US20240009167A1 - Agent for eliminating senescent cells - Google Patents
Agent for eliminating senescent cells Download PDFInfo
- Publication number
- US20240009167A1 US20240009167A1 US18/472,037 US202318472037A US2024009167A1 US 20240009167 A1 US20240009167 A1 US 20240009167A1 US 202318472037 A US202318472037 A US 202318472037A US 2024009167 A1 US2024009167 A1 US 2024009167A1
- Authority
- US
- United States
- Prior art keywords
- senescent cells
- senescence
- disease
- sglt2
- cells
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229940123518 Sodium/glucose cotransporter 2 inhibitor Drugs 0.000 claims abstract description 80
- 239000008194 pharmaceutical composition Substances 0.000 claims abstract description 18
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims description 58
- 201000010099 disease Diseases 0.000 claims description 57
- 230000009758 senescence Effects 0.000 claims description 45
- 238000000034 method Methods 0.000 claims description 30
- 230000014509 gene expression Effects 0.000 claims description 25
- 108091006269 SLC5A2 Proteins 0.000 claims description 16
- 102000058081 Sodium-Glucose Transporter 2 Human genes 0.000 claims description 16
- 229960001713 canagliflozin Drugs 0.000 claims description 16
- VHOFTEAWFCUTOS-TUGBYPPCSA-N canagliflozin hydrate Chemical compound O.CC1=CC=C([C@H]2[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O2)O)C=C1CC(S1)=CC=C1C1=CC=C(F)C=C1.CC1=CC=C([C@H]2[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O2)O)C=C1CC(S1)=CC=C1C1=CC=C(F)C=C1 VHOFTEAWFCUTOS-TUGBYPPCSA-N 0.000 claims description 16
- 230000001976 improved effect Effects 0.000 claims description 14
- 150000003839 salts Chemical class 0.000 claims description 14
- 102100025064 Cellular tumor antigen p53 Human genes 0.000 claims description 11
- 208000025500 Hutchinson-Gilford progeria syndrome Diseases 0.000 claims description 10
- 208000007932 Progeria Diseases 0.000 claims description 9
- 150000003384 small molecules Chemical class 0.000 claims description 9
- 230000032683 aging Effects 0.000 claims description 7
- 239000003112 inhibitor Substances 0.000 claims description 7
- 239000000126 substance Substances 0.000 claims description 7
- 239000003937 drug carrier Substances 0.000 claims description 6
- 208000008338 non-alcoholic fatty liver disease Diseases 0.000 claims description 6
- 206010053219 non-alcoholic steatohepatitis Diseases 0.000 claims description 6
- 201000004384 Alopecia Diseases 0.000 claims description 5
- 208000010200 Cockayne syndrome Diseases 0.000 claims description 5
- JVHXJTBJCFBINQ-ADAARDCZSA-N Dapagliflozin Chemical compound C1=CC(OCC)=CC=C1CC1=CC([C@H]2[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O2)O)=CC=C1Cl JVHXJTBJCFBINQ-ADAARDCZSA-N 0.000 claims description 5
- 206010012289 Dementia Diseases 0.000 claims description 5
- MCIACXAZCBVDEE-CUUWFGFTSA-N Ertugliflozin Chemical compound C1=CC(OCC)=CC=C1CC1=CC([C@@]23O[C@@](CO)(CO2)[C@@H](O)[C@H](O)[C@H]3O)=CC=C1Cl MCIACXAZCBVDEE-CUUWFGFTSA-N 0.000 claims description 5
- WHSOLWOTCHFFBK-ZQGJOIPISA-N Luseogliflozin Chemical compound C1=CC(OCC)=CC=C1CC1=CC([C@H]2[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)S2)O)=C(OC)C=C1C WHSOLWOTCHFFBK-ZQGJOIPISA-N 0.000 claims description 5
- QLXKHBNJTPICNF-QMCAAQAGSA-N Sergliflozin etabonate Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](COC(=O)OCC)O[C@H]1OC1=CC=CC=C1CC1=CC=C(OC)C=C1 QLXKHBNJTPICNF-QMCAAQAGSA-N 0.000 claims description 5
- 201000011032 Werner Syndrome Diseases 0.000 claims description 5
- 231100000360 alopecia Toxicity 0.000 claims description 5
- AHFWIQIYAXSLBA-RQXATKFSSA-N ipragliflozin Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1C1=CC=C(F)C(CC=2SC3=CC=CC=C3C=2)=C1 AHFWIQIYAXSLBA-RQXATKFSSA-N 0.000 claims description 5
- 201000008482 osteoarthritis Diseases 0.000 claims description 5
- QKDRXGFQVGOQKS-CRSSMBPESA-N (2s,3r,4r,5s,6r)-2-[4-chloro-3-[(4-ethoxyphenyl)methyl]phenyl]-6-methylsulfanyloxane-3,4,5-triol Chemical compound C1=CC(OCC)=CC=C1CC1=CC([C@H]2[C@@H]([C@@H](O)[C@H](O)[C@@H](SC)O2)O)=CC=C1Cl QKDRXGFQVGOQKS-CRSSMBPESA-N 0.000 claims description 4
- 206010052465 Congenital poikiloderma Diseases 0.000 claims description 4
- 206010014561 Emphysema Diseases 0.000 claims description 4
- 208000036119 Frailty Diseases 0.000 claims description 4
- 208000010412 Glaucoma Diseases 0.000 claims description 4
- 206010028980 Neoplasm Diseases 0.000 claims description 4
- 208000003251 Pruritus Diseases 0.000 claims description 4
- 208000000791 Rothmund-Thomson syndrome Diseases 0.000 claims description 4
- 208000026214 Skeletal muscle atrophy Diseases 0.000 claims description 4
- ZXOCGDDVNPDRIW-NHFZGCSJSA-N Tofogliflozin Chemical compound O.C1=CC(CC)=CC=C1CC1=CC=C(CO[C@@]23[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O3)O)C2=C1 ZXOCGDDVNPDRIW-NHFZGCSJSA-N 0.000 claims description 4
- 206010003549 asthenia Diseases 0.000 claims description 4
- 229960003834 dapagliflozin Drugs 0.000 claims description 4
- 229960003345 empagliflozin Drugs 0.000 claims description 4
- OBWASQILIWPZMG-QZMOQZSNSA-N empagliflozin Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1C1=CC=C(Cl)C(CC=2C=CC(O[C@@H]3COCC3)=CC=2)=C1 OBWASQILIWPZMG-QZMOQZSNSA-N 0.000 claims description 4
- 229950006535 ertugliflozin Drugs 0.000 claims description 4
- 229950000991 ipragliflozin Drugs 0.000 claims description 4
- 229950004397 luseogliflozin Drugs 0.000 claims description 4
- 208000002780 macular degeneration Diseases 0.000 claims description 4
- 229950011516 remogliflozin etabonate Drugs 0.000 claims description 4
- UAOCLDQAQNNEAX-ABMICEGHSA-N remogliflozin etabonate Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](COC(=O)OCC)O[C@H]1OC1=NN(C(C)C)C(C)=C1CC1=CC=C(OC(C)C)C=C1 UAOCLDQAQNNEAX-ABMICEGHSA-N 0.000 claims description 4
- 208000001076 sarcopenia Diseases 0.000 claims description 4
- 229950000378 sergliflozin etabonate Drugs 0.000 claims description 4
- 230000025185 skeletal muscle atrophy Effects 0.000 claims description 4
- 229950005268 sotagliflozin Drugs 0.000 claims description 4
- 230000009870 specific binding Effects 0.000 claims description 4
- 229950006667 tofogliflozin Drugs 0.000 claims description 4
- 208000006820 Arthralgia Diseases 0.000 claims description 3
- 208000008035 Back Pain Diseases 0.000 claims description 3
- 206010011878 Deafness Diseases 0.000 claims description 3
- 206010014190 Eczema asteatotic Diseases 0.000 claims description 3
- 208000004930 Fatty Liver Diseases 0.000 claims description 3
- 206010019708 Hepatic steatosis Diseases 0.000 claims description 3
- 206010057178 Osteoarthropathies Diseases 0.000 claims description 3
- 208000001132 Osteoporosis Diseases 0.000 claims description 3
- 208000002193 Pain Diseases 0.000 claims description 3
- 206010064930 age-related macular degeneration Diseases 0.000 claims description 3
- 201000011510 cancer Diseases 0.000 claims description 3
- 208000019425 cirrhosis of liver Diseases 0.000 claims description 3
- 208000010706 fatty liver disease Diseases 0.000 claims description 3
- 230000010370 hearing loss Effects 0.000 claims description 3
- 231100000888 hearing loss Toxicity 0.000 claims description 3
- 208000016354 hearing loss disease Diseases 0.000 claims description 3
- 201000010041 presbyopia Diseases 0.000 claims description 3
- 208000005069 pulmonary fibrosis Diseases 0.000 claims description 3
- 231100000240 steatosis hepatitis Toxicity 0.000 claims description 3
- 239000003795 chemical substances by application Substances 0.000 abstract description 14
- 210000004027 cell Anatomy 0.000 description 131
- 241000699670 Mus sp. Species 0.000 description 21
- 235000009200 high fat diet Nutrition 0.000 description 18
- 210000001596 intra-abdominal fat Anatomy 0.000 description 17
- 239000004055 small Interfering RNA Substances 0.000 description 17
- 238000010172 mouse model Methods 0.000 description 14
- 230000003247 decreasing effect Effects 0.000 description 13
- 230000000694 effects Effects 0.000 description 13
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 12
- 108020004999 messenger RNA Proteins 0.000 description 12
- 208000008589 Obesity Diseases 0.000 description 10
- 108020004459 Small interfering RNA Proteins 0.000 description 10
- 235000021590 normal diet Nutrition 0.000 description 10
- 235000020824 obesity Nutrition 0.000 description 10
- 210000001519 tissue Anatomy 0.000 description 10
- 238000010186 staining Methods 0.000 description 9
- 231100000111 LD50 Toxicity 0.000 description 8
- 108091027967 Small hairpin RNA Proteins 0.000 description 8
- 108020004707 nucleic acids Proteins 0.000 description 8
- 102000039446 nucleic acids Human genes 0.000 description 8
- 150000007523 nucleic acids Chemical class 0.000 description 8
- 238000003757 reverse transcription PCR Methods 0.000 description 8
- XYJODUBPWNZLML-UHFFFAOYSA-N 5-ethyl-6-phenyl-6h-phenanthridine-3,8-diamine Chemical compound C12=CC(N)=CC=C2C2=CC=C(N)C=C2N(CC)C1C1=CC=CC=C1 XYJODUBPWNZLML-UHFFFAOYSA-N 0.000 description 7
- 102000053642 Catalytic RNA Human genes 0.000 description 7
- 108090000994 Catalytic RNA Proteins 0.000 description 7
- 206010061218 Inflammation Diseases 0.000 description 7
- 108700011259 MicroRNAs Proteins 0.000 description 7
- 238000010162 Tukey test Methods 0.000 description 7
- 239000003814 drug Substances 0.000 description 7
- 239000002679 microRNA Substances 0.000 description 7
- 238000001543 one-way ANOVA Methods 0.000 description 7
- 210000000056 organ Anatomy 0.000 description 7
- 108091092562 ribozyme Proteins 0.000 description 7
- 101000903927 Aspergillus oryzae (strain ATCC 42149 / RIB 40) Beta-galactosidase A Proteins 0.000 description 6
- WVDDGKGOMKODPV-UHFFFAOYSA-N Benzyl alcohol Chemical compound OCC1=CC=CC=C1 WVDDGKGOMKODPV-UHFFFAOYSA-N 0.000 description 6
- 210000000577 adipose tissue Anatomy 0.000 description 6
- 230000006907 apoptotic process Effects 0.000 description 6
- 210000004204 blood vessel Anatomy 0.000 description 6
- 208000026106 cerebrovascular disease Diseases 0.000 description 6
- 239000002552 dosage form Substances 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 230000036542 oxidative stress Effects 0.000 description 6
- 230000000692 anti-sense effect Effects 0.000 description 5
- 230000001965 increasing effect Effects 0.000 description 5
- 230000004054 inflammatory process Effects 0.000 description 5
- 230000002401 inhibitory effect Effects 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 108091034117 Oligonucleotide Proteins 0.000 description 4
- 102000000574 RNA-Induced Silencing Complex Human genes 0.000 description 4
- 108010016790 RNA-Induced Silencing Complex Proteins 0.000 description 4
- 239000002585 base Substances 0.000 description 4
- 230000027455 binding Effects 0.000 description 4
- 230000037396 body weight Effects 0.000 description 4
- 230000003833 cell viability Effects 0.000 description 4
- 206010012601 diabetes mellitus Diseases 0.000 description 4
- 235000005911 diet Nutrition 0.000 description 4
- 230000037213 diet Effects 0.000 description 4
- 238000009472 formulation Methods 0.000 description 4
- 238000003125 immunofluorescent labeling Methods 0.000 description 4
- 230000006698 induction Effects 0.000 description 4
- 210000002540 macrophage Anatomy 0.000 description 4
- 230000002028 premature Effects 0.000 description 4
- 108090000623 proteins and genes Proteins 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- 108091023037 Aptamer Proteins 0.000 description 3
- 201000001320 Atherosclerosis Diseases 0.000 description 3
- 206010004446 Benign prostatic hyperplasia Diseases 0.000 description 3
- 208000024172 Cardiovascular disease Diseases 0.000 description 3
- 208000002177 Cataract Diseases 0.000 description 3
- 108020004414 DNA Proteins 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- 206010016654 Fibrosis Diseases 0.000 description 3
- 206010020772 Hypertension Diseases 0.000 description 3
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 3
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- 208000004403 Prostatic Hyperplasia Diseases 0.000 description 3
- RTRQQBHATOEIAF-UUOKFMHZSA-N acadesine Chemical compound NC1=C(C(=O)N)N=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](CO)O1 RTRQQBHATOEIAF-UUOKFMHZSA-N 0.000 description 3
- 238000009825 accumulation Methods 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 230000000996 additive effect Effects 0.000 description 3
- 239000000853 adhesive Substances 0.000 description 3
- 230000001070 adhesive effect Effects 0.000 description 3
- 210000001789 adipocyte Anatomy 0.000 description 3
- 238000000137 annealing Methods 0.000 description 3
- 239000008280 blood Substances 0.000 description 3
- 210000004369 blood Anatomy 0.000 description 3
- 230000022131 cell cycle Effects 0.000 description 3
- 230000010094 cellular senescence Effects 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 230000000295 complement effect Effects 0.000 description 3
- 210000002919 epithelial cell Anatomy 0.000 description 3
- 230000004761 fibrosis Effects 0.000 description 3
- 230000034659 glycolysis Effects 0.000 description 3
- 238000007490 hematoxylin and eosin (H&E) staining Methods 0.000 description 3
- 230000008595 infiltration Effects 0.000 description 3
- 238000001764 infiltration Methods 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 108090000765 processed proteins & peptides Proteins 0.000 description 3
- 239000000523 sample Substances 0.000 description 3
- 208000017520 skin disease Diseases 0.000 description 3
- 230000009885 systemic effect Effects 0.000 description 3
- 238000013518 transcription Methods 0.000 description 3
- 230000035897 transcription Effects 0.000 description 3
- 238000001262 western blot Methods 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 206010008111 Cerebral haemorrhage Diseases 0.000 description 2
- 238000011346 DNA-damaging therapy Methods 0.000 description 2
- 208000032928 Dyslipidaemia Diseases 0.000 description 2
- 206010015150 Erythema Diseases 0.000 description 2
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 2
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- 206010019280 Heart failures Diseases 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 201000009794 Idiopathic Pulmonary Fibrosis Diseases 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- 108010021625 Immunoglobulin Fragments Proteins 0.000 description 2
- 102000008394 Immunoglobulin Fragments Human genes 0.000 description 2
- 208000017170 Lipid metabolism disease Diseases 0.000 description 2
- AFVFQIVMOAPDHO-UHFFFAOYSA-N Methanesulfonic acid Chemical compound CS(O)(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-N 0.000 description 2
- 108010079855 Peptide Aptamers Proteins 0.000 description 2
- 108091093037 Peptide nucleic acid Proteins 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 238000012228 RNA interference-mediated gene silencing Methods 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 108060008682 Tumor Necrosis Factor Proteins 0.000 description 2
- 102000000852 Tumor Necrosis Factor-alpha Human genes 0.000 description 2
- 210000003486 adipose tissue brown Anatomy 0.000 description 2
- 210000000709 aorta Anatomy 0.000 description 2
- 230000003143 atherosclerotic effect Effects 0.000 description 2
- 235000019445 benzyl alcohol Nutrition 0.000 description 2
- SESFRYSPDFLNCH-UHFFFAOYSA-N benzyl benzoate Chemical compound C=1C=CC=CC=1C(=O)OCC1=CC=CC=C1 SESFRYSPDFLNCH-UHFFFAOYSA-N 0.000 description 2
- 102000005936 beta-Galactosidase Human genes 0.000 description 2
- 108010005774 beta-Galactosidase Proteins 0.000 description 2
- 230000033228 biological regulation Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000000872 buffer Substances 0.000 description 2
- 230000032823 cell division Effects 0.000 description 2
- 206010008118 cerebral infarction Diseases 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 208000020832 chronic kidney disease Diseases 0.000 description 2
- 239000002299 complementary DNA Substances 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 2
- 210000002889 endothelial cell Anatomy 0.000 description 2
- 201000010063 epididymitis Diseases 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 230000009368 gene silencing by RNA Effects 0.000 description 2
