US20230405735A1 - Repair of Aircraft Fan Blade - Google Patents

Repair of Aircraft Fan Blade Download PDF

Info

Publication number
US20230405735A1
US20230405735A1 US18/156,466 US202318156466A US2023405735A1 US 20230405735 A1 US20230405735 A1 US 20230405735A1 US 202318156466 A US202318156466 A US 202318156466A US 2023405735 A1 US2023405735 A1 US 2023405735A1
Authority
US
United States
Prior art keywords
fan blade
welding
hollow fan
joint
blade
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
US18/156,466
Inventor
Benny L. Blumanstock
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chromalloy Gas Turbine Corp
Original Assignee
Chromalloy Gas Turbine Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chromalloy Gas Turbine Corp filed Critical Chromalloy Gas Turbine Corp
Priority to US18/156,466 priority Critical patent/US20230405735A1/en
Assigned to CHROMALLOY GAS TURBINE LLC reassignment CHROMALLOY GAS TURBINE LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BLUMANSTOCK, BENNY L
Priority to CN202310575732.2A priority patent/CN117260161A/en
Priority to US18/446,923 priority patent/US20230405736A1/en
Publication of US20230405735A1 publication Critical patent/US20230405735A1/en
Assigned to ROYAL BANK OF CANADA reassignment ROYAL BANK OF CANADA SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CHROMALLOY GAS TURBINE LLC
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K37/00Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups
    • B23K37/003Cooling means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K31/00Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups
    • B23K31/003Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups relating to controlling of welding distortion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P6/00Restoring or reconditioning objects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/0008Soldering, e.g. brazing, or unsoldering specially adapted for particular articles or work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K3/00Tools, devices, or special appurtenances for soldering, e.g. brazing, or unsoldering, not specially adapted for particular methods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K3/00Tools, devices, or special appurtenances for soldering, e.g. brazing, or unsoldering, not specially adapted for particular methods
    • B23K3/08Auxiliary devices therefor
    • B23K3/085Cooling, heat sink or heat shielding means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/0026Arc welding or cutting specially adapted for particular articles or work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/095Monitoring or automatic control of welding parameters
    • B23K9/0956Monitoring or automatic control of welding parameters using sensing means, e.g. optical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/16Arc welding or cutting making use of shielding gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P6/00Restoring or reconditioning objects
    • B23P6/002Repairing turbine components, e.g. moving or stationary blades, rotors
    • B23P6/005Repairing turbine components, e.g. moving or stationary blades, rotors using only replacement pieces of a particular form
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/28Supporting or mounting arrangements, e.g. for turbine casing
    • F01D25/285Temporary support structures, e.g. for testing, assembling, installing, repairing; Assembly methods using such structures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/005Repairing methods or devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/001Turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/002Cleaning of turbomachines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/20Manufacture essentially without removing material
    • F05D2230/23Manufacture essentially without removing material by permanently joining parts together
    • F05D2230/232Manufacture essentially without removing material by permanently joining parts together by welding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/20Manufacture essentially without removing material
    • F05D2230/23Manufacture essentially without removing material by permanently joining parts together
    • F05D2230/232Manufacture essentially without removing material by permanently joining parts together by welding
    • F05D2230/233Electron beam welding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/20Manufacture essentially without removing material
    • F05D2230/23Manufacture essentially without removing material by permanently joining parts together
    • F05D2230/232Manufacture essentially without removing material by permanently joining parts together by welding
    • F05D2230/235TIG or MIG welding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/30Manufacture with deposition of material
    • F05D2230/31Layer deposition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/72Maintenance
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/80Repairing, retrofitting or upgrading methods
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/20Rotors
    • F05D2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05D2240/303Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor related to the leading edge of a rotor blade

