the rapid dulling of its surface. These disadvantages are overcome if there be added to the zinc copperin the proportion of 1% to 2 parts, but preferably to 2 parts, and chromium (hereinafter referred to as third' metal), preferably from 1% to part, although where the alloys are to meet a high load strain up to part of the third metal may be used. Alloys thus produced may be rolled into sheets or strips whose surface can be brought to an attractive condition by polishing, and which have a much higher tensile strength than sheets or strips rolled from zinc or known zinc base alloys. At the same time the natural advantages of the zinc, and particularly its ductility,
are not reduced, in any event to any appreciable or substantial extent, except when the proportion 39 of the third metal is over part in which cas some loss ofductility occurs.
The zinc used in the production of the alloys may be'either a high grade zinc, such as electrolytic zinc, or, the lower'grades of commercial evena small trace of aluminum causes the alloys,
45 after rolling, to develop cracks and to disintegrate. For practical purposes we prefer to use a grade of spelter known in the trade as Intermediate", whose maximum iron content is .03%, maximum lead content, 20% and maximum cadmium con- 50 tent .50 but not more than a total of 50% of all such metals and whichis substantially free from aluminum and magnesium.
We may, however, use to advantage the grade of spelter known as Brass special. (maximum impurities, iron .03%, lead .60%, cadmium 50%, total not over 1.00%, or the grade known as High grade (maximum impurities, iron .03%, lead .07 cadmium .0'I%, total not over-110%). For specifications of these three grades of commercial zinc as laid down by the American Society for Testing Materials, see Metal Statistics 1930", Page 413.
When commercial zinc whichcontains no a preciable amount of cadmium or iron, especially electrolytic grade, is used, weprefer to add a small quantity of either or both of these elements for the purposeof increasing the hardness and tensile strength.
The exact proportion of copper and of the third metal will depend upon theparticular qualities of the alloys to be produced and also upon the various conditions of the process, for instance, rolling, to which the alloys are to be subjected. The particular proportions may easily be adjusted by simple experiment until the correct proportions suitable for the desired alloys are determined.
Example v 2 pounds of electrolytic grade of commercial zinc (99.99% 'zinc) were melted in an electrically heated crucible, then 14 grains of copper and 140 grains of a copper-chromium alloy containing 14 grains of chromium and 126 grains of copper were added and thoroughly mixed with the molten zinc. The molten alloy was cast into slabs and cross rolled to .050" thickness as in the rolling of commercial sheet zinc. The assay and physical properties of therolled alloy compared with commercial zinc rolled in the same way to like gauge were as given in the table below under the column marked chromium and electrolytic zinc respectively.
Table Eleetrolytic zinc Chromium alloy None None None None Trace None None 99.99
1. 00 None None 10 Trace None .None Balance Attention is called to the fact that these physical tests are significant only when compared with ordinary zinc rolled under identical conditions.
If more than 2 parts of copper are used or more than parts of the third metal, the advantages of our alloy begin to diminish. We are at present of the opinion that the copper and third metal are, when used within the limits herein specified,- held in solid solution by the zinc grains or produce compounds with one another or with the zinc itself which are in turn held in solid solution by the zinc grain. The copper and the third metal 60 should not, for best results, be used in so large an amount as would result in the production oi a secondary crystalline structure in the alloys, thus destroying their homogeneity and rendering them brittle. It is, however, to be understood that the temperature conditions under which the alloys are cast or mechanically worked may influence the degree of solubility of these metals in the zinc grain.
So far as we know, no alloys of zinc, copper and chromium in the proportions specified have ever been used commercially for producing articles by mechanically working, for instance, by extrusion, by spinning, by drawing, by forging or by rolling into sheets or strips, for all of which purposes our alloys are specially suitable. We therefore claim as novel a mechanically worked zinc prod uct made of our alloys.
Having described the invention, what we claim as new and desire to secure 'by Letters Patent 0! the United States is:
1. As a composition of matter, a homogeneous alloy having substantially greater hardness than zinc and approximately the same ductility, said alloy being capable of being rolled, stamped, and
deep drawn, and composed of from 97.1% to 99.8% of zinc, .09% to 2.18% of copper, and from .09% to 372% of chromium.
l 2. A zinc base alloy highly resistant to corrosion and of greater hardness and greater ductility than pure zinc and capable of being rolled, stamped, and deep drawn, which is comprised of substantially 1% copper, .l0% chromium, and the 5 remainder zinc.
' LELAND E. WEMPLE.
JOHN R. DAESEN.
US510059A 1931-01-20 1931-01-20 Zinc alloys Expired - Lifetime US2054398A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US510059A US2054398A (en) 1931-01-20 1931-01-20 Zinc alloys

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US510059A US2054398A (en) 1931-01-20 1931-01-20 Zinc alloys

Publications (1)

Publication Number Publication Date
US2054398A true US2054398A (en) 1936-09-15

Family

ID=24029211

Family Applications (1)

Application Number Title Priority Date Filing Date
US510059A Expired - Lifetime US2054398A (en) 1931-01-20 1931-01-20 Zinc alloys

Country Status (1)

Country Link
US (1) US2054398A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3006758A (en) * 1960-01-05 1961-10-31 Hydrometals Inc Zinc alloy

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3006758A (en) * 1960-01-05 1961-10-31 Hydrometals Inc Zinc alloy

Similar Documents

Publication Publication Date Title
US2210670A (en) Copper alloy
US2596454A (en) Gold alloys
US3892565A (en) Magnesium alloy for die casting
US2445868A (en) Copper base alloys
US2054398A (en) Zinc alloys
US1818774A (en) Zinc alloy
US1956251A (en) Copper alloys
US1933390A (en) Copper zinc silicon alloys
US2317980A (en) Magnesium-base alloy
US2102869A (en) Zinc alloys
US2303402A (en) Alloy
US2296866A (en) Aluminum alloy
US2031316A (en) Copper base alloy
US3082082A (en) High strength, corrosionresistant alloy
US2372546A (en) Zinc base alloy
US2516737A (en) Hot-rolled binary zinc-titanium alloy
US2085416A (en) High strength brass
US1491913A (en) Alloy
US2180291A (en) Zinc base alloy
US1723922A (en) Copper cobalt alloy
US1789854A (en) Zinc alloy
US2075005A (en) Copper-silicon-zinc-lead alloy
US1933490A (en) Zinc alloy and certain articles made therefrom
US1729339A (en) Alloy of magnesium
US1986208A (en) Nonstainable steel alloy