- 239000008103 glucose Substances 0.000 description 2
- 210000002216 heart Anatomy 0.000 description 2
- 210000000777 hematopoietic system Anatomy 0.000 description 2
- 230000008798 inflammatory stress Effects 0.000 description 2
- 230000005764 inhibitory process Effects 0.000 description 2
- 230000000977 initiatory effect Effects 0.000 description 2
- 208000036971 interstitial lung disease 2 Diseases 0.000 description 2
- 230000005865 ionizing radiation Effects 0.000 description 2
- 150000002576 ketones Chemical class 0.000 description 2
- 210000003734 kidney Anatomy 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- 230000003902 lesion Effects 0.000 description 2
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 2
- 239000003550 marker Substances 0.000 description 2
- 230000001404 mediated effect Effects 0.000 description 2
- 208000030159 metabolic disease Diseases 0.000 description 2
- 230000002503 metabolic effect Effects 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 208000015122 neurodegenerative disease Diseases 0.000 description 2
- 108091008104 nucleic acid aptamers Proteins 0.000 description 2
- 239000002773 nucleotide Substances 0.000 description 2
- 125000003729 nucleotide group Chemical group 0.000 description 2
- 210000004940 nucleus Anatomy 0.000 description 2
- NRNCYVBFPDDJNE-UHFFFAOYSA-N pemoline Chemical compound O1C(N)=NC(=O)C1C1=CC=CC=C1 NRNCYVBFPDDJNE-UHFFFAOYSA-N 0.000 description 2
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 2
- 125000002467 phosphate group Chemical group [H]OP(=O)(O[H])O[*] 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 230000002062 proliferating effect Effects 0.000 description 2
- 230000035755 proliferation Effects 0.000 description 2
- 235000018102 proteins Nutrition 0.000 description 2
- 102000004169 proteins and genes Human genes 0.000 description 2
- 230000001172 regenerating effect Effects 0.000 description 2
- 230000003362 replicative effect Effects 0.000 description 2
- 210000002027 skeletal muscle Anatomy 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 230000035882 stress Effects 0.000 description 2
- 208000024891 symptom Diseases 0.000 description 2
- 208000011580 syndromic disease Diseases 0.000 description 2
- 230000002194 synthesizing effect Effects 0.000 description 2
- RYYWUUFWQRZTIU-UHFFFAOYSA-K thiophosphate Chemical compound [O-]P([O-])([O-])=S RYYWUUFWQRZTIU-UHFFFAOYSA-K 0.000 description 2
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 2
- 238000013519 translation Methods 0.000 description 2
- DNIAPMSPPWPWGF-VKHMYHEASA-N (+)-propylene glycol Chemical compound C[C@H](O)CO DNIAPMSPPWPWGF-VKHMYHEASA-N 0.000 description 1
- LDDMACCNBZAMSG-BDVNFPICSA-N (2r,3r,4s,5r)-3,4,5,6-tetrahydroxy-2-(methylamino)hexanal Chemical compound CN[C@@H](C=O)[C@@H](O)[C@H](O)[C@H](O)CO LDDMACCNBZAMSG-BDVNFPICSA-N 0.000 description 1
- VRYALKFFQXWPIH-PBXRRBTRSA-N (3r,4s,5r)-3,4,5,6-tetrahydroxyhexanal Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)CC=O VRYALKFFQXWPIH-PBXRRBTRSA-N 0.000 description 1
- BJEPYKJPYRNKOW-REOHCLBHSA-N (S)-malic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O BJEPYKJPYRNKOW-REOHCLBHSA-N 0.000 description 1
- 102000040650 (ribonucleotides)n+m Human genes 0.000 description 1
- QIJIUJYANDSEKG-UHFFFAOYSA-N 2,4,4-trimethylpentan-2-amine Chemical compound CC(C)(C)CC(C)(C)N QIJIUJYANDSEKG-UHFFFAOYSA-N 0.000 description 1
- BMYNFMYTOJXKLE-UHFFFAOYSA-N 3-azaniumyl-2-hydroxypropanoate Chemical compound NCC(O)C(O)=O BMYNFMYTOJXKLE-UHFFFAOYSA-N 0.000 description 1
- WHBMMWSBFZVSSR-UHFFFAOYSA-M 3-hydroxybutyrate Chemical compound CC(O)CC([O-])=O WHBMMWSBFZVSSR-UHFFFAOYSA-M 0.000 description 1
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- -1 4-ethoxyphenyl Chemical group 0.000 description 1
- FHVDTGUDJYJELY-UHFFFAOYSA-N 6-{[2-carboxy-4,5-dihydroxy-6-(phosphanyloxy)oxan-3-yl]oxy}-4,5-dihydroxy-3-phosphanyloxane-2-carboxylic acid Chemical compound O1C(C(O)=O)C(P)C(O)C(O)C1OC1C(C(O)=O)OC(OP)C(O)C1O FHVDTGUDJYJELY-UHFFFAOYSA-N 0.000 description 1
- 244000215068 Acacia senegal Species 0.000 description 1
- 102000007469 Actins Human genes 0.000 description 1
- 108010085238 Actins Proteins 0.000 description 1
- 208000004476 Acute Coronary Syndrome Diseases 0.000 description 1
- 206010052747 Adenocarcinoma pancreas Diseases 0.000 description 1
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- 208000024827 Alzheimer disease Diseases 0.000 description 1
- 208000000044 Amnesia Diseases 0.000 description 1
- 206010002383 Angina Pectoris Diseases 0.000 description 1
- VWVKUNOPTJGDOB-BDHVOXNPSA-N Anhydrous tofogliflozin Chemical compound C1=CC(CC)=CC=C1CC1=CC=C(CO[C@@]23[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O3)O)C2=C1 VWVKUNOPTJGDOB-BDHVOXNPSA-N 0.000 description 1
- 102000013918 Apolipoproteins E Human genes 0.000 description 1
- 108010025628 Apolipoproteins E Proteins 0.000 description 1
- 206010003210 Arteriosclerosis Diseases 0.000 description 1
- 206010003594 Ataxia telangiectasia Diseases 0.000 description 1
- 208000023275 Autoimmune disease Diseases 0.000 description 1
- 208000023514 Barrett esophagus Diseases 0.000 description 1
- 208000023665 Barrett oesophagus Diseases 0.000 description 1
- 208000020084 Bone disease Diseases 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- 101150041972 CDKN2A gene Proteins 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- XTNGUQKDFGDXSJ-ZXGKGEBGSA-N Canagliflozin Chemical compound CC1=CC=C([C@H]2[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O2)O)C=C1CC(S1)=CC=C1C1=CC=C(F)C=C1 XTNGUQKDFGDXSJ-ZXGKGEBGSA-N 0.000 description 1
- 241000282472 Canis lupus familiaris Species 0.000 description 1
- 208000031229 Cardiomyopathies Diseases 0.000 description 1
- 208000014882 Carotid artery disease Diseases 0.000 description 1
- 206010007688 Carotid artery thrombosis Diseases 0.000 description 1
- 241000700198 Cavia Species 0.000 description 1
- 241000282693 Cercopithecidae Species 0.000 description 1
- 108010077544 Chromatin Proteins 0.000 description 1
- 208000017667 Chronic Disease Diseases 0.000 description 1
- 208000006545 Chronic Obstructive Pulmonary Disease Diseases 0.000 description 1
- 108091026890 Coding region Proteins 0.000 description 1
- 206010053138 Congenital aplastic anaemia Diseases 0.000 description 1
- 229920002261 Corn starch Polymers 0.000 description 1
- 206010011091 Coronary artery thrombosis Diseases 0.000 description 1
- 241000699800 Cricetinae Species 0.000 description 1
- 201000003883 Cystic fibrosis Diseases 0.000 description 1
- 102000004163 DNA-directed RNA polymerases Human genes 0.000 description 1
- 108090000626 DNA-directed RNA polymerases Proteins 0.000 description 1
- 201000004624 Dermatitis Diseases 0.000 description 1
- 206010012438 Dermatitis atopic Diseases 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 1
- 206010052337 Diastolic dysfunction Diseases 0.000 description 1
- 206010013886 Dysaesthesia Diseases 0.000 description 1
- 102000002322 Egg Proteins Human genes 0.000 description 1
- 108010000912 Egg Proteins Proteins 0.000 description 1
- OBWASQILIWPZMG-UHFFFAOYSA-N Empagliflozin Chemical compound OC1C(O)C(O)C(CO)OC1C1=CC=C(Cl)C(CC=2C=CC(OC3COCC3)=CC=2)=C1 OBWASQILIWPZMG-UHFFFAOYSA-N 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 206010053776 Eosinophilic cellulitis Diseases 0.000 description 1
- 241000283086 Equidae Species 0.000 description 1
- 108700039887 Essential Genes Proteins 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- 208000010201 Exanthema Diseases 0.000 description 1
- 201000004939 Fanconi anemia Diseases 0.000 description 1
- 238000012413 Fluorescence activated cell sorting analysis Methods 0.000 description 1
- 230000010190 G1 phase Effects 0.000 description 1
- 208000018522 Gastrointestinal disease Diseases 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 1
- 108091027874 Group I catalytic intron Proteins 0.000 description 1
- 229920000084 Gum arabic Polymers 0.000 description 1
- 208000013875 Heart injury Diseases 0.000 description 1
- 206010019668 Hepatic fibrosis Diseases 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 208000023105 Huntington disease Diseases 0.000 description 1
- 102000004157 Hydrolases Human genes 0.000 description 1
- 108090000604 Hydrolases Proteins 0.000 description 1
- 208000035150 Hypercholesterolemia Diseases 0.000 description 1
- 208000031226 Hyperlipidaemia Diseases 0.000 description 1
- 206010022489 Insulin Resistance Diseases 0.000 description 1
- 208000005615 Interstitial Cystitis Diseases 0.000 description 1
- 208000003618 Intervertebral Disc Displacement Diseases 0.000 description 1
- 201000008450 Intracranial aneurysm Diseases 0.000 description 1
- 206010023421 Kidney fibrosis Diseases 0.000 description 1
- ONIBWKKTOPOVIA-BYPYZUCNSA-N L-Proline Chemical compound OC(=O)[C@@H]1CCCN1 ONIBWKKTOPOVIA-BYPYZUCNSA-N 0.000 description 1
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 1
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 1
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical compound NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 description 1
- 229930182821 L-proline Natural products 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 208000019693 Lung disease Diseases 0.000 description 1
- 206010025323 Lymphomas Diseases 0.000 description 1
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 1
- 239000004472 Lysine Substances 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 206010027145 Melanocytic naevus Diseases 0.000 description 1
- 208000026139 Memory disease Diseases 0.000 description 1
- 244000246386 Mentha pulegium Species 0.000 description 1
- 235000016257 Mentha pulegium Nutrition 0.000 description 1
- 235000004357 Mentha x piperita Nutrition 0.000 description 1
- 208000001145 Metabolic Syndrome Diseases 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 208000003430 Mitral Valve Prolapse Diseases 0.000 description 1
- 208000019022 Mood disease Diseases 0.000 description 1
- 241000699666 Mus <mouse, genus> Species 0.000 description 1
- 101100012461 Mus musculus Zmpste24 gene Proteins 0.000 description 1
- 206010049565 Muscle fatigue Diseases 0.000 description 1
- 201000003793 Myelodysplastic syndrome Diseases 0.000 description 1
- 208000007256 Nevus Diseases 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 101710163270 Nuclease Proteins 0.000 description 1
- 108091005461 Nucleic proteins Proteins 0.000 description 1
- 208000022873 Ocular disease Diseases 0.000 description 1
- 241000283973 Oryctolagus cuniculus Species 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 208000018737 Parkinson disease Diseases 0.000 description 1
- 241001494479 Pecora Species 0.000 description 1
- 201000011152 Pemphigus Diseases 0.000 description 1
- 102000005877 Peptide Initiation Factors Human genes 0.000 description 1
- 108010044843 Peptide Initiation Factors Proteins 0.000 description 1
- 208000000833 Periodontal Atrophy Diseases 0.000 description 1
- 208000018262 Peripheral vascular disease Diseases 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 206010063493 Premature ageing Diseases 0.000 description 1
- 208000032038 Premature aging Diseases 0.000 description 1
- 201000004681 Psoriasis Diseases 0.000 description 1
- WHBMMWSBFZVSSR-UHFFFAOYSA-N R3HBA Natural products CC(O)CC(O)=O WHBMMWSBFZVSSR-UHFFFAOYSA-N 0.000 description 1
- 108091034057 RNA (poly(A)) Proteins 0.000 description 1
- 241000700159 Rattus Species 0.000 description 1
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 1
- 206010039710 Scleroderma Diseases 0.000 description 1
- 108091081021 Sense strand Proteins 0.000 description 1
- 206010040954 Skin wrinkling Diseases 0.000 description 1
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 1
- 241000251131 Sphyrna Species 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 108091081024 Start codon Proteins 0.000 description 1
- 208000006011 Stroke Diseases 0.000 description 1
- 238000000692 Student's t-test Methods 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 241000282887 Suidae Species 0.000 description 1
- 102000003673 Symporters Human genes 0.000 description 1
- 108090000088 Symporters Proteins 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 1
- 229920001615 Tragacanth Polymers 0.000 description 1
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 1
- 208000024780 Urticaria Diseases 0.000 description 1
- 201000006083 Xeroderma Pigmentosum Diseases 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- JVVXZOOGOGPDRZ-SLFFLAALSA-N [(1R,4aS,10aR)-1,4a-dimethyl-7-propan-2-yl-2,3,4,9,10,10a-hexahydrophenanthren-1-yl]methanamine Chemical compound NC[C@]1(C)CCC[C@]2(C)C3=CC=C(C(C)C)C=C3CC[C@H]21 JVVXZOOGOGPDRZ-SLFFLAALSA-N 0.000 description 1
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 1
- 201000000690 abdominal obesity-metabolic syndrome Diseases 0.000 description 1
- 238000011481 absorbance measurement Methods 0.000 description 1
- 235000010489 acacia gum Nutrition 0.000 description 1
- 239000000205 acacia gum Substances 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 235000011054 acetic acid Nutrition 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 210000000593 adipose tissue white Anatomy 0.000 description 1
- 229940072056 alginate Drugs 0.000 description 1
- 235000010443 alginic acid Nutrition 0.000 description 1
- 229920000615 alginic acid Polymers 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- PMMURAAUARKVCB-UHFFFAOYSA-N alpha-D-ara-dHexp Natural products OCC1OC(O)CC(O)C1O PMMURAAUARKVCB-UHFFFAOYSA-N 0.000 description 1
- BJEPYKJPYRNKOW-UHFFFAOYSA-N alpha-hydroxysuccinic acid Natural products OC(=O)C(O)CC(O)=O BJEPYKJPYRNKOW-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 235000001014 amino acid Nutrition 0.000 description 1
- 229940024606 amino acid Drugs 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 208000007502 anemia Diseases 0.000 description 1
- 239000000427 antigen Substances 0.000 description 1
- 108091007433 antigens Proteins 0.000 description 1
- 102000036639 antigens Human genes 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 210000002376 aorta thoracic Anatomy 0.000 description 1
- 208000007474 aortic aneurysm Diseases 0.000 description 1
- 230000001640 apoptogenic effect Effects 0.000 description 1
- 230000006793 arrhythmia Effects 0.000 description 1
- 206010003119 arrhythmia Diseases 0.000 description 1
- 208000011775 arteriosclerosis disease Diseases 0.000 description 1
- 235000003704 aspartic acid Nutrition 0.000 description 1
- 238000003149 assay kit Methods 0.000 description 1
- 208000006673 asthma Diseases 0.000 description 1
- 239000000305 astragalus gummifer gum Substances 0.000 description 1
- 201000008937 atopic dermatitis Diseases 0.000 description 1
- 208000010668 atopic eczema Diseases 0.000 description 1
- 230000037444 atrophy Effects 0.000 description 1
- 210000004082 barrier epithelial cell Anatomy 0.000 description 1
- SRSXLGNVWSONIS-UHFFFAOYSA-N benzenesulfonic acid Chemical compound OS(=O)(=O)C1=CC=CC=C1 SRSXLGNVWSONIS-UHFFFAOYSA-N 0.000 description 1
- 229940092714 benzenesulfonic acid Drugs 0.000 description 1
- 229960002903 benzyl benzoate Drugs 0.000 description 1
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 208000002352 blister Diseases 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 208000029028 brain injury Diseases 0.000 description 1
- 201000009267 bronchiectasis Diseases 0.000 description 1
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- CJZGTCYPCWQAJB-UHFFFAOYSA-L calcium stearate Chemical compound [Ca+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O CJZGTCYPCWQAJB-UHFFFAOYSA-L 0.000 description 1
- 239000008116 calcium stearate Substances 0.000 description 1
- 235000013539 calcium stearate Nutrition 0.000 description 1
- 235000019577 caloric intake Nutrition 0.000 description 1
- 230000000711 cancerogenic effect Effects 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- 231100000315 carcinogenic Toxicity 0.000 description 1
- 230000009787 cardiac fibrosis Effects 0.000 description 1