Definitions

  • the disclosure relates generally to repair of aircraft fan blades. More specifically, the disclosure relates to repairing hollow fan blades of aircraft.
  • An aspect of the method includes monitoring a temperature of a portion of the hollow fan blade during the welding using a thermocouple.
  • An aspect of the method includes arranging a plurality of thermocouples on each of the first portion and the second portion.
  • An aspect of the method includes arranging each of a plurality of thermocouples using at least one item selected from the group consisting of spot welding and adhesive.
  • An aspect of the method includes securing the hollow fan blade within a purge box prior to the welding.
  • the welding includes Tungsten Inert Gas (TIG) welding.
  • Tungsten Inert Gas (TIG) welding Tungsten Inert Gas
  • the interior cavity further includes a honeycomb structure.
  • the hollow fan blade includes a first portion and a second portion secured together by a joint.
  • An interior cavity of the hollow fan blade is charged with a vacuum.
  • the system comprises a purge box having a mount for securing the hollow fan blade.
  • the system includes a thermocouple configured for monitoring of a temperature of the hollow fan blade during welding.
  • system further includes a cooling apparatus for cooling the first portion and the second portion of the blade during the welding.
  • the hollow fan blade further includes a honeycomb structure within the interior cavity.
  • the hollow fan blade includes a concave portion and a convex portion secured together by a joint.
  • An interior cavity of the hollow fan blade is charged with a vacuum.
  • the method comprises removing material from a damaged portion of the hollow fan blade.
  • the method includes repairing the damaged portion using welding such that a temperature of the joint does not exceed a distortion temperature.
  • An aspect of the method includes arranging at least one gas pad proximate the joint on at least one of the concave portion and the convex portion for dispersing an inert gas during the welding.
  • FIG. 1 is a perspective view of a hollow fan blade that has been damaged.
  • FIG. 2 is a cross-sectional view of the hollow fan blade of FIG. 1 .
  • FIG. 3 A is a cross-sectional view of the blade in FIG. 2 illustrating a cutback region thereof.
  • FIG. 3 C is a cross-sectional view of the blade in FIG. 3 A after the blade has undergone a welding process.
  • FIG. 4 A is another perspective view of the blade of FIG. 1 .
  • FIG. 4 B is a perspective view of a section of the damaged blade with thermocouples arranged thereon for monitoring temperature.
  • FIG. 5 shows a side view of a purge box for retaining the damaged blade of FIG. 1 during a repair process.
  • FIG. 6 shows a side view of the damaged blade of FIG. 1 with gas pads and cooling systems.
  • FIG. 7 is a flowchart illustrating an example method of repairing a hollow fan
  • Fan blades direct air through and around the engine of the aircraft.
  • Fan blades are generally attached to a fan disk, which may be rotated by a shaft driven by a gas turbine engine of the aircraft.
  • Fan blades are the outermost rotating components of an aircraft engine. Because the fan blades are exposed to outside air, they may encounter foreign objects (e.g., birds, pebbles, volcanic ash, and sand particles), resulting in damage such as, but not limited to, grooves, nicks, scratches, cracks, tears, and the like. Such damage may adversely affect the operational characteristics of a fan blade.
  • One section of a fan blade that is particularly susceptible to damage is the fan blade leading edge.
  • the leading edge is often worn down and shortened with use, thus reducing the fan blade chord length (i.e., the length of the fan blade cross section measured tip-to-tip). Such may undesirably impact the efficiency of the fan blade, and in some cases, may render the fan blade unsuitable for use.
  • a damaged leading edge of a hollow fan blade may be repaired using a welding process.
  • a hollow fan blade may be typically made of two shells that are brazed together. The interior of a hollow fan blade may be charged with a vacuum, which aids in the structural integrity of the fan blade. Hollow fan blades have heretofore been considered unrepairable because conventional repair processes, such as welding, degrade the braze joint and eliminate the vacuum, rendering the blade unfit for repair or use.
  • a portion of the leading edge is removed and rebuilt via a welding process. Care is taken to ensure that the innermost surface of the portion of the leading edge that is removed is at least a minimum safe distance away from the braze joint.
  • Performing the weld repair at the minimum safe distance (or a greater distance) ensures that the braze joint does not reach a temperature at which it is compromised.
  • the damaged leading edge may therefore be repaired without impacting the braze joint and discharging the vacuum.
  • the temperature at and about the leading edge may be monitored during welding to confirm that the braze joint does not heat up to a temperature at which it is compromised.
  • the bypass ratio of an aircraft engine is the ratio between the mass flow rate of the bypass stream to the mass flow rate entering the core. For the same thrust, increasing the bypass ratio may result in decreased fuel consumption.
  • the bypass ratio may be increased by increasing the size of the fan blades. However, increasing the size of the fan blades may detrimentally increase the weight of the engine. To keep this weight down, fan blades may be made of relatively lightweight material. More recently, one or more hollow cavities may be introduced in the fan blades to minimize concerns associated with increased weight.
  • Aircraft fan blades that have incurred damage may be replaced. Alternately, and depending on the type of damage, the fan blades may be repaired. Where the fan blades are solid in construction, they may be repaired using one or more conventional processes. For example, a solid fan blade may be repaired using glass bead blasting or peening, application of weld repair patches, et cetera. Hollow fan blades, which are less common than solid fan blades, may not be readily repaired using these conventional techniques. Such repair techniques may compromise the vacuum within the hollow fan blade and render it unfit for use.
  • a hollow fan blade may be made from two shell halves and an intermediate supporting structure.
  • the two shell halves may include a concave half and a convex half, and the intermediate supporting structure may be a honeycomb structure.
  • the two shell halves may be arranged around the supporting structure and may be affixed to each other via a braze joint.
  • the supporting structure may also be brazed to the interior surfaces of the two shell halves.
  • the hollow space which resides between the two shell halves alongside the supporting structure may be charged with a vacuum, creating a large pressure differential across the fan blade and the atmosphere.
  • the atmospheric pressure pushes on the shells with a compressive force that is proportional to the pressure differential inside and outside the shells.
  • the vacuum between the two shells may cause the shells to mimic Magdeburg hemispheres.
  • the hollow fan blade may be thus held together not only by the mechanical strength of the braze joints securing the two shells but also by the pressure differential between the inside of the hollow fan blade and the atmosphere.
  • a portion 74 of the leading edge 60 of the blade 50 is damaged.
  • the damage to the leading edge 60 may have resulted from a collision of the blade 50 with a foreign object (e.g., a bird, a stone, or the like).
  • the damaged portion 74 of the leading edge 60 is repaired without compromising the braze joint 70 .
  • the leading edge 60 , and specifically the damaged portion 74 thereof, may be repaired using welding without impacting the braze joint 70 .
  • the welding process may be any suitable welding process now known or subsequently developed, such as Tungsten Inert Gas (TIG) welding, gas metal arc welding, shielded metal arc welding, flux-cored arc welding, et cetera.
  • TIG welding may be employed.
  • the hollow fan blade 50 may be repaired using the same or similar material that constitutes the fan blade 50 .
  • a bulk composition analysis of the hollow fan blade 50 may be performed to determine the constituent(s) of the blade 50 .
  • Hollow fan blades, including the braze joints thereof, are typically formed of Titanium or a Titanium alloy (e.g., Ti64 alloy).
  • the hollow fan blade 50 may be formed of Titanium or a Titanium alloy.
  • the hollow fan blade 50 may additionally or alternately include aluminum or stainless steel.
  • One having skill in the art will thus understand that the techniques described herein are applicable to fan blades formed of any suitable metal(s).
  • the temperature at which a joint of a hollow fan blade, such as the braze joint 70 of the hollow fan blade 50 , distorts beyond repair and discharges the vacuum therein, may also be referred to herein as the “distortion temperature.”
  • the distortion temperatures ofjoints of different hollow fan blades may differ based on the construction of these blades and joints.