- 210000004413 cardiac myocyte Anatomy 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 230000030833 cell death Effects 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 238000007385 chemical modification Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000002512 chemotherapy Methods 0.000 description 1
- OEYIOHPDSNJKLS-UHFFFAOYSA-N choline Chemical compound C[N+](C)(C)CCO OEYIOHPDSNJKLS-UHFFFAOYSA-N 0.000 description 1
- 229960001231 choline Drugs 0.000 description 1
- 210000001612 chondrocyte Anatomy 0.000 description 1
- 210000003483 chromatin Anatomy 0.000 description 1
- 208000037976 chronic inflammation Diseases 0.000 description 1
- 230000006020 chronic inflammation Effects 0.000 description 1
- 235000015165 citric acid Nutrition 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000004624 confocal microscopy Methods 0.000 description 1
- 210000000555 contractile cell Anatomy 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000008120 corn starch Substances 0.000 description 1
- 229940099112 cornstarch Drugs 0.000 description 1
- 208000029078 coronary artery disease Diseases 0.000 description 1
- 208000002528 coronary thrombosis Diseases 0.000 description 1
- 210000000805 cytoplasm Anatomy 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 231100000690 decreased sperm viability Toxicity 0.000 description 1
- 230000007850 degeneration Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 208000016097 disease of metabolism Diseases 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 230000002500 effect on skin Effects 0.000 description 1
- 206010014665 endocarditis Diseases 0.000 description 1
- 231100000317 environmental toxin Toxicity 0.000 description 1
- 231100000321 erythema Toxicity 0.000 description 1
- CCIVGXIOQKPBKL-UHFFFAOYSA-M ethanesulfonate Chemical compound CCS([O-])(=O)=O CCIVGXIOQKPBKL-UHFFFAOYSA-M 0.000 description 1
- 210000003527 eukaryotic cell Anatomy 0.000 description 1
- 201000005884 exanthem Diseases 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 210000002744 extracellular matrix Anatomy 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 230000035558 fertility Effects 0.000 description 1
- 210000002950 fibroblast Anatomy 0.000 description 1
- 230000003176 fibrotic effect Effects 0.000 description 1
- 239000000796 flavoring agent Substances 0.000 description 1
- 235000013355 food flavoring agent Nutrition 0.000 description 1
- 235000003599 food sweetener Nutrition 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 239000001530 fumaric acid Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 229940014259 gelatin Drugs 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 239000004220 glutamic acid Substances 0.000 description 1
- 235000013922 glutamic acid Nutrition 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- 230000012010 growth Effects 0.000 description 1
- 239000003102 growth factor Substances 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 210000003494 hepatocyte Anatomy 0.000 description 1
- 239000005556 hormone Substances 0.000 description 1
- 229940088597 hormone Drugs 0.000 description 1
- 235000001050 hortel pimenta Nutrition 0.000 description 1
- 210000005260 human cell Anatomy 0.000 description 1
- 150000004677 hydrates Chemical class 0.000 description 1
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 1
- 229940071870 hydroiodic acid Drugs 0.000 description 1
- 208000000069 hyperpigmentation Diseases 0.000 description 1
- 230000003810 hyperpigmentation Effects 0.000 description 1
- 210000000987 immune system Anatomy 0.000 description 1
- 230000003053 immunization Effects 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 210000004969 inflammatory cell Anatomy 0.000 description 1
- 208000027866 inflammatory disease Diseases 0.000 description 1
- 230000002757 inflammatory effect Effects 0.000 description 1
- 239000012155 injection solvent Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000000968 intestinal effect Effects 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 210000004153 islets of langerhan Anatomy 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 230000007803 itching Effects 0.000 description 1
- 210000002510 keratinocyte Anatomy 0.000 description 1
- 230000002147 killing effect Effects 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 229960001375 lactose Drugs 0.000 description 1
- 210000003644 lens cell Anatomy 0.000 description 1
- 231100000636 lethal dose Toxicity 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 208000019423 liver disease Diseases 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 230000003137 locomotive effect Effects 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 235000019359 magnesium stearate Nutrition 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- 239000001630 malic acid Substances 0.000 description 1
- 235000011090 malic acid Nutrition 0.000 description 1
- 239000000845 maltitol Substances 0.000 description 1
- 235000010449 maltitol Nutrition 0.000 description 1
- VQHSOMBJVWLPSR-WUJBLJFYSA-N maltitol Chemical compound OC[C@H](O)[C@@H](O)[C@@H]([C@H](O)CO)O[C@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O VQHSOMBJVWLPSR-WUJBLJFYSA-N 0.000 description 1
- 229940035436 maltitol Drugs 0.000 description 1
- 210000004962 mammalian cell Anatomy 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 210000002752 melanocyte Anatomy 0.000 description 1
- 230000006984 memory degeneration Effects 0.000 description 1
- 208000023060 memory loss Diseases 0.000 description 1
- 239000001525 mentha piperita l. herb oil Substances 0.000 description 1
- 210000002901 mesenchymal stem cell Anatomy 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229940098779 methanesulfonic acid Drugs 0.000 description 1
- OSWPMRLSEDHDFF-UHFFFAOYSA-N methyl salicylate Chemical compound COC(=O)C1=CC=CC=C1O OSWPMRLSEDHDFF-UHFFFAOYSA-N 0.000 description 1
- YACKEPLHDIMKIO-UHFFFAOYSA-N methylphosphonic acid Chemical compound CP(O)(O)=O YACKEPLHDIMKIO-UHFFFAOYSA-N 0.000 description 1
- 239000003094 microcapsule Substances 0.000 description 1
- 210000004088 microvessel Anatomy 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 239000003226 mitogen Substances 0.000 description 1
- 230000002297 mitogenic effect Effects 0.000 description 1
- 210000002161 motor neuron Anatomy 0.000 description 1
- 210000002200 mouth mucosa Anatomy 0.000 description 1
- 230000035772 mutation Effects 0.000 description 1
- 208000010125 myocardial infarction Diseases 0.000 description 1
- 230000019261 negative regulation of glycolysis Effects 0.000 description 1
- 210000000653 nervous system Anatomy 0.000 description 1
- 230000004770 neurodegeneration Effects 0.000 description 1
- 210000004498 neuroglial cell Anatomy 0.000 description 1
- 210000002569 neuron Anatomy 0.000 description 1
- 230000006764 neuronal dysfunction Effects 0.000 description 1
- 230000002981 neuropathic effect Effects 0.000 description 1
- 230000003448 neutrophilic effect Effects 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 108091027963 non-coding RNA Proteins 0.000 description 1
- 102000042567 non-coding RNA Human genes 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 239000002674 ointment Substances 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 210000000963 osteoblast Anatomy 0.000 description 1
- 210000004681 ovum Anatomy 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 201000002094 pancreatic adenocarcinoma Diseases 0.000 description 1
- 210000003134 paneth cell Anatomy 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 208000035824 paresthesia Diseases 0.000 description 1
- 201000001976 pemphigus vulgaris Diseases 0.000 description 1
- 208000028169 periodontal disease Diseases 0.000 description 1
- 210000000578 peripheral nerve Anatomy 0.000 description 1
- 239000000546 pharmaceutical excipient Substances 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- INAAIJLSXJJHOZ-UHFFFAOYSA-N pibenzimol Chemical compound C1CN(C)CCN1C1=CC=C(N=C(N2)C=3C=C4NC(=NC4=CC=3)C=3C=CC(O)=CC=3)C2=C1 INAAIJLSXJJHOZ-UHFFFAOYSA-N 0.000 description 1
- 210000002729 polyribosome Anatomy 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 230000003389 potentiating effect Effects 0.000 description 1
- 210000000229 preadipocyte Anatomy 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 230000002335 preservative effect Effects 0.000 description 1
- 229960002429 proline Drugs 0.000 description 1
- 235000019260 propionic acid Nutrition 0.000 description 1
- 230000009325 pulmonary function Effects 0.000 description 1
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000001959 radiotherapy Methods 0.000 description 1
- 102000016914 ras Proteins Human genes 0.000 description 1
- 108010014186 ras Proteins Proteins 0.000 description 1
- 206010037844 rash Diseases 0.000 description 1
- 230000009103 reabsorption Effects 0.000 description 1
- 239000003642 reactive oxygen metabolite Substances 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 230000001850 reproductive effect Effects 0.000 description 1
- 208000023504 respiratory system disease Diseases 0.000 description 1
- 238000010839 reverse transcription Methods 0.000 description 1
- CVHZOJJKTDOEJC-UHFFFAOYSA-N saccharin Chemical compound C1=CC=C2C(=O)NS(=O)(=O)C2=C1 CVHZOJJKTDOEJC-UHFFFAOYSA-N 0.000 description 1
- 235000019204 saccharin Nutrition 0.000 description 1
- 229940081974 saccharin Drugs 0.000 description 1
- 239000000901 saccharin and its Na,K and Ca salt Substances 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 230000003248 secreting effect Effects 0.000 description 1
- 210000000697 sensory organ Anatomy 0.000 description 1
- 230000011664 signaling Effects 0.000 description 1
- 210000002363 skeletal muscle cell Anatomy 0.000 description 1
- 210000003491 skin Anatomy 0.000 description 1
- 208000019116 sleep disease Diseases 0.000 description 1
- 208000020685 sleep-wake disease Diseases 0.000 description 1
- 230000000391 smoking effect Effects 0.000 description 1
- 210000000329 smooth muscle myocyte Anatomy 0.000 description 1
- 239000001632 sodium acetate Substances 0.000 description 1
- 235000017281 sodium acetate Nutrition 0.000 description 1
- 239000012453 solvate Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 210000001324 spliceosome Anatomy 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 208000003265 stomatitis Diseases 0.000 description 1
- 210000003270 subclavian artery Anatomy 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 229960004793 sucrose Drugs 0.000 description 1
- 230000008093 supporting effect Effects 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 239000003765 sweetening agent Substances 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- 239000013076 target substance Substances 0.000 description 1
- 239000011975 tartaric acid Substances 0.000 description 1
- 235000002906 tartaric acid Nutrition 0.000 description 1
- YBRBMKDOPFTVDT-UHFFFAOYSA-N tert-butylamine Chemical compound CC(C)(C)N YBRBMKDOPFTVDT-UHFFFAOYSA-N 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 229940124597 therapeutic agent Drugs 0.000 description 1
- 230000009092 tissue dysfunction Effects 0.000 description 1
- 230000014621 translational initiation Effects 0.000 description 1
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 1
- 238000010396 two-hybrid screening Methods 0.000 description 1
- 208000001072 type 2 diabetes mellitus Diseases 0.000 description 1
- 210000003954 umbilical cord Anatomy 0.000 description 1
- 230000002792 vascular Effects 0.000 description 1
- 210000003556 vascular endothelial cell Anatomy 0.000 description 1
- 210000003462 vein Anatomy 0.000 description 1
- 230000035899 viability Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000009637 wintergreen oil Substances 0.000 description 1
- 230000037303 wrinkles Effects 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/38—Heterocyclic compounds having sulfur as a ring hetero atom
- A61K31/381—Heterocyclic compounds having sulfur as a ring hetero atom having five-membered rings
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/70—Carbohydrates; Sugars; Derivatives thereof
- A61K31/7042—Compounds having saccharide radicals and heterocyclic rings
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K45/00—Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P7/00—Drugs for disorders of the blood or the extracellular fluid
- A61P7/02—Antithrombotic agents; Anticoagulants; Platelet aggregation inhibitors
Definitions
- the present invention relates to novel use of SGLT2 inhibitors.
- an object of the present invention is to provide an agent for eliminating senescent cells.
- the present inventor has conducted extensive studies in view of the problem and has found that a sodium glucose co-transporter 2 (hereinafter referred to as “SGLT2”) inhibitor, known as an agent for treating diabetes, had an activity to eliminate senescent cells, thereby completing the invention.
- SGLT2 sodium glucose co-transporter 2
- a method for eliminating senescent cells comprising administrating an effective amount of an SGLT2 inhibitor to a subject in need thereof.
- a method for preventing or treating a disease in which the disease state is expected to be improved by eliminating senescent cells comprising administrating an effective amount of an SGLT2 inhibitor to a subject in need thereof.
- senescent cells can be eliminated and a disease in which the disease state is expected to be improved by eliminating the senescent cells can be prevented and/or treated.
- FIGS. 1 A TO 1 C are photographs showing the results of senescence-associated acidic ⁇ -galactosidase staining (Experimental Example 2).
- FIG. 1 A shows the result for the normal diet group mice. The scale bar indicates 5 mm.
- FIG. 1 B shows the result for the high fat diet group mice.
- FIG. 1 C shows the result for the high fat diet+SGLT2i group mice.
- FIG. 2 is photographs showing the results of Western blotting (Experimental Example 3).
- FIG. 4 A is photographs showing the results of HE staining.
- the scale bar indicates 200 ⁇ m.
- FIG. 4 B is a graph showing the result of counting CLS number.
- NC normal diet, HFD: high fat diet, Si7d: SGLT2 inhibitor administration for 7 days. **P ⁇ 0.01 (tested by Tukey's multiple comparison test after one-way ANOVA).
- FIG. 5 A is photographs showing the results of evaluating oxidative stress by DHE staining.
- the scale bar indicates 100 ⁇ m.
- FIG. 5 B is a graph of the result of measuring DHE positive area.
- NC normal diet, HFD: high fat diet, Si7d: SGLT2 inhibitor administration for 7 days. *P ⁇ 0.05, **P ⁇ 0.01 (tested by Tukey's multiple comparison test after one-way ANOVA).
- FIG. 8 A is photographs showing the results of senescence-associated acidic ⁇ -galactosidase staining. The scale bar indicates 2 mm.
- FIG. 9 is graphs showing cell viability and apoptosis induction when 2DG, 3HB, or AIC was added and when no reagent was added (Con) (Experimental Example 9) to young and aged HUVECs.
- the present invention provides an agent or pharmaceutical composition for eliminating senescent cells, comprising an SGLT2 inhibitor.
- the present invention provides a medicament for eliminating senescent cells or use of an SGLT2 inhibitor in the manufacture of a medicament for preventing or treating a disease in which the disease state is expected to be improved by eliminating senescent cells.
- the present invention provides a method for eliminating senescent cells or for preventing or treating a disease in which the disease state is expected to be improved by eliminating senescent cells, which method comprises administering an effective amount of an SGLT2 inhibitor to a subject in need thereof.
- the present invention provides an SGLT2 inhibitor for use in eliminating senescent cells or for use in preventing or treating a disease in which the disease state is expected to be improved by eliminating senescent cells.
- the above-mentioned agent, pharmaceutical composition, medicament, and the like contain the SGLT2 inhibitor as an active ingredient.
- the “senescent cell” herein refers to a cell that presents increased expression amount of a senescence marker as compared to a normal cell.
- the senescence marker includes senescence-associated acidic ⁇ -galactosidase, p53, p16 INK4a , p21 CIP1 , and the like.
- the senescent cell is characterized by irreversible cessation of growth at G1 phase and is known to be formed due to suppression of genes that stimulate progression of the cell cycle and increased expression of p53, p16 INK4a , and p21 CIP1 that inhibit the cell cycle.
- the senescent cell may be a cell which has been arrested in the process of division but remains metabolically active. Non-dividing cells can survive for weeks but cannot proliferate and replicate DNA despite the presence of sufficient space, nutrients, and growth factors in the medium. Thus, this cessation of the division is essentially permanent since the senescent cells cannot be stimulated and proliferated even if physiological stimuli are applied to them.
- the senescent cells can differ from the non-senescent cells in one or more of the following points: 1) the senescent cells stop proliferating and cannot be stimulated so as to reenter the cell cycle with physiological mitogens; 2) the senescent cells become resistant to apoptotic cell death; and 3) the senescent cells acquire altered differentiation functions.
- the senescent cell may result from replicative cell senescence, premature cell senescence, therapeutically-induced cell senescence, and the like.
- the senescent cell resulting from replicative cell senescence may have undergone multiple cell divisions, e.g., 40 or more, 50 or more, 60 or more, 70 or more, or 80 or more cell divisions.
- the senescent cell resulting from premature cell senescence may be induced by, but not limited to, ultraviolet radiation, reactive oxygen species, environmental toxins, smoking, ionizing radiation, distortion of chromatin structure, excess mitogenic signaling, carcinogenic mutations, and the like.
- premature cell senescence can be induced by ionizing radiation.
- premature cell senescence can be induced by ectopic transfected Ras protein.
- the senescent cell resulting from treatment-induced cell senescence may be induced by radiation therapy, chemotherapy, DNA damaging therapy, and the like.
- the senescent cells to be subjected by the present invention may generally be eukaryotic cells.
- the senescent cells include, but are not limited to, mammary epithelial cells, keratinocytes, cardiomyocytes, chondrocytes, endothelial cells (macrovessels), endothelial cells (microvessels), epithelial cells, fibroblasts, dermal papilla cells, hepatocytes, melanocytes, osteoblasts, preadipocytes, cells in immune system, skeletal muscle cells, smooth muscle cells, adipocytes, neurons, glial cells, contractile cells, exocrine epithelial cells, extracellular matrix cells, cells secreting hormones, keratotic cells, islet cells, lens cells, mesenchymal stem cells, pancreatic adenocarcinoma cells, small intestinal Paneth cells, cells in hematopoietic system, cells in nervous system, cells supporting sensory organs or peripheral nerve cells, and wet
- the senescent cells to be subjected by the present invention may also be found in regenerative tissues, including vascular system, hematopoietic system, epithelial organs, and stroma.
- the senescent cells may also be found at senile sites or sites in chronic conditions associated with senescence such as osteoarthritis and atherosclerosis.
- the senescent cells may be associated with benign dysplastic lesions, precancerous lesions, or benign prostatic hyperplasia.
- the senescent cells may be found in normal and/or tumor tissues after DNA damaging therapy.
- the senescent cells may be found at sites in disease states associated with senescence.
- the number of senescent cells in various organs and tissues usually increases with age. Accumulation of the senescent cells may advance senescence and degradation under senescence-related diseases. For example, accumulation of the senescent cells in senescent tissue may contribute to age-related tissue dysfunction, decreased regenerative capacity, and diseases. In one embodiment, the senescent tissue in which the senescent cells have accumulated lacks the ability to respond to stress in which proliferation is required, which results in the decrease in health which could be seen with aging.
- the “eliminating senescent cells” herein means removing the senescent cells from tissues, organs, or the like, or killing the senescent cells. It is particularly preferable that cells which are not the senescent cells (hereinafter referred to as “non-senescent cells”) are not significantly killed but the senescent cells are selectively or specifically killed, at the same concentration.
- the 50% lethal concentration (Lethal Concentration 50, hereinafter referred to as “LC50”) of the SGLT2 inhibitor used in the present invention in the non-senescent cells may preferably be about 2 to about 50 times higher than the LC50 of said SGLT2 inhibitor in the senescent cells.
- LC50 is the concentration required to kill half of the cells in cell samples.
- the LC50 in the non-senescent cells may be about 2 times or more, about 3 times or more, about 4 times or more, about 5 times or more, about 6 times or more, about 7 times or more, about 8 times or more, about 9 times or more, about 10 times or more, or higher than the LC50 in the senescent cells.
- the LC50 in the non-senescent cells may be about 10 times or more, about 15 times or more, about 20 times or more, about 25 times or more, about 30 times or more, about 35 times or more, about 40 times or more, about 45 times or more, about 50 times or more, or higher than the LC50 in the senescent cells.
- Accumulation of senescent cells is known to promote disease states of senescence-related diseases and the like.
- diseases in which the disease state is expected to be improved by eliminating senescent cells such as senescence-related diseases, can be prevented or treated by administering the agent or pharmaceutical composition for eliminating senescent cells according to the present invention, thereby eliminating the senescent cells.
- the “senescence-related diseases” herein can include any disease or condition that is totally or partially mediated by the induction or maintenance of a non-proliferative or senescent condition in a cell or cell population in a subject.
- the senescence-related diseases may include tissue or organ degeneration in which signs of the disease condition are not visible, and visible disease conditions such as degenerative diseases or hypofunctions.
- senescence-related diseases include Alzheimer's disease, Parkinson's disease, cataract, macular degeneration, glaucoma, atherosclerosis, acute coronary syndrome, myocardial infarction, stroke, hypertension, idiopathic pulmonary fibrosis (IPF), chronic obstructive pulmonary disease (COPD), osteoarthritis, coronary artery disease, cerebrovascular disease, periodontal disease, atrophy or fibrosis in various tissues, brain or heart injury, treatment-related myelodysplastic syndrome, and the like.
- IPF idiopathic pulmonary fibrosis
- COPD chronic obstructive pulmonary disease
- osteoarthritis coronary artery disease
- cerebrovascular disease cerebrovascular disease
- periodontal disease atrophy or fibrosis in various tissues
- brain or heart injury treatment-related myelodysplastic syndrome, and the like.
- the senescence-related diseases may also include Hutchinson-Gilford progeria syndrome, Werner syndrome, Cockayne syndrome, xeroderma pigmentosum, ataxia telangiectasia, Fanconi anemia, neuropathic anemia, and the like.
- senescence-related diseases include circulatory diseases, such as cardiovascular diseases, e.g. angina pectoris, aortic aneurysms, arrhythmia, cerebral aneurysms, diastolic dysfunction, cardiac fibrosis, cardiomyopathy, carotid artery disease, coronary thrombosis, endocarditis, hypercholesterolemia, hyperlipidemia, mitral valve prolapse, and peripheral vascular disease; inflammatory or autoimmune diseases, such as disc herniation, oral mucositis, erythema, interstitial cystitis, scleroderma, and alopecia; neurodegenerative diseases, such as dementia, Huntington's disease, motor neuron dysfunction, memory loss associated with aging, depression, and mood disorder; metabolic disease such as metabolic syndrome; pulmonary diseases, such as decreased pulmonary function associated with aging, asthma, bronchiectasis, cystic fibrosis, and emphysema; gastrointestinal diseases such as Barrett'
- senescence-related diseases include circulatory diseases, such as heart failure, atherosclerosis, arteriosclerotic cerebrovascular or cardiovascular disease, and hypertension; cerebrovascular diseases, such as cerebral infarction and cerebral hemorrhage; metabolic diseases such as dyslipidemia; respiratory diseases, such as pulmonary fibrosis and emphysema; locomotive syndromes, such as skeletal muscle atrophy (sarcopenia) and osteoarthritis; geriatric syndromes, such as dementia and frailty; cancer; chronic kidney disease; ocular diseases, such as cataract, glaucoma, age-related macular degeneration, and presbyopia; age-related alopecia; age-related hearing loss; pain associated with aging, such as lumbar pain and joint pain; skin diseases, such as histotic eczema and cutaneous pruritus; liver diseases, such as fatty liver, nonalcoholic steatohepatitis (NASH), and liver cirrhosis; bone diseases, such as fatty liver,
- the SGLT2 inhibitors used in the present invention include drugs that inhibit reabsorption of glucose by SGLT2. More specific SGLT2 inhibitors include low molecular weight compounds, SGLT2 expression inhibitors, SGLT2-specific binding substances, and the like.
- the low molecular weight compounds that are the SGLT2 inhibitors include, for example, canagliflozin [(1S)-1,5-Anhydro-1-C(-3 ⁇ [5-(4-fluorophenyl)thiophen-2-yl]methyl ⁇ -4-methylphenyl)-D-glucitol], empagliflozin [(1S)-1,5-Anhydro-1-C- ⁇ 4-chloro-3-[(4- ⁇ [(3S)-oxolan-3-yl]oxy ⁇ phenyl)methyl]phenyl ⁇ -D-glucitol], ipragliflozin [(1S)-1,5-Anhydro-1-C- ⁇ 3-[(1-benzothiophen-2-yl)methyl]-4-fluorophenyl ⁇ -D-glucitol], dapagliflozin [(1S)-1,5-Anhydro-1-C- ⁇ 4-chloro-3-[(4
- the pharmaceutically acceptable salts of the low molecular weight compounds that are the SGLT2 inhibitors include, for example, salts with alkali metals such as lithium, sodium, and potassium; salts with Group 2 metals such as calcium and magnesium; salts with zinc or aluminum; salts with amines such as ammonia, choline, diethanolamine, lysine, ethylenediamine, t-butylamine, t-octylamine, tris(hydroxymethyl)aminomethane, N-methyl-glucosamine, triethanolamine, and dehydroabiethylamine; salts with inorganic acids such as hydrochloric acid, hydrobromic acid, hydroiodic acid, sulfuric acid, nitric acid, and phosphoric acid; salts with organic acids such as formic acid, acetic acid, propionic acid, oxalic acid, malonic acid, succinic acid, fumaric acid, maleic acid, lactic acid, malic acid, tartaric acid, citric acid
- the pharmaceutically acceptable salts of the low molecular weight compounds that are the SGLT2 inhibitors include intramolecular salts, hydrates, and cocrystals with L-proline, etc., solvates with (2S)-propane-1,2-diol, etc., and the like, of the low molecular weight compounds.
- the SGLT2 expression inhibitors include, for example, siRNA, shRNA, miRNA, ribozymes, antisense nucleic acids, low molecular weight compounds, and the like. Expression of SGLT2 can be inhibited by administering such expression inhibitors.
- siRNA small interfering RNA
- siRNA interference is a small double-stranded RNA consisting of 21 to 23 base pairs that is used for gene silencing by RNA interference.
- siRNA binds to RNA-induced silencing complex (RISC) after having been introduced into a cell.
- RISC RNA-induced silencing complex
- This complex binds to and cleaves mRNA having a sequence complementary to the siRNA.
- gene expression is suppressed in a sequence-specific manner.
- siRNA can be produced by synthesizing a sense strand oligonucleotide and an antisense strand oligonucleotide respectively using a DNA/RNA automated synthesizer, and then, for example, denaturing them for about 1 minute at 90° C. to 95° C. in a suitable annealing buffer and annealing them for about 1 to 8 hours at 30° C. to 70° C.
- Short hairpin RNA is a hairpin RNA sequence that is used for gene silencing by RNA interference.
- shRNA may be introduced into a cell with a vector and expressed with a U6 promoter or H1 promoter, or may be prepared by synthesizing an oligonucleotide having an shRNA sequence using a DNA/RNA automated synthesizer and self-annealing the obtained oligonucleotides using the similar method as that of siRNA.
- the hairpin structure of shRNA introduced into the cell is cleaved to siRNA and binds to RNA-induced silencing complex (RISC). This complex binds to and cleaves mRNA having a sequence complementary to the siRNA. As a result, gene expression is suppressed in a sequence-specific manner.
- RISC RNA-induced silencing complex
- miRNA is a functional nucleic acid that is encoded on a genome and finally becomes microRNA consisting of about 20 bases through a multistage formation process. miRNA is classified as a functional ncRNA (non-coding RNA, a generic term for RNA that will not be translated into protein) and plays an important role in the biological phenomenon in respect of the regulation of expression of other genes. Administration of miRNA having a specific base sequence into a living body can inhibit SGLT2 expression.
- Ribozyme is an RNA that has catalytic activity. Ribozymes have various types of activity, and study on ribozymes as enzymes that cleave RNA allows us to design ribozymes for the purpose of site-specific cleavage of RNA. Ribozyme may consist of 400 nucleotides or more, such as Group I intron and M1RNA contained in RNaseP, or may consist of about 40 nucleotides such as the hammerhead or the hairpin.
- the antisense nucleic acid is a nucleic acid complementary to a target sequence.
- the antisense nucleic acid can inhibit expression of a target gene by: inhibiting initiation of transcription by forming a triplex; suppressing transcription by forming a hybrid with a site where an open loop structure has been locally formed by RNA polymerase; inhibiting transcription by forming a hybrid with RNA which is about to be synthesized; suppressing splicing by forming a hybrid at the intron-exon junction; suppressing splicing by forming a hybrid with a spliceosome formation site; suppressing migration from the nucleus to the cytoplasm by forming a hybrid with mRNA; suppressing splicing by forming a hybrid with a capping site or poly(A) addition site; suppressing initiation of translation by forming a hybrid with a translation initiation factor binding site; suppressing translation by forming a hybrid with a ribosome binding site near the start codon; inhibiting peptide chain
- the siRNA, shRNA, miRNA, ribozyme, and antisense nucleic acid may contain various chemical modifications so as to improve stability or activity.
- a phosphate residue may be substituted with a chemically-modified phosphate residue, such as phosphorothioate (PS), methylphosphonate and phosphorodithionate, in order to prevent decomposition by hydrolases such as nucleases.
- PS phosphorothioate
- methylphosphonate methylphosphonate
- phosphorodithionate phosphorodithionate
- at least a portion thereof may be composed of a nucleic acid analog such as peptide nucleic acid (PNA).
- PNA peptide nucleic acid
- the SGLT2-specific binding substances include substances that specifically bind to SGLT2 and inhibit the function thereof, for example, antibodies, antibody fragments, aptamers, and the like.
- the antibody can be prepared by immunizing an animal such as a mouse with SGLT2 protein or a fragment thereof as an antigen.
- the antibody can be prepared by screening a phage library.
- the antibody fragment includes Fv, Fab, scFv, and the like.
- the antibody is preferably a monoclonal antibody.
- the antibody may be a commercially available antibody.
- the aptamer is a substance having an ability to bind specifically to a target substance.
- the aptamer includes a nucleic acid aptamer, a peptide aptamer, and the like.
- the nucleic acid aptamer having an ability to bind specifically to a target peptide can be selected by, for example, a technique such as systematic evolution of ligand by exponential enrichment (SELEX), and the like.
- the peptide aptamer having an ability to bind specifically to a target peptide can be selected by, for example, a technique such as the two-hybrid method using yeast, and the like.
- the present invention provides a pharmaceutical composition for eliminating senescent cells, comprising the SGLT2 inhibitor and a pharmaceutically acceptable carrier.
- the senescent cells can be eliminated by administering the pharmaceutical composition of this embodiment.
- diseases in which the disease state is expected to be improved by eliminating senescent cells preferably senescence-related diseases, can also be prevented or treated.
- this embodiment also provides pharmaceutical compositions for the prevention or treatment of diseases in which the disease state is expected to be improved by eliminating senescent cells.
- the pharmaceutical composition of this embodiment may be formulated into a dosage form to be used orally or parenterally.
- the dosage form to be used orally includes a tablet, a capsule, an elixir, a microcapsule, and the like.
- the dosage form to be used parenterally includes an injection, an ointment, a patch, and the like.
- any carriers can be used without any particular limitations as long as they are conventionally used in the preparation of pharmaceutical compositions.
- binders such as gelatin, cornstarch, tragacanth gum, and gum arabic
- excipients such as starch and crystalline cellulose
- swelling agents such as alginate
- injection solvents such as water, ethanol, and glycerin
- adhesives such as rubber-based adhesives and silicone-based adhesives; and the like.
- the pharmaceutical composition may contain an additive.
- the additive includes a lubricant such as calcium stearate and magnesium stearate; a sweetener, such as sucrose, lactose, saccharin, and maltitol; a flavoring agent such as peppermint and wintergreen oil; a stabilizer such as benzyl alcohol and phenol; a buffer such as phosphate and sodium acetate; a solubilizing agent such as benzyl benzoate and benzyl alcohol; an antioxidant; a preservative; and the like.