  • Welding temperatures may easily exceed the distortion temperature for the braze or other joint of a particular blade.
  • TIG welding temperatures may reach 3,000° C. (3,723.2K) or more—far greater than the distortion temperature of the joint 70 of the hollow fan blade 50 .
  • Conventional wisdom therefore counsels against repairing hollow fan blades using welding processes, such as patch welding or welding in layers of material, as the exorbitant welding temperatures may destruct the braze joint 70 and discharge the vacuum, rendering the fan blade 50 unfit for use.
  • a minimum safe distance 102 from the weld line 70 may be determined.
  • the minimum safe distance 102 may be a distance from the weld line 70 at which welding repair may be performed without causing the weld line 70 to reach or exceed the distortion temperature.
  • the minimum safe distance 102 may define a cutback region 104 outboard the minimum safe distance 102 .
  • the cutback region 104 may extend inboard from the leading edge 60 such that an innermost surface 106 of the cutback region 104 is spaced apart from the weld line 70 at least by the minimum safe distance 102 .
  • the portion of the blade 50 within the cutback region 104 may be removed and repaired using a welding process.
  • the minimum safe distance 102 is between about 0.125 inches (about 3.175 mm) and about 0.375 inches (about 9.525 mm).
  • a user may safely remove material approximately 0.25 inches (approximately 6.35 mm) away from the braze joint 70 .
  • the cut back region 155 may encompass an area of the fan blade 50 up to about 0.200 inches (about 5.08 mm), e.g., between 0.1 inches (2.54 mm) and 0.3 inches (7.62 mm) below the type certificate holder (TCH) minimum chord dimension for a given hollow fan blade 50 to be repaired.
  • TCH type certificate holder
  • FIG. 3 B shows a hollow blade 50 ′.
  • the hollow blade 50 ′ is an example of the hollow blade 50 after the portion of the blade 50 within the cutback region 104 has been removed. Removal of the portion of the blade 50 within the cutback region 104 may leave behind a weld foundation 108 .
  • the weld foundation 108 may be a smooth surface that can readily accept welding material. Because the weld foundation 108 is spaced apart from the weld line 70 by at least the minimum safe distance 102 , the weld line 70 may not reach or exceed the distortion temperature during the welding process.
  • FIG. 3 C shows a hollow blade 50 ′′, that may be an example of the hollow blade 50 ′ after a welded section 110 has been welded onto the weld foundation 108 to repair the blade.
  • the welded section 110 may be added to the hollow blade 50 ′ without impairing the braze joint 70 or the vacuum within the blade 50 .
  • thermocouples 118 or other suitable temperature sensors may be situated proximate the weld joint 70 and the weld foundation 108 .
  • FIG. 4 A shows a section 116 of the damaged hollow fan blade 50 that encompasses the damaged leading edge portion 74 .
  • a plurality of thermocouples e.g., thermocouples 118 A- 118 I, may be disposed within the section 116 adjacent the braze joint 70 (e.g., at locations between the braze joint 70 and the weld foundation 108 ).
  • the thermocouples 118 A- 118 I may allow for the temperature at and about the braze joint 70 to be monitored, to ensure that the braze joint 70 does not approach, reach, or exceed the distortion temperature.
  • thermocouples 118 A- 118 E are disposed on the convex or suction shell 66 and thermocouples 118 F- 118 I are located on the concave or pressure shell 68 .
  • the temperature of the thermocouples 118 A- 118 I may be monitored during the weld repair process. If any thermocouple 118 A- 118 I indicates that the temperature is approaching the distortion temperature, the welding process may be halted or otherwise modified to prevent breakage of the joint 70 .
  • thermocouples 118 A- 118 I may be arranged differently (e.g., the distance between two successive thermocouples 118 A- 118 I may be greater or less than about one inch, and depending on the particular fan blade, may be further away or closer to the leading edge).
  • the thermocouples 118 A- 118 I may be secured (e.g., temporarily) to the fan blade 50 using any suitable method, such as with an adhesive or via spot welding.
  • the hollow fan blade 50 may be situated within a purge box 200 during the repair process.
  • FIG. 5 shows an example purge box 200 .
  • the purge box 200 may have a frame 202 and a mount 204 .
  • the mount 204 may be configured to securely retain at least a portion of the hollow fan blade 50 , such as at the dovetail thereof.
  • the purge box 200 may serve to hold the blade 50 steady as the blade 50 undergoes the welding process.
  • the purge box may be filled with a gas, e.g., an inert gas such as Argon.
  • a gas e.g., an inert gas such as Argon.
  • the inert gas inside the purge box may purge Oxygen in the purge box 200 and curtail oxidation of the blade 50 during the repair process.
  • gas pads 300 may be employed to facilitate the weld repair process (see FIG. 6 ).
  • the gas pads 300 may include a gas pad 302 and a gas pad 304 .
  • Gas pad 302 may be situated on the convex shell 66 proximate the weld foundation 108 and the gas pad 304 may be situated on the concave shell 68 proximate the weld foundation 108 .
  • the gas pads 302 and 304 may disperse inert gas local to the weld material and eliminate or minimize any oxidation of the blade 50 .
  • FIG. 7 is a flow chart outlining an example method 400 to repair the hollow fan blade 50 .
  • the portion e.g., damaged portion 74
  • the damage may include nicks, scratches, pits, or other damage.
  • a minimum safe distance from the braze joint e.g., minimum safe distance 102 from the weld line 70
  • the minimum safe distance may be a distance from the braze joint at which welding repair may be performed without causing the braze joint to reach or exceed the distortion temperature.
  • a region of the leading edge of the blade within a cutback region may be removed to yield a clean weld foundation (e.g., weld foundation 108 ).
  • the cutback region 104 may be outboard the braze joint, as such, may not enter the hollow interior of the fan blade 50 .
  • the weld foundation may be spaced apart from braze joint (e.g., weld line 70 ) at least by the minimum safe distance. The minimum safe distance may provide a buffer of material from the welding location for the repair and the braze joint such that the braze joint is unaffected by the heat generated from the welding process.
  • thermocouples 118 A- 118 I may be arranged along the braze joint associated with the damaged portion of the blade.
  • the thermocouples may be temporarily affixed, using spot welding or adhesive for example.
  • the thermocouples may allow for the temperature of the fan blade proximate the weld line of the joint to be monitored during the welding repair process, to ensure the temperature of the weld line does not reach the distortion temperature.
  • the hollow fan blade may be secured within a purge box (e.g., may be fixed to mount 204 of purge box 200 ) to minimize the chance that oxidation of the fan blade will occur during the weld repair process.
  • gas pads e.g., gas pads 302 and 304
  • cooling features e.g., cooling features 306
  • any suitable welding technology now known or subsequently developed may be used to weld material to the weld foundation (e.g., welded section 110 may be added via welding to the weld foundation 108 ).
  • the welded material may be added in layers and each layer may be deposited after some time has elapsed after the deposition of the prior layer.
  • the welding process may include forming the weld buildup in layers, including six layers, where each layer can be applied in a window of in a range between about four minutes and about six minutes. The application of each layer may be spaced with about a minute between each layer.
  • the timing of the application of layers may be provided in any number of layers, with any spacing and time period in between layers.
  • the layers may be built onto the fan blade in any pattern, including but not limited to, starting at the middle of the blade and moving towards the blade tip. Care may be taken to ensure the distortion temperature of the braze joint (e.g., joint 70 ) is not exceeded during the welding process so as to not compromise the vacuum of the fan blade 50 .
  • thermocouples may take place before material is removed from the fan blade to create the cutback region, that thermocouples may be omitted entirely, or that a different temperature sensor(s) may be employed.
  • various aspects of the disclosure may allow for the repair of a hollow fan blade while mitigating or eliminating the risk that the braze joint thereof will be destroyed or that the vacuum within the blade will be compromised.
  • the vacuum charge, and thus the structural integrity, of the fan blade may be maintained during the repair process. While the discussion herein largely focused on welding and repairing a leading edge of a hollow fan blade, the artisan will understand that the methods described herein may be adapted to weld any other suitable area of a hollow fan blade.