- a lubricant such as calcium stearate and magnesium stearate
- a sweetener such as sucrose, lactose, saccharin, and maltitol
- a flavoring agent such as peppermint and wintergreen oil
- a stabilizer such as benzyl alcohol and phenol
- a buffer such as phosphate and sodium acetate
- solubilizing agent such as benzyl benzoate and benz
- the pharmaceutical composition can be formulated by suitably combining the SGLT2 inhibitor, the pharmaceutically acceptable carrier, and where necessary, the additive, and mixing them in a unit dosage form required for a generally accepted pharmaceutical implementation.
- the subjects to which the SGLT2 inhibitors are administered include, but are not limited to, humans, monkeys, dogs, cows, horses, sheep, pigs, rabbits, mice, rats, guinea pigs, hamsters, and cells thereof.
- mammals or mammalian cells are preferable, and human or human cells are particularly preferable.
- the dose of the SGLT2 inhibitor cannot be determined uniformly since it varies according to the specific subject to be administered, and the symptom, body weight, age, gender, or the like, of the subject.
- oral administration for example, about 0.1 mg to about 100 mg/kg body weight of the SGLT2 inhibitor may be administered per a unit dosage form for adults.
- about 0.01 mg to about 50 mg of the SGLT2 inhibitor may be administered per a unit dosage form for adults.
- the daily dose of the SGLT2 inhibitor cannot be determined uniformly since it varies according to the specific subject to be administered, and the symptom, body weight, age, gender, or the like, of the subject.
- about 0.1 mg to about 100 mg/kg body weight/day of the SGLT2 inhibitor may be administered once a day or divided into about two to three times per day for adults.
- the SGLT2 inhibitor according to the present invention may be used in combination with at least one agent selected from the group consisting of agents for eliminating senescent cells other than the SGLT2 inhibitors and other therapeutic agents for diseases.
- the SGLT2 inhibitor and the other agent can be in the same formulation or be in separate formulations.
- each formulation can be administered by the same administration route or by separate administration routes.
- the administration routes include, for example, oral and injection.
- each formulation can be administered simultaneously, sequentially, or separately with a time or period interval.
- the SGLT2 inhibitor and the other agent may be into a kit comprising them.
- high fat diet+SGLT2i group Four-week-old wild-type mice (C57BL/6NCr) were fed with high fat diets for 8 weeks to prepare diet-induced obesity model mice. Then, canagliflozin, an SGLT2 inhibitor, was administered orally to the prepared obesity model mice by mixing with the diet at the concentration of 0.03% w/w (hereinafter referred to as “high fat diet+SGLT2i group”).
- normal diet group four-week-old wild-type mice (C57BL/6NCr) fed with normal diets for 8 weeks (hereinafter referred as “normal diet group”) and obesity model mice prepared in the same manner as described above with the exception of not administering canagliflozin (hereinafter referred to as “high fat diet group”) were prepared.
- the visceral adipose tissues were collected from the mice of each group one week after starting administration of canagliflozin in Experimental Example 1.
- the senescent cells in the visceral adipose tissues collected from the mice of each group were detected according to the conventional method (Dimri, G. P. et al., Proc. Natl. Acad. Sci. U.S.A., 92(20), 9363-9367, 1995). Specifically, each of the visceral adipose tissues was stained with senescence-associated acidic ⁇ -galactosidase and the senescent cells were detected. The senescent cells were stained blue by this staining.
- FIGS. 1 A TO 1 C The results are shown in FIGS. 1 A TO 1 C .
- FIG. 1 A shows the result for the mice of the normal diet group. The scale bar indicates 5 mm.
- FIG. 1 B shows the result for the mice of the high fat diet group.
- FIG. 1 C shows the result for the mice of the high fat diet+SGLT2i group.
- p53 protein is known to play a central role as a senescence accelerating molecule that accelerates cellular senescence.
- the inventor has previously shown that the cellular senescence reaction through an increase of p53 signal in the visceral adipose tissue was accelerated by adding obesity stress, thereby inducing inflammation of the visceral fat, causing systemic dysmetabolism, and forming or deteriorating the disease state of diabetes. Therefore, expression of p53 protein in adipose tissues of obesity model mice was examined.
- expression level of p53 protein was measured by Western blotting using a portion of the visceral adipose tissues collected in Experimental Example 2.
- Type 1C12 CST
- Anti- ⁇ -actin antibody type 13E5, CST
- FIG. 2 is photographs showing the results of the Western blotting.
- This cDNA was used to quantify the relative expression of mRNAs of p21 and p16 using Actb as the housekeeping gene by quantitative RT-PCR method using Light Cycler 480 (Roche), and TaqMan Universal Probe Library and the Light Cycler Master (Roche).
- the primers for each RNA were designed using the Probe finder on the Roche website.
- FIG. 3 is graphs showing the results of the quantitative RT-PCR.
- the administration of the SGLT2 inhibitor significantly suppressed the increase of p21 mRNA levels due to high fat diet-fed, and a similar trend was observed for p16.
- the results also strongly suggested that the senescent cells were eliminated by the SGLT2 inhibitor.
- CLS crown-like structure
- a portion of the visceral fat collected in Experimental Example 4 was immersed and fixed with 10% Mildform (Wako) for at least 24 hours.
- the sample was dehydrated and embedded in paraffin, and sliced into 5- ⁇ m thick.
- the slices were stuck on slides and subjected to hematoxylin-eosin (HE) staining, dihydroethidium (DHE) staining, or immunofluorescent staining with F4/80 antibody.
- HE hematoxylin-eosin
- DHE dihydroethidium
- F4/80 antibody immunofluorescent staining with F4/80 antibody.
- the stained slices were imaged using Biorevo (Keyence Co.), or where necessary, using confocal microscopy.
- the images were photographed at 400 ⁇ magnification, and the mean number of the crown like structures per one 40 ⁇ field of view was counted as well.
- the percentage (%) of a red color value equal to or greater than a certain value relative to a randomly photographed 400 ⁇ image per one field of view was measured using ImageJ.
- percentage (%) of F4/80 positive cells per nucleus in one field of view was measured.
- mRNAs of CCL2 and TNF ⁇ were quantified by quantitative RT-PCR method according to the method described in Experimental Example 4.
- FIG. 4 A is photographs showing the result of the HE staining.
- the scale bar indicates 200 ⁇ m.
- FIG. 4 B is a graph showing the result of counting the number of CLS. The infiltration of macrophages and the CLS structures which had been enhanced by the high fat diet-fed were significantly decreased by administering the SGLT2 inhibitor.
- FIG. 5 A is photographs showing the results of evaluating oxidative stress by the DHE staining.
- the scale bar indicates 100 ⁇ m.
- FIG. 5 B is a graph showing the result of measuring the DHE positive area. The oxidative stress which had been enhanced by the high fat diet was also significantly suppressed by administering the SGLT2 inhibitor.
- FIG. 6 A is graphs showing the results of the quantitative RT-PCR.
- FIG. 6 B is photographs showing the immunofluorescent staining with F4/80.
- the administration of the SGLT2 inhibitor tended to decrease the mRNA expression of inflammation-related molecules such as CCL2 and TNF ⁇ although macrophage infiltration into adipose tissue remained. From the above results, it was revealed that the SGLT2 inhibitor also decreased adipose inflammation and oxidative stress in obese models as the adipose senescence was improved.
- SGLT2 inhibitor also exerts inhibitory effects on senescence signals in organs other than visceral adipose tissue was examined.
- mRNA expression levels of p16 and p21 in heart, kidney, skeletal muscle (quadriceps), and brown adipose tissue were quantified using the same methods described in Experimental Example 4.
- FIG. 7 is graphs showing the results of the quantitative RT-PCR.
- the administration of the SGLT2 inhibitor tended to decrease mRNA levels of p21 in the heart, p16 and p21 in the kidney, p21 in the skeletal muscle, and p16 in the brown adipose tissue, respectively. From the results, it was considered that the SGLT2 inhibitor exerted the effect of eliminating the senescent cells even in a plurality of organs other than the visceral adipose tissue.
- mice Four-week-old ApoE-deficient mice were fed with high fat diets for 12 weeks, followed by oral administration of canagliflozin, an SGLT2 inhibitor, mixed in the diet at the concentration of 0.03% w/w (hereinafter referred to as “HFD+SGLT2i group”).
- HFD+SGLT2i group the same mice as described above with the exception of not administering canagliflozin (hereinafter referred to as “HFD group”) were prepared.
- the blood vessels (from the aorta base to the descending aorta on the diaphragm) were collected from the mice of each group 2 weeks after starting administration of canagliflozin.
- FIG. 8 A is photographs showing the results of senescence-associated ⁇ -galactosidase staining. The scale bar indicates 2 mm.
- FIG. 8 B is a graph showing the results of quantifying the senescence-related ⁇ -galactosidase stainability of the blood vessels. The administration of the SGLT2 inhibitor decreased the senescent cells stained blue, and it was shown that the senescent cells were also eliminated in blood vessels.
- Canagliflozin, an SGLT2 inhibitor, mixed in a diet at the concentration of 0.03% w/w was orally administered to 13-week-old Hutchinson-Gilford progeria model mice (Zmpste24-deficient mice), and the general condition of the mice was observed.
- 3-hydroxybutyrate hereinafter referred to as “3HB”
- AICAR hereinafter referred to as “AIC”
- 2DG 2-deoxyglucose
- human umbilical cord vein derived vascular endothelial cells were cultured in a prescribed culture medium (EBM-2/EGM-2, Lonza). Less than 10 passages were defined as young and 15 passages or more were defined as aged. For young or aged HUVEC, 2DG, 3HB, and AIC were added to the culture solutions at the concentrations of 1 mM, 20 mM, and 200 ⁇ M, respectively, and the cells were harvested after 48 hours. The collected cells were evaluated for viability by fluorescence/absorbance measurements using ApoTox-GloTM Triplex Assay kit (Promega).
- Dead cells were stained using AnnexinV (Becton & Dickinson (BD)), PI (Sigma-Aldrich), and Hoechst 33258 (Invitrogen), and the percentage of apoptosis-induced cells was quantified by FACS analysis.
- AnnexinV Becton & Dickinson (BD)
- PI Sigma-Aldrich
- Hoechst 33258 Invitrogen
- FIG. 9 is graphs showing cell viability and the percentage of apoptotic cells when 2DG, 3HB, or AIC was added and when no reagents were added (Con) to the young and the aged HUVECs.
- Relative to Con, 2DG and 3HB were shown to increase the apoptosis induction and to cause the decrease of the cell viability in an aged cell-selective manner.
- AIC also showed increased apoptosis induction and decreased cell viability, but they are not in an aged cell-selective manner as with seen in 2DG and 3HB, and rather, AIC exerted more potent effects in the young cells.
- senescent cells can be eliminated and a disease in which the disease state is expected to be improved by eliminating the senescent cells can be prevented and/or treated.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Veterinary Medicine (AREA)
- Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Engineering & Computer Science (AREA)
- Epidemiology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Organic Chemistry (AREA)
- Diabetes (AREA)
- Hematology (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Molecular Biology (AREA)
Abstract
The present invention provides an agent or pharmaceutical composition for eliminating senescent cells, comprising an SGLT2 inhibitor.
Description
- This application is a Continuation of U.S. application Ser. No. 17/143,689 filed on Jan. 7, 2021, which is a Continuation application of U.S. application Ser. No. 16/329,154 filed on Feb. 27, 2019 (now U.S. Pat. No. 11,007,172, issued on May 18, 2021), which is the U.S. National Phase of PCT/JP2017/030867, filed Aug. 29, 2017, and which claims priority under 35 U.S.C. § 119(a) to Application No. 2016-167679 filed in Japan, on Aug. 30, 2016, the entire contents of all of which are expressly incorporated by reference into the present application.
- The present invention relates to novel use of SGLT2 inhibitors.
- The numbers of patients suffering from obesity and diabetes are increasing due to an excessive caloric intake and such fact becomes a serious social issue. Obesity and diabetes are known to cause chronic inflammation mediated by cellular senescence at visceral adipose tissues and induce systemic metabolic failure. In addition, inhibition of senescence of adipocytes has been reported to improve adipose inflammation and inhibit systemic metabolic failure associated with obesity (for example, see NPL 1).
- [NPL 1] Minamino, T., et al., A crucial role for adipose tissue p53 in the regulation of insulin resistance., Nat. Med., 15, 1082-1087, 2009.
- Under the above circumstance, there is a need for a technique to eliminate senescent cells. Therefore, an object of the present invention is to provide an agent for eliminating senescent cells.
- The present inventor has conducted extensive studies in view of the problem and has found that a sodium glucose co-transporter 2 (hereinafter referred to as “SGLT2”) inhibitor, known as an agent for treating diabetes, had an activity to eliminate senescent cells, thereby completing the invention.
- In other words, a summary of the present invention is as follows:
-
- [1] An agent for eliminating senescent cells, comprising an SGLT2 inhibitor.
- [2] The agent for eliminating senescent cells of the above-mentioned [1], wherein the
SGLT 2 inhibitor is at least one selected from the group consisting of low molecular weight compounds, SGLT2 expression inhibitors, and SGLT2-specific binding substances. - [3] The agent for eliminating senescent cells of the above-mentioned [1] or [2], wherein the
SGLT 2 inhibitor is at least one selected from the group consisting of canagliflozin, empagliflozin, ipragliflozin, dapagliflozin, luseogliflozin, tofogliflozin, sergliflozin etabonate, remogliflozin etabonate, ertugliflozin, sotagliflozin, and pharmaceutically acceptable salts thereof. - [4] A pharmaceutical composition for eliminating senescent cells, comprising an SGLT2 inhibitor and a pharmaceutically acceptable carrier.
- [5] The pharmaceutical composition of the above-mentioned [4], wherein the composition is for preventing or treating a disease in which the disease state is expected to be improved by eliminating the senescent cells.
- [6] The pharmaceutical composition of the above-mentioned [5], wherein the disease in which the disease state is expected to be improved by eliminating the senescent cells is a senescence-related disease.
- [7] A pharmaceutical composition for use in the prevention or treatment of a senescence-related disease, comprising an SGLT2 inhibitor and a pharmaceutically acceptable carrier.
- [8] The pharmaceutical composition of the above-mentioned [6] or [7], wherein the senescence-related disease is at least one selected from the group consisting of heart failure, arteriosclerosis, arteriosclerotic cerebrovascular or cardiovascular disease, hypertension, cerebral infarction, cerebral hemorrhage, dyslipidemia, pulmonary fibrosis, emphysema, skeletal muscle atrophy (sarcopenia), osteoarthritis, dementia, frailty, cancer, chronic kidney disease, cataract, glaucoma, age-related macular degeneration, presbyopia, age-related alopecia, age-related hearing loss, pain associated with aging such as lumbar pain and joint pain, asteatotic eczema, cutaneous pruritus, fatty liver, nonalcoholic steatohepatitis (NASH), liver cirrhosis, osteoporosis, osteoarthropathy, Hutchinson-Gilford progeria syndrome, Werner syndrome, Cockayne syndrome, and Rothmund-Thomson syndrome.
- [9] The pharmaceutical composition of any of the above-mentioned [4]-[8], wherein the
SGLT 2 inhibitor is at least one selected from the group consisting of canagliflozin, empagliflozin, ipragliflozin, dapagliflozin, luseogliflozin, tofogliflozin, sergliflozin etabonate, remogliflozin etabonate, ertugliflozin, sotagliflozin, and pharmaceutically acceptable salts thereof. - [10] Use of an SGLT2 inhibitor in the manufacture of a medicament for eliminating senescent cells.
- [11] Use of an SGLT2 inhibitor in the manufacture of a medicament for preventing or treating a disease in which the disease state is expected to be improved by eliminating senescent cells.
- A method for eliminating senescent cells, comprising administrating an effective amount of an SGLT2 inhibitor to a subject in need thereof.
- A method for preventing or treating a disease in which the disease state is expected to be improved by eliminating senescent cells, comprising administrating an effective amount of an SGLT2 inhibitor to a subject in need thereof.
- According to the present invention, senescent cells can be eliminated and a disease in which the disease state is expected to be improved by eliminating the senescent cells can be prevented and/or treated.