Abstract

Systems and methods for repairing hollow fan blades. The hollow fan blade has a concave portion and a convex portion secured together by a joint. An interior cavity of the hollow fan blade is charged with a vacuum. The method includes removing material from a damaged portion of the hollow fan blade and welding the damaged portion such that a temperature of the joint does not exceed a distortion temperature.

Description

    RELATED APPLICATIONS
  • This application claims priority to U.S. Provisional Application No. 63/366,707, filed Jun. 21, 2022, the disclosure of which is incorporated herein by reference in its entirety.
  • FIELD OF THE DISCLOSURE
  • The disclosure relates generally to repair of aircraft fan blades. More specifically, the disclosure relates to repairing hollow fan blades of aircraft.
  • SUMMARY
  • The following presents a simplified summary of the invention in order to provide a basic understanding of some aspects of the invention. This summary is not an extensive overview of the invention. It is not intended to identify critical elements of the invention or to delineate the scope of the invention. Its sole purpose is to present some concepts of the invention in a simplified form as a prelude to the more detailed description that is presented elsewhere herein.
  • One innovative aspect of the subject matter described in this disclosure can be implemented as a method for repairing a hollow fan blade. The hollow fan blade includes a first portion and a second portion secured together by a joint. An interior cavity of the hollow fan blade is charged with a vacuum. The method includes removing material from a damaged portion of the hollow fan blade and welding the damaged portion such that a temperature of the joint does not exceed a distortion temperature.
  • An aspect of the method includes arranging a thermocouple on at least one of the first portion and the second portion.
  • An aspect of the method includes monitoring a temperature of a portion of the hollow fan blade during the welding using a thermocouple.
  • An aspect of the method includes arranging a plurality of thermocouples on each of the first portion and the second portion.
  • An aspect of the method includes arranging each of a plurality of thermocouples using at least one item selected from the group consisting of spot welding and adhesive.
  • An aspect of the method includes securing the hollow fan blade within a purge box prior to the welding.
  • An aspect of the method includes arranging a gas pad on at least one of the first portion and the second portion for dispersing an inert gas during the welding.
  • An aspect of the method includes cooling the blade using a cooling system during the welding.
  • In an aspect of the method, a cooling system includes at least one of a copper block and a water-cooled block.
  • In an aspect of the method, the welding includes Tungsten Inert Gas (TIG) welding.
  • In an aspect of the method, the interior cavity further includes a honeycomb structure.
  • An aspect of the method includes applying a finishing process after the welding.
  • In an aspect of the method, the joint includes a braze joint.
  • Another innovative aspect of the subject matter described in this disclosure can be implemented as a system for repairing a leading edge of a hollow fan blade. The hollow fan blade includes a first portion and a second portion secured together by a joint. An interior cavity of the hollow fan blade is charged with a vacuum. The system comprises a purge box having a mount for securing the hollow fan blade. The system includes a thermocouple configured for monitoring of a temperature of the hollow fan blade during welding.
  • In an aspect of the system, the system further includes a cooling apparatus for cooling the first portion and the second portion of the blade during the welding.
  • In an aspect of the system, the system further includes at least one gas pad arranged on at least one of the first portion and the second portion for dispensing an inert gas during the welding.
  • In an aspect of the system, the hollow fan blade further includes a honeycomb structure within the interior cavity.
  • Another innovative aspect of the subject matter described in this disclosure can be implemented as a method of repairing a hollow fan blade. The hollow fan blade includes a concave portion and a convex portion secured together by a joint. An interior cavity of the hollow fan blade is charged with a vacuum. The method comprises removing material from a damaged portion of the hollow fan blade. The method includes repairing the damaged portion using welding such that a temperature of the joint does not exceed a distortion temperature.
  • An aspect of the method further includes monitoring a temperature of the joint during the welding using a temperature sensor.
  • An aspect of the method includes arranging at least one gas pad proximate the joint on at least one of the concave portion and the convex portion for dispersing an inert gas during the welding.
  • Details of one or more implementations of the subject matter described in this disclosure are set forth in the accompanying drawings and the description below. Other features, aspects, and advantages will become apparent from the description, the drawings and the claims. Note that the relative dimensions of the following figures may not be drawn to scale.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Illustrative aspects of the present disclosure are described in detail below with reference to the attached drawing figures and wherein:
  • FIG. 1 is a perspective view of a hollow fan blade that has been damaged.
  • FIG. 2 is a cross-sectional view of the hollow fan blade of FIG. 1 .
  • FIG. 3A is a cross-sectional view of the blade in FIG. 2 illustrating a cutback region thereof.
  • FIG. 3B is a cross-sectional view of the blade in FIG. 3A after a portion of the blade within the cutback region has been removed.
  • FIG. 3C is a cross-sectional view of the blade in FIG. 3A after the blade has undergone a welding process.
  • FIG. 4A is another perspective view of the blade of FIG. 1 .
  • FIG. 4B is a perspective view of a section of the damaged blade with thermocouples arranged thereon for monitoring temperature.
  • FIG. 5 shows a side view of a purge box for retaining the damaged blade of FIG. 1 during a repair process.
  • FIG. 6 shows a side view of the damaged blade of FIG. 1 with gas pads and cooling systems.
  • FIG. 7 is a flowchart illustrating an example method of repairing a hollow fan
  • blade.
  • DETAILED DESCRIPTION
  • Fan blades direct air through and around the engine of the aircraft. Fan blades are generally attached to a fan disk, which may be rotated by a shaft driven by a gas turbine engine of the aircraft. Fan blades are the outermost rotating components of an aircraft engine. Because the fan blades are exposed to outside air, they may encounter foreign objects (e.g., birds, pebbles, volcanic ash, and sand particles), resulting in damage such as, but not limited to, grooves, nicks, scratches, cracks, tears, and the like. Such damage may adversely affect the operational characteristics of a fan blade. One section of a fan blade that is particularly susceptible to damage is the fan blade leading edge. The leading edge is often worn down and shortened with use, thus reducing the fan blade chord length (i.e., the length of the fan blade cross section measured tip-to-tip). Such may undesirably impact the efficiency of the fan blade, and in some cases, may render the fan blade unsuitable for use.
  • In aspects, a damaged leading edge of a hollow fan blade may be repaired using a welding process. A hollow fan blade may be typically made of two shells that are brazed together. The interior of a hollow fan blade may be charged with a vacuum, which aids in the structural integrity of the fan blade. Hollow fan blades have heretofore been considered unrepairable because conventional repair processes, such as welding, degrade the braze joint and eliminate the vacuum, rendering the blade unfit for repair or use. In an aspect, a portion of the leading edge is removed and rebuilt via a welding process. Care is taken to ensure that the innermost surface of the portion of the leading edge that is removed is at least a minimum safe distance away from the braze joint. Performing the weld repair at the minimum safe distance (or a greater distance) ensures that the braze joint does not reach a temperature at which it is compromised. The damaged leading edge may therefore be repaired without impacting the braze joint and discharging the vacuum. In implementations, the temperature at and about the leading edge may be monitored during welding to confirm that the braze joint does not heat up to a temperature at which it is compromised.
  • One aspect of classifying an aircraft engine is the bypass ratio. The bypass ratio of an aircraft engine is the ratio between the mass flow rate of the bypass stream to the mass flow rate entering the core. For the same thrust, increasing the bypass ratio may result in decreased fuel consumption. The bypass ratio may be increased by increasing the size of the fan blades. However, increasing the size of the fan blades may detrimentally increase the weight of the engine. To keep this weight down, fan blades may be made of relatively lightweight material. More recently, one or more hollow cavities may be introduced in the fan blades to minimize concerns associated with increased weight.
  • Aircraft fan blades that have incurred damage may be replaced. Alternately, and depending on the type of damage, the fan blades may be repaired. Where the fan blades are solid in construction, they may be repaired using one or more conventional processes. For example, a solid fan blade may be repaired using glass bead blasting or peening, application of weld repair patches, et cetera. Hollow fan blades, which are less common than solid fan blades, may not be readily repaired using these conventional techniques. Such repair techniques may compromise the vacuum within the hollow fan blade and render it unfit for use.
  • A hollow fan blade may be made from two shell halves and an intermediate supporting structure. The two shell halves may include a concave half and a convex half, and the intermediate supporting structure may be a honeycomb structure. The two shell halves may be arranged around the supporting structure and may be affixed to each other via a braze joint. The supporting structure may also be brazed to the interior surfaces of the two shell halves. The hollow space which resides between the two shell halves alongside the supporting structure may be charged with a vacuum, creating a large pressure differential across the fan blade and the atmosphere. As the pressure of the atmosphere outside the two shells substantially exceeds the pressure inside the two shells, the atmospheric pressure pushes on the shells with a compressive force that is proportional to the pressure differential inside and outside the shells. In effect, the vacuum between the two shells may cause the shells to mimic Magdeburg hemispheres. The hollow fan blade may be thus held together not only by the mechanical strength of the braze joints securing the two shells but also by the pressure differential between the inside of the hollow fan blade and the atmosphere.
  • If a braze joint securing the two shells is compromised, it may compromise the vacuum and destabilize the fan blade, rendering it unsuitable for repair or use. Commonly employed techniques usable to repair solid fan blades and comparable gas turbine parts, such as patch welding, may damage the braze joint of a hollow fan blade due to the excessive heat associated with these techniques. Such conventional techniques may therefore eliminate the vacuum seal and damage the blade permanently. For at least this reason, the hollow fan blades have heretofore been considered unrepairable. Embodiments of the disclosure may allow for repair of hollow fan blades without compromising the braze joints thereof.
  • FIGS. 1 and 2 show a hollow fan blade 50. The hollow fan blade 50 has a leading edge 60, a trailing edge 62 that opposes the leading edge 60, and a tip 64. The hollow fan blade 50 may include two shells, a convex or suction side shell 66 and a concave or pressure side shell 68 (see FIG. 2 ). The shells 66 and 68 may be secured together using brazing at the bond line or joint 70 (FIG. 2 ). An interior cavity 71 of the hollow fan blade 50 may include a honeycomb structure 72, which may be sandwiched between the convex shell 66 and the concave shell 68. The interior cavity 71 may be charged with a vacuum.
  • As shown in FIG. 1 , a portion 74 of the leading edge 60 of the blade 50 is damaged. The damage to the leading edge 60 may have resulted from a collision of the blade 50 with a foreign object (e.g., a bird, a stone, or the like). In aspects of the disclosure, the damaged portion 74 of the leading edge 60 is repaired without compromising the braze joint 70. For example, the leading edge 60, and specifically the damaged portion 74 thereof, may be repaired using welding without impacting the braze joint 70. The welding process may be any suitable welding process now known or subsequently developed, such as Tungsten Inert Gas (TIG) welding, gas metal arc welding, shielded metal arc welding, flux-cored arc welding, et cetera. In an implementation, TIG welding may be employed.
  • In some aspects, the hollow fan blade 50 may be repaired using the same or similar material that constitutes the fan blade 50. In an implementation, a bulk composition analysis of the hollow fan blade 50 may be performed to determine the constituent(s) of the blade 50. Hollow fan blades, including the braze joints thereof, are typically formed of Titanium or a Titanium alloy (e.g., Ti64 alloy). The hollow fan blade 50 may be formed of Titanium or a Titanium alloy. The hollow fan blade 50 may additionally or alternately include aluminum or stainless steel. One having skill in the art will thus understand that the techniques described herein are applicable to fan blades formed of any suitable metal(s).
  • The braze joint 70 of the hollow fan blade 50 may not be heated beyond a certain temperature, as such may unduly alter the physical characteristics of the braze joint 70 and damage the blade 50. For example, Applicant has discovered that the structural integrity of the braze joint 70 including Titanium degrades beyond repair at or around 720° C. (around 993.2K). At or around this temperature, the physical change in the joint 70 may compromise the vacuum within the hollow fan blade 50. For this reason, it may be prudent to ensure that the braze joint 70 does not reach this temperature. The temperature at which a joint of a hollow fan blade, such as the braze joint 70 of the hollow fan blade 50, distorts beyond repair and discharges the vacuum therein, may also be referred to herein as the “distortion temperature.” One having skill in the art will understand that the distortion temperatures ofjoints of different hollow fan blades may differ based on the construction of these blades and joints.
  • Welding temperatures may easily exceed the distortion temperature for the braze or other joint of a particular blade. For example, TIG welding temperatures may reach 3,000° C. (3,723.2K) or more—far greater than the distortion temperature of the joint 70 of the hollow fan blade 50. Conventional wisdom therefore counsels against repairing hollow fan blades using welding processes, such as patch welding or welding in layers of material, as the exorbitant welding temperatures may destruct the braze joint 70 and discharge the vacuum, rendering the fan blade 50 unfit for use.
  • As shown in FIG. 3A, to prepare the hollow fan blade 50 for the welding repair process, a minimum safe distance 102 from the weld line 70 may be determined. As described herein, the minimum safe distance 102 may be a distance from the weld line 70 at which welding repair may be performed without causing the weld line 70 to reach or exceed the distortion temperature. The minimum safe distance 102 may define a cutback region 104 outboard the minimum safe distance 102. Specifically, the cutback region 104 may extend inboard from the leading edge 60 such that an innermost surface 106 of the cutback region 104 is spaced apart from the weld line 70 at least by the minimum safe distance 102. The portion of the blade 50 within the cutback region 104 may be removed and repaired using a welding process.
  • In an aspect, the minimum safe distance 102 is between about 0.125 inches (about 3.175 mm) and about 0.375 inches (about 9.525 mm). For example, a user may safely remove material approximately 0.25 inches (approximately 6.35 mm) away from the braze joint 70. In aspects, the cut back region 155 may encompass an area of the fan blade 50 up to about 0.200 inches (about 5.08 mm), e.g., between 0.1 inches (2.54 mm) and 0.3 inches (7.62 mm) below the type certificate holder (TCH) minimum chord dimension for a given hollow fan blade 50 to be repaired. One having skill in the art will understand that the minimum safe distance may vary from blade to blade depending, e.g., on the constitution of the blade and the location of the braze joint.
  • FIG. 3B shows a hollow blade 50′. The hollow blade 50′ is an example of the hollow blade 50 after the portion of the blade 50 within the cutback region 104 has been removed. Removal of the portion of the blade 50 within the cutback region 104 may leave behind a weld foundation 108. The weld foundation 108 may be a smooth surface that can readily accept welding material. Because the weld foundation 108 is spaced apart from the weld line 70 by at least the minimum safe distance 102, the weld line 70 may not reach or exceed the distortion temperature during the welding process.
  • FIG. 3C shows a hollow blade 50″, that may be an example of the hollow blade 50′ after a welded section 110 has been welded onto the weld foundation 108 to repair the blade. The welded section 110 may be added to the hollow blade 50′ without impairing the braze joint 70 or the vacuum within the blade 50.
  • In some aspects, to ensure that the braze joint 70 is not compromised during the welding process, a plurality of thermocouples 118 or other suitable temperature sensors may be situated proximate the weld joint 70 and the weld foundation 108. Specifically, FIG. 4A shows a section 116 of the damaged hollow fan blade 50 that encompasses the damaged leading edge portion 74. As shown in FIG. 4B, a plurality of thermocouples, e.g., thermocouples 118A-118I, may be disposed within the section 116 adjacent the braze joint 70 (e.g., at locations between the braze joint 70 and the weld foundation 108). The thermocouples 118A-118I may allow for the temperature at and about the braze joint 70 to be monitored, to ensure that the braze joint 70 does not approach, reach, or exceed the distortion temperature.
  • In the illustrated embodiment, thermocouples 118A-118E are disposed on the convex or suction shell 66 and thermocouples 118F-118I are located on the concave or pressure shell 68. The temperature of the thermocouples 118A-118I may be monitored during the weld repair process. If any thermocouple 118A-118I indicates that the temperature is approaching the distortion temperature, the welding process may be halted or otherwise modified to prevent breakage of the joint 70.
  • The distance between a thermocouple 118A-118I and the weld line 70 may impact the usefulness of the temperature readings. For example, if a thermocouple is too far away from the joint 70, the temperature reading may not correlate to or indicate the temperature at the joint 70. In an implementation, the thermocouples 118A-118I may be spaced about an inch from each other in a radial or y-axis direction, and may be aligned anywhere from about 0.240 inches (6.096 mm) to 0.783 inches (19.888 m) circumferentially, or in the x-axis direction, from the leading edge 60. Table 1 below outlines the position of the thermocouples 118A-118I, in one example.
  • TABLE 1
    Position of Thermocouples 118A-118I
    X-Axis Y-Axis
    [Measured from [Measured from
    Convex/Concave LE 60 to bond Tip 65 to TC 170
    TC Location Side line 70] (mm) Location] (mm)
    T1 (118A) Convex 0.783 (19.89) 0.1 (2.54)
    T2 (118B) Convex 0.511 (12.97) 2.1 (53.34)
    T3 (118C) Convex 0.507 (12.89) 4.1 (104.14)
    T4 (118D) Convex 0.487 (12.37) 6.1 (154.94)
    T5 (118E) Convex 0.677 (17.19) 8.1 (205.74)
    T1.5 (118F) Concave 0.360 (9.15) 1.1 (27.94)
    T2.5 (118G) Concave 0.257 (6.54) 3.1 (78.74)
    T3.5 (118H) Concave 0.240 (6.10) 5.1 (129.54)
    T4.5 (118I) Concave 0.296 (7.51) 7.1 (180.34)

    Of course, the values in Table 1 are merely exemplary and are not intended to be independently limiting. One having skill in the art will understand that the thermocouples 118A-118I may be arranged differently (e.g., the distance between two successive thermocouples 118A-118I may be greater or less than about one inch, and depending on the particular fan blade, may be further away or closer to the leading edge). In some implementations, the thermocouples 118A-118I may be secured (e.g., temporarily) to the fan blade 50 using any suitable method, such as with an adhesive or via spot welding.
  • In aspects, the hollow fan blade 50 may be situated within a purge box 200 during the repair process. FIG. 5 shows an example purge box 200. The purge box 200 may have a frame 202 and a mount 204. The mount 204 may be configured to securely retain at least a portion of the hollow fan blade 50, such as at the dovetail thereof. The purge box 200 may serve to hold the blade 50 steady as the blade 50 undergoes the welding process. In aspects, the purge box may be filled with a gas, e.g., an inert gas such as Argon. One having skill in the art would understand that the repair process may be adversely affected by Oxygen. The inert gas inside the purge box may purge Oxygen in the purge box 200 and curtail oxidation of the blade 50 during the repair process.
  • In some aspects, in addition to the purge box 200, gas pads 300 may be employed to facilitate the weld repair process (see FIG. 6 ). The gas pads 300 may include a gas pad 302 and a gas pad 304. Gas pad 302 may be situated on the convex shell 66 proximate the weld foundation 108 and the gas pad 304 may be situated on the concave shell 68 proximate the weld foundation 108. The gas pads 302 and 304 may disperse inert gas local to the weld material and eliminate or minimize any oxidation of the blade 50.
  • In an implementation, one or more chilling or cooling systems 306 may be arranged along or proximate the leading edge 60. These cooling systems 306 may include, for example, copper chill blocks and/or water-cooled blocks which may serve to bring down the temperature of the fan blade 50 during the welding process. The cooling systems 306 may help ensure that the braze joint 70 does not approach distortion temperature during the welding repair process.
  • FIG. 7 is a flow chart outlining an example method 400 to repair the hollow fan blade 50. At step 402, the portion (e.g., damaged portion 74) of the leading edge 60 that has incurred damage may be identified. The damage may include nicks, scratches, pits, or other damage. At step 404, a minimum safe distance from the braze joint (e.g., minimum safe distance 102 from the weld line 70) may be identified for the particular blade being repaired. The minimum safe distance may be a distance from the braze joint at which welding repair may be performed without causing the braze joint to reach or exceed the distortion temperature. At step 406, a region of the leading edge of the blade within a cutback region (e.g., cutback region 104) may be removed to yield a clean weld foundation (e.g., weld foundation 108). The cutback region 104 may be outboard the braze joint, as such, may not enter the hollow interior of the fan blade 50. Specifically, the weld foundation may be spaced apart from braze joint (e.g., weld line 70) at least by the minimum safe distance. The minimum safe distance may provide a buffer of material from the welding location for the repair and the braze joint such that the braze joint is unaffected by the heat generated from the welding process.
  • At step 408, a plurality of thermocouples (e.g., thermocouples 118A-118I) may be arranged along the braze joint associated with the damaged portion of the blade. The thermocouples may be temporarily affixed, using spot welding or adhesive for example. The thermocouples may allow for the temperature of the fan blade proximate the weld line of the joint to be monitored during the welding repair process, to ensure the temperature of the weld line does not reach the distortion temperature.
  • At step 410, the hollow fan blade may be secured within a purge box (e.g., may be fixed to mount 204 of purge box 200) to minimize the chance that oxidation of the fan blade will occur during the weld repair process. At step 412, gas pads (e.g., gas pads 302 and 304), alone or together with cooling features (e.g., cooling features 306) may be located along the weld line of the blade portion being repaired.
  • At step 414, any suitable welding technology now known or subsequently developed (e.g., TIG welding, gas metal arc welding, shielded metal arc welding, flux-cored arc welding, etc.) may be used to weld material to the weld foundation (e.g., welded section 110 may be added via welding to the weld foundation 108). In aspects, the welded material may be added in layers and each layer may be deposited after some time has elapsed after the deposition of the prior layer. In an aspect, the welding process may include forming the weld buildup in layers, including six layers, where each layer can be applied in a window of in a range between about four minutes and about six minutes. The application of each layer may be spaced with about a minute between each layer. The timing of the application of layers may be provided in any number of layers, with any spacing and time period in between layers. The layers may be built onto the fan blade in any pattern, including but not limited to, starting at the middle of the blade and moving towards the blade tip. Care may be taken to ensure the distortion temperature of the braze joint (e.g., joint 70) is not exceeded during the welding process so as to not compromise the vacuum of the fan blade 50.
  • At step 416, the blade (e.g., the newly welded material) may undergo finishing to bring the blade within the desired specifications. Finishing the blade may involve, for example, machining down the weld buildup to ensure the shape and size of the repaired blade are within required tolerances, adding a surface coating, et cetera. In aspects, a machining tool (e.g., a 5-axis machining tool) may be employed for finishing the blade and completing the repair process. At step 418, the repaired blade may be inspected to ensure the blade is fit for operation. For example, the repaired blade may be visually inspected. In implementations, the repaired blade may be evaluated using x-ray scanning, depth profiling, fluorescent penetrant inspection, eddy current inspection, et cetera. Additional welding may be performed if needed in view of this evaluation to ensure the repaired blade is airworthy.
  • One having skill in the art will understand that the steps of the method 400 may be modified, added to, and/or omitted as desired, and that such considerations have been contemplated and are within the scope of the disclosure. For example, one having skill in the art will understand that the step of arranging thermocouples may take place before material is removed from the fan blade to create the cutback region, that thermocouples may be omitted entirely, or that a different temperature sensor(s) may be employed.
  • As has been described, various aspects of the disclosure may allow for the repair of a hollow fan blade while mitigating or eliminating the risk that the braze joint thereof will be destroyed or that the vacuum within the blade will be compromised. By employing a buffer of material and ensuring that the distortion temperature is not reached, the vacuum charge, and thus the structural integrity, of the fan blade may be maintained during the repair process. While the discussion herein largely focused on welding and repairing a leading edge of a hollow fan blade, the artisan will understand that the methods described herein may be adapted to weld any other suitable area of a hollow fan blade.
  • Many different arrangements of the various components depicted, as well as components not shown, are possible without departing from the spirit and scope of the present disclosure. Embodiments of the present disclosure have been described with the intent to be illustrative rather than restrictive. Alternative aspects will become apparent to those skilled in the art that do not depart from its scope. A skilled artisan may develop alternative means of implementing the aforementioned improvements without departing from the scope of the present disclosure. It will be understood that certain features and subcombinations are of utility and may be employed without reference to other features and subcombinations and are contemplated within the scope of the claims. Not all steps described herein and/or listed in the various figures need be carried out or need to be carried out in the specific order described.

Claims (20)

The disclosure claimed is:
1. A method of repairing a hollow fan blade, the hollow fan blade including a first portion and a second portion secured together by a joint, an interior cavity of the hollow fan blade being charged with a vacuum, the method including:
removing material from a damaged portion of a leading edge of the hollow fan blade; and
welding the damaged portion such that a temperature of the joint does not exceed a distortion temperature.
2. The method of claim 1, further including arranging a thermocouple on at least one of the first portion and the second portion.
3. The method of claim 2, further comprising monitoring a temperature of a portion of the hollow fan blade during the welding using the thermocouple.
4. The method of claim 1, further comprising arranging a plurality of thermocouples on each of the first portion and the second portion.
5. The method of claim 4, further comprising arranging each of the plurality of thermocouples using at least one item selected from the group consisting of spot welding and adhesive.
6. The method of claim 1, further comprising securing the hollow fan blade within a purge box prior to the welding.
7. The method of claim 1, further comprising arranging a gas pad on at least one of the first portion and the second portion for dispersing an inert gas during the welding.
8. The method of claim 1, further comprising cooling the blade using a cooling system during the welding.
9. The method of claim 8, wherein the cooling system includes at least one of a copper block and a water-cooled block.
10. The method of claim 1, wherein the welding includes Tungsten Inert Gas (TIG) welding.
11. The method of claim 1, wherein the interior cavity further includes a honeycomb structure.
12. The method of claim 1, further comprising applying
a finishing process after the welding.
13. The method of claim 1, wherein the joint includes a braze joint.
14. A system for repairing a leading edge of a hollow fan blade, the hollow fan blade including a first portion and a second portion secured together by a joint, an interior cavity of the hollow fan blade being charged with a vacuum, the system comprising:
a purge box having a mount for securing the hollow fan blade; and
a temperature sensor configured for monitoring of a temperature of the hollow fan blade during welding.
15. The system of claim 14, further comprising a cooling system configured for cooling the first portion and the second portion of the blade during the welding.
16. The system of claim 14, further comprising at least one gas pad arranged on at least one of the first portion and the second portion for dispersing an inert gas during the welding.
17. The system of claim 14, wherein the hollow fan blade further includes a honeycomb structure within the interior cavity.
18. A method of repairing a hollow fan blade, the hollow fan blade including a concave portion and a convex portion secured together by a joint, an interior cavity of the hollow fan blade being charged with a vacuum, the method comprising:
removing material from a damaged portion of the hollow fan blade; and
welding the damaged portion such that a temperature of the joint does not exceed a distortion temperature.
19. The method of claim 18, further comprising monitoring a temperature of the joint during the welding using a temperature sensor.
20. The method of claim 18, further comprising arranging at least one gas pad proximate the joint on at least one of the concave portion and the convex portion for dispersing an inert gas during the welding.
US18/156,466 2022-06-21 2023-01-19 Repair of Aircraft Fan Blade Pending US20230405735A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US18/156,466 US20230405735A1 (en) 2022-06-21 2023-01-19 Repair of Aircraft Fan Blade
CN202310575732.2A CN117260161A (en) 2022-06-21 2023-05-22 System and method for repairing hollow fan blades
US18/446,923 US20230405736A1 (en) 2022-06-21 2023-08-09 Repair of Aircraft Fan Blade

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202263366707P 2022-06-21 2022-06-21
US18/156,466 US20230405735A1 (en) 2022-06-21 2023-01-19 Repair of Aircraft Fan Blade

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/446,923 Continuation US20230405736A1 (en) 2022-06-21 2023-08-09 Repair of Aircraft Fan Blade

Publications (1)

Publication Number Publication Date
US20230405735A1 true US20230405735A1 (en) 2023-12-21

Family

ID=89170011

Family Applications (2)

Application Number Title Priority Date Filing Date
US18/156,466 Pending US20230405735A1 (en) 2022-06-21 2023-01-19 Repair of Aircraft Fan Blade
US18/446,923 Pending US20230405736A1 (en) 2022-06-21 2023-08-09 Repair of Aircraft Fan Blade

Family Applications After (1)

Application Number Title Priority Date Filing Date
US18/446,923 Pending US20230405736A1 (en) 2022-06-21 2023-08-09 Repair of Aircraft Fan Blade

Country Status (2)

Country Link
US (2) US20230405735A1 (en)
CN (1) CN117260161A (en)

Also Published As

Publication number Publication date
US20230405736A1 (en) 2023-12-21
CN117260161A (en) 2023-12-22

Similar Documents

Publication Publication Date Title
KR970010894B1 (en) More creep resistant turbine rotor and procedures for repair welding of low alloy ferrous turbine components
US5735044A (en) Laser shock peening for gas turbine engine weld repair
US20090313823A1 (en) Imparting deep compressive residual stresses into a gas turbine engine airfoil peripheral repair weldment
US4028787A (en) Refurbished turbine vanes and method of refurbishment thereof
EP1563945A2 (en) Repair of article by laser cladding
KR970010880B1 (en) Turbine system having more failure resistant rotors and repair welding of low alloy ferrous turbine component by controlled weld build-up
US5522134A (en) Turbine vane flow area restoration method
US6568077B1 (en) Blisk weld repair
JP5322371B2 (en) How to repair a disk with an integrated blade, test piece at the start and end of work
US5142778A (en) Gas turbine engine component repair
CA2405335C (en) Gas turbine engine compressor blade restoration
US7858897B2 (en) Insert weld repair
RU2490102C2 (en) Method of welding and structural element
JP2008031999A (en) Method of repairing metallic components
US20050120555A1 (en) Process for repairing metallic pieces especially turbine blades of a gas turbine motor
US20090293253A1 (en) Flange hole repair
CN105821408A (en) Method for adopting laser cladding to repair TC4-DT titanium alloys
JP2008163951A (en) Method and apparatus for increasing fatigue notch capability of airfoil part
CN106521487B (en) A kind of reproducing method of military service mid-term titanium alloy compressor blade
CN109746453B (en) Laser repair method and device
CN110819982B (en) Method for repairing abrasion and cracks of blade shroud and sealing teeth
US7722793B2 (en) Method of recuperating turbine elements
KR20140119820A (en) Method for reprocessing a turbine blade having at least one platform
US20230405735A1 (en) Repair of Aircraft Fan Blade
US20170030195A1 (en) Method for repairing a gas turbine blade having at least one cavity

Legal Events

Date Code Title Description
AS Assignment

Owner name: CHROMALLOY GAS TURBINE LLC, FLORIDA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BLUMANSTOCK, BENNY L;REEL/FRAME:062418/0540

Effective date: 20230119

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

AS Assignment

Owner name: ROYAL BANK OF CANADA, CANADA

Free format text: SECURITY INTEREST;ASSIGNOR:CHROMALLOY GAS TURBINE LLC;REEL/FRAME:066926/0565

Effective date: 20240327