-
FIGS. 1A TO 1C are photographs showing the results of senescence-associated acidic β-galactosidase staining (Experimental Example 2).FIG. 1A shows the result for the normal diet group mice. The scale bar indicates 5 mm.FIG. 1B shows the result for the high fat diet group mice.FIG. 1C shows the result for the high fat diet+SGLT2i group mice. -
FIG. 2 is photographs showing the results of Western blotting (Experimental Example 3). -
FIG. 3 is graphs showing the results of quantitative RT-PCR (Experimental Example 4). The data are presented as mean±2 SE (n=6). NC: normal diet, HFD: high fat diet, Si3d: SGLT2 inhibitor administration for 3 days, Si7d: SGLT2 inhibitor administration for 7 days. *P<0.05, **P<0.01 (tested by Tukey's multiple comparison test after one-way ANOVA). -
FIG. 4A is photographs showing the results of HE staining. The scale bar indicates 200 μm.FIG. 4B is a graph showing the result of counting CLS number. (Experimental Example 5) The data are presented as mean±2 SE (n=6). NC: normal diet, HFD: high fat diet, Si7d: SGLT2 inhibitor administration for 7 days. **P<0.01 (tested by Tukey's multiple comparison test after one-way ANOVA).FIG. 5A is photographs showing the results of evaluating oxidative stress by DHE staining. The scale bar indicates 100 μm.FIG. 5B is a graph of the result of measuring DHE positive area. (Experimental Example 5) The data are presented as mean±2 SE (n=6). NC: normal diet, HFD: high fat diet, Si7d: SGLT2 inhibitor administration for 7 days. *P<0.05, **P<0.01 (tested by Tukey's multiple comparison test after one-way ANOVA). -
FIG. 6A is graphs of the results of quantitative RT-PCR. The data are presented as mean±2 SE (n=6). NC: normal diet, HFD: high fat diet, Si3d: SGLT2 inhibitor administration for 3 days, Si7d: SGLT2 inhibitor administration for 7 days. *P<0.05 (tested by Tukey's multiple comparison test after one-way ANOVA).FIG. 6B is photographs showing immunofluorescence staining with F4/80. The data are presented as mean±2 SE (n=3). NC: normal diet, HFD: high fat diet, Si3d: SGLT2 inhibitor administration for 3 days, Si7d: SGLT2 inhibitor administration for 7 days. *P<0.05 (tested by Tukey's multiple comparison test after one-way ANOVA). (Experimental Example 5) -
FIG. 7 is graphs showing the results of quantitative RT-PCR (Experimental Example 6). The data are presented as mean±2 SE (n=5 or 6). NC: normal diet, HFD: high fat diet, Si7d: SGLT2 inhibitor administration for 7 days. *P<0.05, **P<0.01 (tested by Tukey's multiple comparison test after one-way ANOVA). -
FIG. 8A is photographs showing the results of senescence-associated acidic β-galactosidase staining. The scale bar indicates 2 mm.FIG. 8B is a graph showing the results of quantifying the senescence-associated acidic β-galactosidase dyability for blood vessels. The data are presented as mean±2 SE (n=4). *P<0.05 (Student's t-test). (Experimental Example 7) -
FIG. 9 is graphs showing cell viability and apoptosis induction when 2DG, 3HB, or AIC was added and when no reagent was added (Con) (Experimental Example 9) to young and aged HUVECs. The data are presented as mean±2 SE (n=3). *P<0.05, **P<0.01 (tested by Tukey's multiple comparison test after one-way ANOVA). - In one embodiment, the present invention provides an agent or pharmaceutical composition for eliminating senescent cells, comprising an SGLT2 inhibitor.
- In another embodiment, the present invention provides a medicament for eliminating senescent cells or use of an SGLT2 inhibitor in the manufacture of a medicament for preventing or treating a disease in which the disease state is expected to be improved by eliminating senescent cells.
- In yet another embodiment, the present invention provides a method for eliminating senescent cells or for preventing or treating a disease in which the disease state is expected to be improved by eliminating senescent cells, which method comprises administering an effective amount of an SGLT2 inhibitor to a subject in need thereof.
- In still yet another embodiment, the present invention provides an SGLT2 inhibitor for use in eliminating senescent cells or for use in preventing or treating a disease in which the disease state is expected to be improved by eliminating senescent cells.
- In a particularly preferred embodiment, the above-mentioned agent, pharmaceutical composition, medicament, and the like contain the SGLT2 inhibitor as an active ingredient.
- Senescent Cell
- The “senescent cell” herein refers to a cell that presents increased expression amount of a senescence marker as compared to a normal cell. The senescence marker includes senescence-associated acidic β-galactosidase, p53, p16INK4a, p21CIP1, and the like. The senescent cell is characterized by irreversible cessation of growth at G1 phase and is known to be formed due to suppression of genes that stimulate progression of the cell cycle and increased expression of p53, p16INK4a, and p21CIP1 that inhibit the cell cycle.
- The senescent cell may be a cell which has been arrested in the process of division but remains metabolically active. Non-dividing cells can survive for weeks but cannot proliferate and replicate DNA despite the presence of sufficient space, nutrients, and growth factors in the medium. Thus, this cessation of the division is essentially permanent since the senescent cells cannot be stimulated and proliferated even if physiological stimuli are applied to them.
- The senescent cells can differ from the non-senescent cells in one or more of the following points: 1) the senescent cells stop proliferating and cannot be stimulated so as to reenter the cell cycle with physiological mitogens; 2) the senescent cells become resistant to apoptotic cell death; and 3) the senescent cells acquire altered differentiation functions.
- The senescent cell may result from replicative cell senescence, premature cell senescence, therapeutically-induced cell senescence, and the like. The senescent cell resulting from replicative cell senescence may have undergone multiple cell divisions, e.g., 40 or more, 50 or more, 60 or more, 70 or more, or 80 or more cell divisions. The senescent cell resulting from premature cell senescence may be induced by, but not limited to, ultraviolet radiation, reactive oxygen species, environmental toxins, smoking, ionizing radiation, distortion of chromatin structure, excess mitogenic signaling, carcinogenic mutations, and the like. In certain embodiments, premature cell senescence can be induced by ionizing radiation. In another certain embodiment, premature cell senescence can be induced by ectopic transfected Ras protein. The senescent cell resulting from treatment-induced cell senescence may be induced by radiation therapy, chemotherapy, DNA damaging therapy, and the like.
- The senescent cells to be subjected by the present invention may generally be eukaryotic cells. Examples of the senescent cells include, but are not limited to, mammary epithelial cells, keratinocytes, cardiomyocytes, chondrocytes, endothelial cells (macrovessels), endothelial cells (microvessels), epithelial cells, fibroblasts, dermal papilla cells, hepatocytes, melanocytes, osteoblasts, preadipocytes, cells in immune system, skeletal muscle cells, smooth muscle cells, adipocytes, neurons, glial cells, contractile cells, exocrine epithelial cells, extracellular matrix cells, cells secreting hormones, keratotic cells, islet cells, lens cells, mesenchymal stem cells, pancreatic adenocarcinoma cells, small intestinal Paneth cells, cells in hematopoietic system, cells in nervous system, cells supporting sensory organs or peripheral nerve cells, and wet stratified barrier epithelial cells.
- In addition, the senescent cells to be subjected by the present invention may also be found in regenerative tissues, including vascular system, hematopoietic system, epithelial organs, and stroma. The senescent cells may also be found at senile sites or sites in chronic conditions associated with senescence such as osteoarthritis and atherosclerosis. In addition, the senescent cells may be associated with benign dysplastic lesions, precancerous lesions, or benign prostatic hyperplasia. In one embodiment, the senescent cells may be found in normal and/or tumor tissues after DNA damaging therapy. In another certain embodiment, the senescent cells may be found at sites in disease states associated with senescence.
- The number of senescent cells in various organs and tissues usually increases with age. Accumulation of the senescent cells may advance senescence and degradation under senescence-related diseases. For example, accumulation of the senescent cells in senescent tissue may contribute to age-related tissue dysfunction, decreased regenerative capacity, and diseases. In one embodiment, the senescent tissue in which the senescent cells have accumulated lacks the ability to respond to stress in which proliferation is required, which results in the decrease in health which could be seen with aging.
- Eliminating Senescent Cells
- The “eliminating senescent cells” herein means removing the senescent cells from tissues, organs, or the like, or killing the senescent cells. It is particularly preferable that cells which are not the senescent cells (hereinafter referred to as “non-senescent cells”) are not significantly killed but the senescent cells are selectively or specifically killed, at the same concentration.
- Therefore, the 50% lethal concentration (
Lethal Concentration 50, hereinafter referred to as “LC50”) of the SGLT2 inhibitor used in the present invention in the non-senescent cells may preferably be about 2 to about 50 times higher than the LC50 of said SGLT2 inhibitor in the senescent cells. LC50 is the concentration required to kill half of the cells in cell samples. For example, the LC50 in the non-senescent cells may be about 2 times or more, about 3 times or more, about 4 times or more, about 5 times or more, about 6 times or more, about 7 times or more, about 8 times or more, about 9 times or more, about 10 times or more, or higher than the LC50 in the senescent cells. Alternatively, the LC50 in the non-senescent cells may be about 10 times or more, about 15 times or more, about 20 times or more, about 25 times or more, about 30 times or more, about 35 times or more, about 40 times or more, about 45 times or more, about 50 times or more, or higher than the LC50 in the senescent cells. - Accumulation of senescent cells is known to promote disease states of senescence-related diseases and the like. Thus, diseases in which the disease state is expected to be improved by eliminating senescent cells, such as senescence-related diseases, can be prevented or treated by administering the agent or pharmaceutical composition for eliminating senescent cells according to the present invention, thereby eliminating the senescent cells.
- Senescence-Related Diseases
- The “senescence-related diseases” herein can include any disease or condition that is totally or partially mediated by the induction or maintenance of a non-proliferative or senescent condition in a cell or cell population in a subject. The senescence-related diseases may include tissue or organ degeneration in which signs of the disease condition are not visible, and visible disease conditions such as degenerative diseases or hypofunctions.
- Examples of the senescence-related diseases include Alzheimer's disease, Parkinson's disease, cataract, macular degeneration, glaucoma, atherosclerosis, acute coronary syndrome, myocardial infarction, stroke, hypertension, idiopathic pulmonary fibrosis (IPF), chronic obstructive pulmonary disease (COPD), osteoarthritis, coronary artery disease, cerebrovascular disease, periodontal disease, atrophy or fibrosis in various tissues, brain or heart injury, treatment-related myelodysplastic syndrome, and the like. The senescence-related diseases may also include Hutchinson-Gilford progeria syndrome, Werner syndrome, Cockayne syndrome, xeroderma pigmentosum, ataxia telangiectasia, Fanconi anemia, neuropathic anemia, and the like.
- Further examples of the senescence-related diseases include circulatory diseases, such as cardiovascular diseases, e.g. angina pectoris, aortic aneurysms, arrhythmia, cerebral aneurysms, diastolic dysfunction, cardiac fibrosis, cardiomyopathy, carotid artery disease, coronary thrombosis, endocarditis, hypercholesterolemia, hyperlipidemia, mitral valve prolapse, and peripheral vascular disease; inflammatory or autoimmune diseases, such as disc herniation, oral mucositis, erythema, interstitial cystitis, scleroderma, and alopecia; neurodegenerative diseases, such as dementia, Huntington's disease, motor neuron dysfunction, memory loss associated with aging, depression, and mood disorder; metabolic disease such as metabolic syndrome; pulmonary diseases, such as decreased pulmonary function associated with aging, asthma, bronchiectasis, cystic fibrosis, and emphysema; gastrointestinal diseases such as Barrett's esophagus; diseases associated with aging, such as hepatic fibrosis, muscle fatigue, oral mucosa fibrosis, pancreatic fibrosis, benign prostatic hyperplasia (BPH), and sleep disorder; reproductive failure, such as climacterium, decreased ovum supply, decreased sperm viability, decreased fertility, decreased libido, decreased erection, and excitation; skin diseases, such as atopic dermatitis, skin erythema, cutaneous lymphoma, dysesthesia, eczema, eosinophilic dermatitis, fibrotic proliferation of skin, hyperpigmentation, immuno blistering disease, nevus, pemphigus vulgaris, itching, psoriasis, rash, reactive neutrophilic skin disease, wrinkles, and urticaria; posttransplant kidney fibrosis; carotid artery thrombosis; and the like.
- Furthermore, preferred examples of the senescence-related diseases include circulatory diseases, such as heart failure, atherosclerosis, arteriosclerotic cerebrovascular or cardiovascular disease, and hypertension; cerebrovascular diseases, such as cerebral infarction and cerebral hemorrhage; metabolic diseases such as dyslipidemia; respiratory diseases, such as pulmonary fibrosis and emphysema; locomotive syndromes, such as skeletal muscle atrophy (sarcopenia) and osteoarthritis; geriatric syndromes, such as dementia and frailty; cancer; chronic kidney disease; ocular diseases, such as cataract, glaucoma, age-related macular degeneration, and presbyopia; age-related alopecia; age-related hearing loss; pain associated with aging, such as lumbar pain and joint pain; skin diseases, such as asteatotic eczema and cutaneous pruritus; liver diseases, such as fatty liver, nonalcoholic steatohepatitis (NASH), and liver cirrhosis; bone diseases, such as osteoporosis and osteoarthropathy; premature aging, such as Hutchinson-Gilford progeria syndrome, Werner syndrome, Cockayne syndrome, and Rothmund-Thomson syndrome; and the like.
- SGLT2 Inhibitors
- The SGLT2 inhibitors used in the present invention include drugs that inhibit reabsorption of glucose by SGLT2. More specific SGLT2 inhibitors include low molecular weight compounds, SGLT2 expression inhibitors, SGLT2-specific binding substances, and the like.
- Low Molecular Weight Compounds
- The low molecular weight compounds that are the SGLT2 inhibitors include, for example, canagliflozin [(1S)-1,5-Anhydro-1-C(-3 {[5-(4-fluorophenyl)thiophen-2-yl]methyl}-4-methylphenyl)-D-glucitol], empagliflozin [(1S)-1,5-Anhydro-1-C-{4-chloro-3-[(4-{[(3S)-oxolan-3-yl]oxy}phenyl)methyl]phenyl}-D-glucitol], ipragliflozin [(1S)-1,5-Anhydro-1-C-{3-[(1-benzothiophen-2-yl)methyl]-4-fluorophenyl}-D-glucitol], dapagliflozin [(1S)-1,5-Anhydro-1-C-{4-chloro-3-[(4-ethoxyphenyl)methyl]phenyl}-D-glucitol], luseogliflozin [(2S,3R,4R,5S,6R)-2-{5-[(4-Ethoxyphenyl)methyl]-2-methoxy-4-methylphenyl}-6-(hydroxymethyl)thiane-3,4,5-triol], tofogliflozin [(1S,3′R,4′S,5′S,6′R)-6-[(4-Ethylphenyl)methyl]-6′-(hydroxymethyl)-3′,4′,5′,6′-tetrahydro-3H-spiro[2-benzofuran-1,2′-pyran]-3′,4′,5′-triol], sergliflozin etabonate [2-(4-Methoxybenzyl)phenyl 6-O-(ethoxycarbonyl)-β-D-glucopyranoside], remogliflozin etabonate [5-Methyl-1-(propan-2-yl)-4-[[4-[(propan-2-yl)oxy]phenyl]methyl]-1H-pyrazol-3-yl 6-O-(ethoxycarbonyl)-β-D-glucopyrano side], ertugliflozin [(1S,2S,3S,4R,5S)-5-[4-Chloro-3-[(4-ethoxyphenyl)methyl]phenyl]-1-(hydroxymethyl)-6,8-dioxabicyclo[3.2.1]octane-2,3,4-triol], sotagliflozin [Methyl (55)-5-C-[4-chloro-3-[(4-ethoxyphenyl)methyl]phenyl]-1-thio-β-L-xylopyranoside], and pharmaceutically acceptable salts thereof. These compounds can be produced by known production methods or by any production methods in which the known production methods are modified.
- The pharmaceutically acceptable salts of the low molecular weight compounds that are the SGLT2 inhibitors include, for example, salts with alkali metals such as lithium, sodium, and potassium; salts with
Group 2 metals such as calcium and magnesium; salts with zinc or aluminum; salts with amines such as ammonia, choline, diethanolamine, lysine, ethylenediamine, t-butylamine, t-octylamine, tris(hydroxymethyl)aminomethane, N-methyl-glucosamine, triethanolamine, and dehydroabiethylamine; salts with inorganic acids such as hydrochloric acid, hydrobromic acid, hydroiodic acid, sulfuric acid, nitric acid, and phosphoric acid; salts with organic acids such as formic acid, acetic acid, propionic acid, oxalic acid, malonic acid, succinic acid, fumaric acid, maleic acid, lactic acid, malic acid, tartaric acid, citric acid, methanesulfonic acid, ethanesulfonic acid, and benzenesulfonic acid; salts with acidic amino acids such as aspartic acid and glutamic acid; and the like. - In addition, the pharmaceutically acceptable salts of the low molecular weight compounds that are the SGLT2 inhibitors include intramolecular salts, hydrates, and cocrystals with L-proline, etc., solvates with (2S)-propane-1,2-diol, etc., and the like, of the low molecular weight compounds.
- SGLT2 Expression Inhibitors
- The SGLT2 expression inhibitors include, for example, siRNA, shRNA, miRNA, ribozymes, antisense nucleic acids, low molecular weight compounds, and the like. Expression of SGLT2 can be inhibited by administering such expression inhibitors.
- siRNA (small interfering RNA) is a small double-stranded RNA consisting of 21 to 23 base pairs that is used for gene silencing by RNA interference.
- siRNA binds to RNA-induced silencing complex (RISC) after having been introduced into a cell. This complex binds to and cleaves mRNA having a sequence complementary to the siRNA. As a result, gene expression is suppressed in a sequence-specific manner.
- siRNA can be produced by synthesizing a sense strand oligonucleotide and an antisense strand oligonucleotide respectively using a DNA/RNA automated synthesizer, and then, for example, denaturing them for about 1 minute at 90° C. to 95° C. in a suitable annealing buffer and annealing them for about 1 to 8 hours at 30° C. to 70° C.
- Short hairpin RNA (shRNA) is a hairpin RNA sequence that is used for gene silencing by RNA interference. shRNA may be introduced into a cell with a vector and expressed with a U6 promoter or H1 promoter, or may be prepared by synthesizing an oligonucleotide having an shRNA sequence using a DNA/RNA automated synthesizer and self-annealing the obtained oligonucleotides using the similar method as that of siRNA. The hairpin structure of shRNA introduced into the cell is cleaved to siRNA and binds to RNA-induced silencing complex (RISC). This complex binds to and cleaves mRNA having a sequence complementary to the siRNA. As a result, gene expression is suppressed in a sequence-specific manner.
- miRNA (microRNA) is a functional nucleic acid that is encoded on a genome and finally becomes microRNA consisting of about 20 bases through a multistage formation process. miRNA is classified as a functional ncRNA (non-coding RNA, a generic term for RNA that will not be translated into protein) and plays an important role in the biological phenomenon in respect of the regulation of expression of other genes. Administration of miRNA having a specific base sequence into a living body can inhibit SGLT2 expression.
- Ribozyme is an RNA that has catalytic activity. Ribozymes have various types of activity, and study on ribozymes as enzymes that cleave RNA allows us to design ribozymes for the purpose of site-specific cleavage of RNA. Ribozyme may consist of 400 nucleotides or more, such as Group I intron and M1RNA contained in RNaseP, or may consist of about 40 nucleotides such as the hammerhead or the hairpin.
- The antisense nucleic acid is a nucleic acid complementary to a target sequence. The antisense nucleic acid can inhibit expression of a target gene by: inhibiting initiation of transcription by forming a triplex; suppressing transcription by forming a hybrid with a site where an open loop structure has been locally formed by RNA polymerase; inhibiting transcription by forming a hybrid with RNA which is about to be synthesized; suppressing splicing by forming a hybrid at the intron-exon junction; suppressing splicing by forming a hybrid with a spliceosome formation site; suppressing migration from the nucleus to the cytoplasm by forming a hybrid with mRNA; suppressing splicing by forming a hybrid with a capping site or poly(A) addition site; suppressing initiation of translation by forming a hybrid with a translation initiation factor binding site; suppressing translation by forming a hybrid with a ribosome binding site near the start codon; inhibiting peptide chain elongation by forming a hybrid with an mRNA coding region or polysome binding site; suppressing gene expression by forming a hybrid with an interaction site between a nucleic acid and protein; or the like.
- The siRNA, shRNA, miRNA, ribozyme, and antisense nucleic acid may contain various chemical modifications so as to improve stability or activity. For example, a phosphate residue may be substituted with a chemically-modified phosphate residue, such as phosphorothioate (PS), methylphosphonate and phosphorodithionate, in order to prevent decomposition by hydrolases such as nucleases. In addition, at least a portion thereof may be composed of a nucleic acid analog such as peptide nucleic acid (PNA).
- SGLT2-Specific Binding Substances
- The SGLT2-specific binding substances include substances that specifically bind to SGLT2 and inhibit the function thereof, for example, antibodies, antibody fragments, aptamers, and the like. For example, the antibody can be prepared by immunizing an animal such as a mouse with SGLT2 protein or a fragment thereof as an antigen. Alternatively, for example, the antibody can be prepared by screening a phage library. The antibody fragment includes Fv, Fab, scFv, and the like. The antibody is preferably a monoclonal antibody. In addition, the antibody may be a commercially available antibody. The aptamer is a substance having an ability to bind specifically to a target substance. The aptamer includes a nucleic acid aptamer, a peptide aptamer, and the like. The nucleic acid aptamer having an ability to bind specifically to a target peptide can be selected by, for example, a technique such as systematic evolution of ligand by exponential enrichment (SELEX), and the like. In addition, the peptide aptamer having an ability to bind specifically to a target peptide can be selected by, for example, a technique such as the two-hybrid method using yeast, and the like.
- In one embodiment, the present invention provides a pharmaceutical composition for eliminating senescent cells, comprising the SGLT2 inhibitor and a pharmaceutically acceptable carrier. The senescent cells can be eliminated by administering the pharmaceutical composition of this embodiment. In addition, by eliminating the senescent cells, diseases in which the disease state is expected to be improved by eliminating senescent cells, preferably senescence-related diseases, can also be prevented or treated. Namely, this embodiment also provides pharmaceutical compositions for the prevention or treatment of diseases in which the disease state is expected to be improved by eliminating senescent cells.
- The pharmaceutical composition of this embodiment may be formulated into a dosage form to be used orally or parenterally. For example, the dosage form to be used orally includes a tablet, a capsule, an elixir, a microcapsule, and the like. For example, the dosage form to be used parenterally includes an injection, an ointment, a patch, and the like.
- As the pharmaceutically acceptable carrier, any carriers can be used without any particular limitations as long as they are conventionally used in the preparation of pharmaceutical compositions. For example, more specific examples thereof include binders, such as gelatin, cornstarch, tragacanth gum, and gum arabic; excipients such as starch and crystalline cellulose; swelling agents such as alginate; injection solvents, such as water, ethanol, and glycerin; adhesives such as rubber-based adhesives and silicone-based adhesives; and the like.
- The pharmaceutical composition may contain an additive. The additive includes a lubricant such as calcium stearate and magnesium stearate; a sweetener, such as sucrose, lactose, saccharin, and maltitol; a flavoring agent such as peppermint and wintergreen oil; a stabilizer such as benzyl alcohol and phenol; a buffer such as phosphate and sodium acetate; a solubilizing agent such as benzyl benzoate and benzyl alcohol; an antioxidant; a preservative; and the like.
- The pharmaceutical composition can be formulated by suitably combining the SGLT2 inhibitor, the pharmaceutically acceptable carrier, and where necessary, the additive, and mixing them in a unit dosage form required for a generally accepted pharmaceutical implementation.
- The subjects to which the SGLT2 inhibitors are administered include, but are not limited to, humans, monkeys, dogs, cows, horses, sheep, pigs, rabbits, mice, rats, guinea pigs, hamsters, and cells thereof. Among these, mammals or mammalian cells are preferable, and human or human cells are particularly preferable.
- The dose of the SGLT2 inhibitor cannot be determined uniformly since it varies according to the specific subject to be administered, and the symptom, body weight, age, gender, or the like, of the subject. In the case of oral administration, for example, about 0.1 mg to about 100 mg/kg body weight of the SGLT2 inhibitor may be administered per a unit dosage form for adults. In the case of the injection, for example, about 0.01 mg to about 50 mg of the SGLT2 inhibitor may be administered per a unit dosage form for adults.
- In addition, the daily dose of the SGLT2 inhibitor cannot be determined uniformly since it varies according to the specific subject to be administered, and the symptom, body weight, age, gender, or the like, of the subject. For example, about 0.1 mg to about 100 mg/kg body weight/day of the SGLT2 inhibitor may be administered once a day or divided into about two to three times per day for adults.
- The SGLT2 inhibitor according to the present invention may be used in combination with at least one agent selected from the group consisting of agents for eliminating senescent cells other than the SGLT2 inhibitors and other therapeutic agents for diseases. The SGLT2 inhibitor and the other agent can be in the same formulation or be in separate formulations. In addition, each formulation can be administered by the same administration route or by separate administration routes. The administration routes include, for example, oral and injection. Further, each formulation can be administered simultaneously, sequentially, or separately with a time or period interval. In one embodiment, the SGLT2 inhibitor and the other agent may be into a kit comprising them.
- The present invention is described hereinafter in more detail by use of Examples, and however, the following Examples should not limit the present invention in any way.
- Four-week-old wild-type mice (C57BL/6NCr) were fed with high fat diets for 8 weeks to prepare diet-induced obesity model mice. Then, canagliflozin, an SGLT2 inhibitor, was administered orally to the prepared obesity model mice by mixing with the diet at the concentration of 0.03% w/w (hereinafter referred to as “high fat diet+SGLT2i group”).
- For comparison, four-week-old wild-type mice (C57BL/6NCr) fed with normal diets for 8 weeks (hereinafter referred as “normal diet group”) and obesity model mice prepared in the same manner as described above with the exception of not administering canagliflozin (hereinafter referred to as “high fat diet group”) were prepared.
- The visceral adipose tissues (epididymal adipose tissues) were collected from the mice of each group one week after starting administration of canagliflozin in Experimental Example 1.
- Then, the senescent cells in the visceral adipose tissues collected from the mice of each group were detected according to the conventional method (Dimri, G. P. et al., Proc. Natl. Acad. Sci. U.S.A., 92(20), 9363-9367, 1995). Specifically, each of the visceral adipose tissues was stained with senescence-associated acidic β-galactosidase and the senescent cells were detected. The senescent cells were stained blue by this staining.
- The results are shown in
FIGS. 1A TO 1C .FIG. 1A shows the result for the mice of the normal diet group. The scale bar indicates 5 mm.FIG. 1B shows the result for the mice of the high fat diet group.FIG. 1C shows the result for the mice of the high fat diet+SGLT2i group. - As a result, it was shown that administration of the SGLT2 inhibitor significantly decreased the senescent cells in the visceral adipose tissue within the short period of one week. The senescent cells were decreased within the short period, and therefore, administration of the SGLT2 inhibitor was considered to have eliminated the senescent cells. In addition, alleviation of inflammation at the visceral fat was also observed in the mice of the high fat diet+SGLT2i group.
- p53 protein is known to play a central role as a senescence accelerating molecule that accelerates cellular senescence. The inventor has previously shown that the cellular senescence reaction through an increase of p53 signal in the visceral adipose tissue was accelerated by adding obesity stress, thereby inducing inflammation of the visceral fat, causing systemic dysmetabolism, and forming or deteriorating the disease state of diabetes. Therefore, expression of p53 protein in adipose tissues of obesity model mice was examined.
- Specifically, expression level of p53 protein was measured by Western blotting using a portion of the visceral adipose tissues collected in Experimental Example 2. Type 1C12 (CST) was used as the anti-p53 antibody. Anti-β-actin antibody (type 13E5, CST) was used as the antibody to detect β-actin protein, which is the loading control.
-
FIG. 2 is photographs showing the results of the Western blotting. - As a result, it has been shown that the expression level of p53 in the visceral adipose tissue was significantly lowered by administering the SGLT2 inhibitor to the obesity model mice. This result further supports that the senescent cells are eliminated by administering the SGLT2 inhibitor.
- mRNA expression of p21 and p16, which play important roles as senescence signals, in addition to p53, was examined.
- Specifically, RNA was extracted with RNA-Bee™ (Tel-Test) from a portion of the visceral adipose tissue (epididymal adipose tissue) collected from the mice of each
group 3 days and 1 week after starting administration of canagliflozin. The collected RNA was quantified by Nanodrop (Thermo), and cDNA was then prepared from 1 μg of the RNA using QuantiTect Reverse Transcription Kit (Quiagen). This cDNA was used to quantify the relative expression of mRNAs of p21 and p16 using Actb as the housekeeping gene by quantitative RT-PCR method using Light Cycler 480 (Roche), and TaqMan Universal Probe Library and the Light Cycler Master (Roche). The primers for each RNA were designed using the Probe finder on the Roche website. -
FIG. 3 is graphs showing the results of the quantitative RT-PCR. The administration of the SGLT2 inhibitor significantly suppressed the increase of p21 mRNA levels due to high fat diet-fed, and a similar trend was observed for p16. The results also strongly suggested that the senescent cells were eliminated by the SGLT2 inhibitor. - In obese visceral adipose tissues, macrophage-based inflammatory cell infiltration occurs, and a characteristic structure, called crown-like structure (CLS), in which macrophages surround and phagocytose/process adipocytes that have been led to cellular death is observed, and oxidative stress is increased. Therefore, effects of the SGLT2 inhibitor on adipose senescence and adipose inflammation in white adipose tissues of obese model mice were examined.
- Specifically, a portion of the visceral fat collected in Experimental Example 4 was immersed and fixed with 10% Mildform (Wako) for at least 24 hours. The sample was dehydrated and embedded in paraffin, and sliced into 5-μm thick. The slices were stuck on slides and subjected to hematoxylin-eosin (HE) staining, dihydroethidium (DHE) staining, or immunofluorescent staining with F4/80 antibody. The stained slices were imaged using Biorevo (Keyence Co.), or where necessary, using confocal microscopy. For the HE staining, the images were photographed at 400× magnification, and the mean number of the crown like structures per one 40× field of view was counted as well. For the DHE staining, the percentage (%) of a red color value equal to or greater than a certain value relative to a randomly photographed 400× image per one field of view was measured using ImageJ. For the Immunofluorescent staining with F4/80 antibody, percentage (%) of F4/80 positive cells per nucleus in one field of view was measured. In addition, mRNAs of CCL2 and TNFα were quantified by quantitative RT-PCR method according to the method described in Experimental Example 4.
-
FIG. 4A is photographs showing the result of the HE staining. The scale bar indicates 200 μm.FIG. 4B is a graph showing the result of counting the number of CLS. The infiltration of macrophages and the CLS structures which had been enhanced by the high fat diet-fed were significantly decreased by administering the SGLT2 inhibitor. -
FIG. 5A is photographs showing the results of evaluating oxidative stress by the DHE staining. The scale bar indicates 100 μm.FIG. 5B is a graph showing the result of measuring the DHE positive area. The oxidative stress which had been enhanced by the high fat diet was also significantly suppressed by administering the SGLT2 inhibitor. -
FIG. 6A is graphs showing the results of the quantitative RT-PCR.FIG. 6B is photographs showing the immunofluorescent staining with F4/80. The administration of the SGLT2 inhibitor tended to decrease the mRNA expression of inflammation-related molecules such as CCL2 and TNFα although macrophage infiltration into adipose tissue remained. From the above results, it was revealed that the SGLT2 inhibitor also decreased adipose inflammation and oxidative stress in obese models as the adipose senescence was improved. - Whether the SGLT2 inhibitor also exerts inhibitory effects on senescence signals in organs other than visceral adipose tissue was examined.
- Specifically, mRNA expression levels of p16 and p21 in heart, kidney, skeletal muscle (quadriceps), and brown adipose tissue, which were collected from the same mice when the visceral adipose tissue was collected in Experimental Example 2, were quantified using the same methods described in Experimental Example 4.
-
FIG. 7 is graphs showing the results of the quantitative RT-PCR. The administration of the SGLT2 inhibitor tended to decrease mRNA levels of p21 in the heart, p16 and p21 in the kidney, p21 in the skeletal muscle, and p16 in the brown adipose tissue, respectively. From the results, it was considered that the SGLT2 inhibitor exerted the effect of eliminating the senescent cells even in a plurality of organs other than the visceral adipose tissue. - Whether the SGLT2 inhibitor exerts an effect to eliminate senescent cells in blood vessels of atherosclerotic model mice was examined.
- Four-week-old ApoE-deficient (ApoE−/−) mice were fed with high fat diets for 12 weeks, followed by oral administration of canagliflozin, an SGLT2 inhibitor, mixed in the diet at the concentration of 0.03% w/w (hereinafter referred to as “HFD+SGLT2i group”). For comparison, the same mice as described above with the exception of not administering canagliflozin (hereinafter referred to as “HFD group”) were prepared. The blood vessels (from the aorta base to the descending aorta on the diaphragm) were collected from the mice of each
group 2 weeks after starting administration of canagliflozin. Subsequently, the senescent cells in blood vessels collected from the mice of each group were detected according to the method described in Experimental Example 2. The stainability was measured at a part ranging from the ascending aorta to the branch of the arch left subclavian artery. -
FIG. 8A is photographs showing the results of senescence-associated β-galactosidase staining. The scale bar indicates 2 mm.FIG. 8B is a graph showing the results of quantifying the senescence-related β-galactosidase stainability of the blood vessels. The administration of the SGLT2 inhibitor decreased the senescent cells stained blue, and it was shown that the senescent cells were also eliminated in blood vessels. - Canagliflozin, an SGLT2 inhibitor, mixed in a diet at the concentration of 0.03% w/w was orally administered to 13-week-old Hutchinson-Gilford progeria model mice (Zmpste24-deficient mice), and the general condition of the mice was observed.
- When comparing the canagliflozin-treated progeria model mice (hereinafter referred to as “KO+SGLT2i”) at 3 to 4 weeks after starting administration of canagliflozin and the progeria model mice without canagliflozin administration (hereinafter referred to as “KO”), deterioration of hair consistency and alopecia were observed in the KO, but they were reduced in the KO+SGLT2i. The results were considered to suggest the possibility of administration of SGLT2 inhibitor to suppress the progress of the disease states of the progeria model mice.
- As a result of metabolome analysis of blood and various tissues of mice in which the senescent cells were decreased by short-term administration of the SGLT2 inhibitor, the increase of ketone body concentration in blood and each tissue and the significant increase of AICAR (5-Aminoimidazole-4-carboxamide-1-β-D-ribofuranoside) in blood were observed. It is known that SGLT2 inhibition accelerates fatty acid oxidation and suppresses glycolysis, and that acceleration of glycolysis is observed in senescent cells. Then, whether 3-hydroxybutyrate (hereinafter referred to as “3HB”), AICAR (hereinafter referred to as “AIC”), and 2-deoxyglucose (hereinafter referred to as “2DG”) that has an inhibitory effect on glycolysis have effects to induce apoptosis of senescent cells were examined.
- Specifically, human umbilical cord vein derived vascular endothelial cells (HUVECs, Lonza) were cultured in a prescribed culture medium (EBM-2/EGM-2, Lonza). Less than 10 passages were defined as young and 15 passages or more were defined as aged. For young or aged HUVEC, 2DG, 3HB, and AIC were added to the culture solutions at the concentrations of 1 mM, 20 mM, and 200 μM, respectively, and the cells were harvested after 48 hours. The collected cells were evaluated for viability by fluorescence/absorbance measurements using ApoTox-Glo™ Triplex Assay kit (Promega). Dead cells were stained using AnnexinV (Becton & Dickinson (BD)), PI (Sigma-Aldrich), and Hoechst 33258 (Invitrogen), and the percentage of apoptosis-induced cells was quantified by FACS analysis.
-
FIG. 9 is graphs showing cell viability and the percentage of apoptotic cells when 2DG, 3HB, or AIC was added and when no reagents were added (Con) to the young and the aged HUVECs. Relative to Con, 2DG and 3HB were shown to increase the apoptosis induction and to cause the decrease of the cell viability in an aged cell-selective manner. AIC also showed increased apoptosis induction and decreased cell viability, but they are not in an aged cell-selective manner as with seen in 2DG and 3HB, and rather, AIC exerted more potent effects in the young cells. The above results showed that 2DG and 3HB had an effect to eliminate senescent cells in an aged cell-selective manner, and suggested the possibility that SGLT2 inhibitor should eliminate senescent cells through the inhibition of glycolysis and the increase of the ketone body. - According to the present invention, senescent cells can be eliminated and a disease in which the disease state is expected to be improved by eliminating the senescent cells can be prevented and/or treated.
- It will be apparent to those skilled in the art that the matters written herein in the singular form can be used in multiple unless the context clearly means otherwise.
- It will also be apparent to those skilled in the art that any modifications can be made to the embodiments described herein without departing from the spirit of the invention, and such modifications are encompassed within the scope of the present invention.
- This application claims priority of Patent Application No. 2016-167679 filed in Japan, the disclosure of which is incorporated herein by reference in its entirety.
Claims (12)
1-11. (canceled)
12. A method for preventing a disease in which the disease state is expected to be improved by eliminating senescent cells, comprising administrating an effective amount of an SGLT2 inhibitor to a subject in need thereof.
13. The method according to claim 12 , wherein the SGLT 2 inhibitor is at least one selected from the group consisting of low molecular weight compounds, SGLT2 expression inhibitors, and SGLT2-specific binding substances.
14. The method according to claim 12 , wherein the SGLT 2 inhibitor is at least one selected from the group consisting of canagliflozin, empagliflozin, ipragliflozin, dapagliflozin, luseogliflozin, tofogliflozin, sergliflozin etabonate, remogliflozin etabonate, ertugliflozin, sotagliflozin, and pharmaceutically acceptable salts thereof.
15. The method according to claim 12 , wherein the SGLT2 inhibitor is administered as a pharmaceutical composition comprising at least one pharmaceutically acceptable carrier.
16. The method according to claim 12 , wherein the disease state is a senescence-related disease.
17. The method according to claim 16 , wherein the senescence-related disease is at least one selected from the group consisting of pulmonary fibrosis, emphysema, skeletal muscle atrophy (sarcopenia), osteoarthritis, dementia, frailty, cancer, glaucoma, age-related macular degeneration, presbyopia, age-related alopecia, age-related hearing loss, pain associated with aging, lumbar pain, joint pain, asteatotic eczema, cutaneous pruritus, fatty liver, nonalcoholic steatohepatitis (NASH), liver cirrhosis, osteoporosis, osteoarthropathy, Hutchinson-Gilford progeria syndrome, Werner syndrome, Cockayne syndrome, and Rothmund-Thomson syndrome.
18. The method according to claim 17 , wherein the senescence-related disease is at least one selected from the group consisting of Hutchinson-Gilford progeria syndrome, Werner syndrome, Cockayne syndrome, and Rothmund-Thomson syndrome.
19. The method according to claim 17 , wherein the senescence-related disease is at least one selected from the group consisting of skeletal muscle atrophy (sarcopenia), dementia, and frailty.
20. The method according to claim 12 , wherein the method selectively reduces or eliminates senescent cells.
21. The method according to claim 20 , wherein the SGLT2 inhibitor is canagliflozin.
22. The method according to claim 12 , wherein the method suppresses an increase of expression of p53, p16 and/or p21.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US18/472,037 US20240009167A1 (en) | 2016-08-30 | 2023-09-21 | Agent for eliminating senescent cells |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016167679 | 2016-08-30 | ||
JP2016-167679 | 2016-08-30 | ||
PCT/JP2017/030867 WO2018043463A1 (en) | 2016-08-30 | 2017-08-29 | Drug for removing aged cells |
US201916329154A | 2019-02-27 | 2019-02-27 | |
US17/143,689 US11813244B2 (en) | 2016-08-30 | 2021-01-07 | Agent for eliminating senescent cells |
US18/472,037 US20240009167A1 (en) | 2016-08-30 | 2023-09-21 | Agent for eliminating senescent cells |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/143,689 Continuation US11813244B2 (en) | 2016-08-30 | 2021-01-07 | Agent for eliminating senescent cells |
Publications (1)
Publication Number | Publication Date |
---|---|
US20240009167A1 true US20240009167A1 (en) | 2024-01-11 |
Family
ID=61300821
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/329,154 Active US11007172B2 (en) | 2016-08-30 | 2017-08-29 | Agent for eliminating senescent cells |
US17/143,689 Active 2038-02-25 US11813244B2 (en) | 2016-08-30 | 2021-01-07 | Agent for eliminating senescent cells |
US18/472,037 Pending US20240009167A1 (en) | 2016-08-30 | 2023-09-21 | Agent for eliminating senescent cells |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/329,154 Active US11007172B2 (en) | 2016-08-30 | 2017-08-29 | Agent for eliminating senescent cells |
US17/143,689 Active 2038-02-25 US11813244B2 (en) | 2016-08-30 | 2021-01-07 | Agent for eliminating senescent cells |
Country Status (4)
Country | Link |
---|---|
US (3) | US11007172B2 (en) |
EP (1) | EP3508222A4 (en) |
JP (3) | JPWO2018043463A1 (en) |
WO (1) | WO2018043463A1 (en) |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2018043463A1 (en) * | 2016-08-30 | 2019-06-24 | 国立大学法人 新潟大学 | Senescent cell removal drug |
JPWO2019092770A1 (en) | 2017-11-07 | 2019-11-14 | 合同会社カルナヘルスサポート | Retinal disease treatment |
SG11202100417RA (en) | 2018-07-19 | 2021-02-25 | Astrazeneca Ab | Methods of treating hfpef employing dapagliflozin and compositions comprising the same |
WO2020230251A1 (en) * | 2019-05-14 | 2020-11-19 | 株式会社カルナヘルスサポート | Therapeutic agent for retinal diseases |
CN114096257A (en) * | 2019-07-23 | 2022-02-25 | 诺华股份有限公司 | Treatment with SGLT inhibitors such as SGLT1/2 inhibitor |
US20220267374A1 (en) * | 2019-07-29 | 2022-08-25 | Juntendo Educational Foundation | Immunity inducer and pharmaceutical composition for preventing or treating aging-related diseases |
KR102359799B1 (en) * | 2019-08-30 | 2022-02-09 | 아스트라제네카 아베 | How to treat heart failure with reduced ejection fraction with dapagliflozin |
CA3149979A1 (en) * | 2019-09-04 | 2021-03-11 | Yuqing Chen | Inhibitors of sglt and uses thereof |
JP6831961B2 (en) * | 2019-10-23 | 2021-02-24 | 株式会社カルナヘルスサポート | Retinal disease therapeutic agent |
EP4054556A4 (en) * | 2019-11-07 | 2023-11-29 | Increvet, Inc. | Sodium-glucose linked transporter inhibitors for the management of chronic kidney disease, hypertension, and heart failure in companion animals |
CN115300627B (en) * | 2021-05-08 | 2024-01-26 | 中南大学湘雅医院 | Application of sodium-glucose cotransporter 2 inhibitor, pharmaceutical composition and application thereof |
WO2022259950A1 (en) * | 2021-06-10 | 2022-12-15 | 国立大学法人千葉大学 | Method for evaluating aging |
CA3224673A1 (en) | 2021-07-28 | 2023-02-02 | Boehringer Ingelheim Vetmedica Gmbh | Use of sglt-2 inhibitors for the prevention and/or treatment of renal diseases in non-human mammals |
CN113893349B (en) * | 2021-12-13 | 2022-07-22 | 北京大学第三医院(北京大学第三临床医学院) | Application of dapagliflozin and analogs thereof in preparation of medicines for preventing and treating male reproductive dysfunction |
WO2024003787A1 (en) * | 2022-06-29 | 2024-01-04 | Aribio Co., Ltd. | Compositions and methods for preventing and treating neurodegenerative diseases with diabetes |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11813244B2 (en) * | 2016-08-30 | 2023-11-14 | Niigata University | Agent for eliminating senescent cells |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AR065809A1 (en) * | 2007-03-22 | 2009-07-01 | Bristol Myers Squibb Co | PHARMACEUTICAL FORMULATIONS CONTAINING AN SGLT2 INHIBITOR |
US20140303097A1 (en) * | 2013-04-05 | 2014-10-09 | Boehringer Ingelheim International Gmbh | Pharmaceutical composition, methods for treating and uses thereof |
JP2016167679A (en) | 2015-03-09 | 2016-09-15 | 株式会社リコー | Image processing device, information processing device, and image processing system |
-
2017
- 2017-08-29 JP JP2018537287A patent/JPWO2018043463A1/en active Pending
- 2017-08-29 WO PCT/JP2017/030867 patent/WO2018043463A1/en unknown
- 2017-08-29 US US16/329,154 patent/US11007172B2/en active Active
- 2017-08-29 EP EP17846468.1A patent/EP3508222A4/en active Pending
-
2021
- 2021-01-07 US US17/143,689 patent/US11813244B2/en active Active
-
2022
- 2022-03-18 JP JP2022043458A patent/JP7395161B2/en active Active
-
2023
- 2023-09-21 US US18/472,037 patent/US20240009167A1/en active Pending
- 2023-11-20 JP JP2023196635A patent/JP2024023345A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11813244B2 (en) * | 2016-08-30 | 2023-11-14 | Niigata University | Agent for eliminating senescent cells |
Also Published As
Publication number | Publication date |
---|---|
EP3508222A1 (en) | 2019-07-10 |
US11813244B2 (en) | 2023-11-14 |
US11007172B2 (en) | 2021-05-18 |
JP7395161B2 (en) | 2023-12-11 |
US20210236461A1 (en) | 2021-08-05 |
JPWO2018043463A1 (en) | 2019-06-24 |
EP3508222A4 (en) | 2020-04-29 |
JP2022101541A (en) | 2022-07-06 |
JP2024023345A (en) | 2024-02-21 |
US20190192482A1 (en) | 2019-06-27 |
WO2018043463A1 (en) | 2018-03-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11813244B2 (en) | Agent for eliminating senescent cells | |
Fujimaki et al. | Wnt protein-mediated satellite cell conversion in adult and aged mice following voluntary wheel running | |
Obaid et al. | LncRNA HOTAIR regulates glucose transporter Glut1 expression and glucose uptake in macrophages during inflammation | |
Shao et al. | MicroRNA‐133a alleviates airway remodeling in asthtama through PI3K/AKT/mTOR signaling pathway by targeting IGF1R | |
Won et al. | Peroxiredoxin-2 upregulated by NF-κB attenuates oxidative stress during the differentiation of muscle-derived C2C12 cells | |
Takegami et al. | R-spondin 2 facilitates differentiation of proliferating chondrocytes into hypertrophic chondrocytes by enhancing Wnt/β-catenin signaling in endochondral ossification | |
Cheng et al. | T2DM inhibition of endothelial miR-342-3p facilitates angiogenic dysfunction via repression of FGF11 signaling | |
Ribeiro et al. | In vivo cyclic induction of the FOXM1 transcription factor delays natural and progeroid aging phenotypes and extends healthspan | |
Lin et al. | Osteosarcoma-derived exosomal miR-501-3p promotes osteoclastogenesis and aggravates bone loss | |
US20230043964A1 (en) | Methods and compositions for treating atherosclerosis | |
WO2019037658A1 (en) | Novel tumor microenvironment-related target tak1 and application thereof in inhibition of tumor | |
EP4400117A1 (en) | Senolytic drug screening method and senolytic drug | |
Yang et al. | MicroRNA-708 represses hepatic stellate cells activation and proliferation by targeting ZEB1 through Wnt/β-catenin pathway | |
EP2561096A2 (en) | Means and methods for determining risk of cardiovascular disease | |
Zhang et al. | Carfilzomib alleviated osteoporosis by targeting PSME1/2 to activate Wnt/β-catenin signaling | |
Abdalla et al. | Control of preadipocyte proliferation, apoptosis and early adipogenesis by the forkhead transcription factor FoxO6 | |
Ni et al. | An inducible long noncoding RNA, LncZFHX2, facilitates DNA repair to mediate osteoarthritis pathology | |
Zhuo et al. | Expression and mechanism of mammalian target of rapamycin in age-related renal cell senescence and organ aging | |
Lee et al. | Yin Yang 1 is required for PHD finger protein 20-mediated myogenic differentiation in vitro and in vivo | |
Liu et al. | Long noncoding RNA TRG-AS1 protects against glucocorticoid-induced osteoporosis in a rat model by regulating miR-802-mediated CAB39/AMPK/SIRT-1/NF-κB axis | |
KR102142791B1 (en) | Use of miR-204 inhibitors for treating osteoarthritis | |
Karizmeh et al. | Preconditioning exercise reduces hippocampal neuronal damage via increasing Klotho expression in ischemic rats | |
KR20210096143A (en) | Methods for diagnosing and/or treating acute or chronic liver, kidney or lung disease | |
KR101890874B1 (en) | A composition for repression of muscle-aging and regeneration of old muscle | |
Bu et al. | JunB-EGFR axis is critical for TGF-β1/P38 MAPK signaling-mediated hepatic stellate cells proliferation in liver fibrosis |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |