US20230355872A1 - Contact sensor for monitoring medication adherence - Google Patents
Contact sensor for monitoring medication adherence Download PDFInfo
- Publication number
- US20230355872A1 US20230355872A1 US18/196,927 US202318196927A US2023355872A1 US 20230355872 A1 US20230355872 A1 US 20230355872A1 US 202318196927 A US202318196927 A US 202318196927A US 2023355872 A1 US2023355872 A1 US 2023355872A1
- Authority
- US
- United States
- Prior art keywords
- section
- medication
- contact sensor
- flow path
- fluid flow
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229940079593 drug Drugs 0.000 title claims abstract description 103
- 239000003814 drug Substances 0.000 title claims abstract description 103
- 238000012544 monitoring process Methods 0.000 title claims description 13
- 238000000034 method Methods 0.000 claims abstract description 45
- 239000012530 fluid Substances 0.000 claims abstract description 36
- 238000004891 communication Methods 0.000 claims description 33
- 230000008859 change Effects 0.000 claims description 9
- 238000001990 intravenous administration Methods 0.000 description 26
- 238000001802 infusion Methods 0.000 description 8
- 210000003462 vein Anatomy 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 6
- 230000001413 cellular effect Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 238000007911 parenteral administration Methods 0.000 description 4
- 230000001464 adherent effect Effects 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 230000000295 complement effect Effects 0.000 description 3
- 238000004590 computer program Methods 0.000 description 3
- 238000002483 medication Methods 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000001356 surgical procedure Methods 0.000 description 3
- 235000021476 total parenteral nutrition Nutrition 0.000 description 3
- AOJJSUZBOXZQNB-TZSSRYMLSA-N Doxorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 AOJJSUZBOXZQNB-TZSSRYMLSA-N 0.000 description 2
- 239000003242 anti bacterial agent Substances 0.000 description 2
- 229940088710 antibiotic agent Drugs 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 210000004204 blood vessel Anatomy 0.000 description 2
- 238000002512 chemotherapy Methods 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- VYFYYTLLBUKUHU-UHFFFAOYSA-N dopamine Chemical compound NCCC1=CC=C(O)C(O)=C1 VYFYYTLLBUKUHU-UHFFFAOYSA-N 0.000 description 2
- 238000009429 electrical wiring Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- BQJCRHHNABKAKU-KBQPJGBKSA-N morphine Chemical compound O([C@H]1[C@H](C=C[C@H]23)O)C4=C5[C@@]12CCN(C)[C@@H]3CC5=CC=C4O BQJCRHHNABKAKU-KBQPJGBKSA-N 0.000 description 2
- 229940124583 pain medication Drugs 0.000 description 2
- SFLSHLFXELFNJZ-QMMMGPOBSA-N (-)-norepinephrine Chemical compound NC[C@H](O)C1=CC=C(O)C(O)=C1 SFLSHLFXELFNJZ-QMMMGPOBSA-N 0.000 description 1
- UCTWMZQNUQWSLP-VIFPVBQESA-N (R)-adrenaline Chemical compound CNC[C@H](O)C1=CC=C(O)C(O)=C1 UCTWMZQNUQWSLP-VIFPVBQESA-N 0.000 description 1
- 229930182837 (R)-adrenaline Natural products 0.000 description 1
- 229930183010 Amphotericin Natural products 0.000 description 1
- QGGFZZLFKABGNL-UHFFFAOYSA-N Amphotericin A Natural products OC1C(N)C(O)C(C)OC1OC1C=CC=CC=CC=CCCC=CC=CC(C)C(O)C(C)C(C)OC(=O)CC(O)CC(O)CCC(O)C(O)CC(O)CC(O)(CC(O)C2C(O)=O)OC2C1 QGGFZZLFKABGNL-UHFFFAOYSA-N 0.000 description 1
- JRWZLRBJNMZMFE-UHFFFAOYSA-N Dobutamine Chemical compound C=1C=C(O)C(O)=CC=1CCNC(C)CCC1=CC=C(O)C=C1 JRWZLRBJNMZMFE-UHFFFAOYSA-N 0.000 description 1
- 229930182566 Gentamicin Natural products 0.000 description 1
- CEAZRRDELHUEMR-URQXQFDESA-N Gentamicin Chemical compound O1[C@H](C(C)NC)CC[C@@H](N)[C@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](NC)[C@@](C)(O)CO2)O)[C@H](N)C[C@@H]1N CEAZRRDELHUEMR-URQXQFDESA-N 0.000 description 1
- 208000001953 Hypotension Diseases 0.000 description 1
- 108060003951 Immunoglobulin Proteins 0.000 description 1
- 108010021062 Micafungin Proteins 0.000 description 1
- 206010028813 Nausea Diseases 0.000 description 1
- 229930012538 Paclitaxel Natural products 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- 108010059993 Vancomycin Proteins 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 229940009444 amphotericin Drugs 0.000 description 1
- APKFDSVGJQXUKY-INPOYWNPSA-N amphotericin B Chemical compound O[C@H]1[C@@H](N)[C@H](O)[C@@H](C)O[C@H]1O[C@H]1/C=C/C=C/C=C/C=C/C=C/C=C/C=C/[C@H](C)[C@@H](O)[C@@H](C)[C@H](C)OC(=O)C[C@H](O)C[C@H](O)CC[C@@H](O)[C@H](O)C[C@H](O)C[C@](O)(C[C@H](O)[C@H]2C(O)=O)O[C@H]2C1 APKFDSVGJQXUKY-INPOYWNPSA-N 0.000 description 1
- 230000000843 anti-fungal effect Effects 0.000 description 1
- 229940121375 antifungal agent Drugs 0.000 description 1
- 230000003115 biocidal effect Effects 0.000 description 1
- 229960004316 cisplatin Drugs 0.000 description 1
- DQLATGHUWYMOKM-UHFFFAOYSA-L cisplatin Chemical compound N[Pt](N)(Cl)Cl DQLATGHUWYMOKM-UHFFFAOYSA-L 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 229960001089 dobutamine Drugs 0.000 description 1
- 229960003638 dopamine Drugs 0.000 description 1
- 229960004679 doxorubicin Drugs 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229960005139 epinephrine Drugs 0.000 description 1
- 229960002518 gentamicin Drugs 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 210000004013 groin Anatomy 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- WVLOADHCBXTIJK-YNHQPCIGSA-N hydromorphone Chemical compound O([C@H]1C(CC[C@H]23)=O)C4=C5[C@@]12CCN(C)[C@@H]3CC5=CC=C4O WVLOADHCBXTIJK-YNHQPCIGSA-N 0.000 description 1
- 229960001410 hydromorphone Drugs 0.000 description 1
- 102000018358 immunoglobulin Human genes 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- 238000007912 intraperitoneal administration Methods 0.000 description 1
- 238000002642 intravenous therapy Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 208000012866 low blood pressure Diseases 0.000 description 1
- 229960002260 meropenem Drugs 0.000 description 1
- DMJNNHOOLUXYBV-PQTSNVLCSA-N meropenem Chemical compound C=1([C@H](C)[C@@H]2[C@H](C(N2C=1C(O)=O)=O)[C@H](O)C)S[C@@H]1CN[C@H](C(=O)N(C)C)C1 DMJNNHOOLUXYBV-PQTSNVLCSA-N 0.000 description 1
- 229960002159 micafungin Drugs 0.000 description 1
- PIEUQSKUWLMALL-YABMTYFHSA-N micafungin Chemical compound C1=CC(OCCCCC)=CC=C1C1=CC(C=2C=CC(=CC=2)C(=O)N[C@@H]2C(N[C@H](C(=O)N3C[C@H](O)C[C@H]3C(=O)N[C@H](C(=O)N[C@H](C(=O)N3C[C@H](C)[C@H](O)[C@H]3C(=O)N[C@H](O)[C@H](O)C2)[C@H](O)CC(N)=O)[C@H](O)[C@@H](O)C=2C=C(OS(O)(=O)=O)C(O)=CC=2)[C@@H](C)O)=O)=NO1 PIEUQSKUWLMALL-YABMTYFHSA-N 0.000 description 1
- 229960005181 morphine Drugs 0.000 description 1
- 230000008693 nausea Effects 0.000 description 1
- 229960002748 norepinephrine Drugs 0.000 description 1
- SFLSHLFXELFNJZ-UHFFFAOYSA-N norepinephrine Natural products NCC(O)C1=CC=C(O)C(O)=C1 SFLSHLFXELFNJZ-UHFFFAOYSA-N 0.000 description 1
- 235000016709 nutrition Nutrition 0.000 description 1
- 230000035764 nutrition Effects 0.000 description 1
- 229960001592 paclitaxel Drugs 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- RCINICONZNJXQF-MZXODVADSA-N taxol Chemical compound O([C@@H]1[C@@]2(C[C@@H](C(C)=C(C2(C)C)[C@H](C([C@]2(C)[C@@H](O)C[C@H]3OC[C@]3([C@H]21)OC(C)=O)=O)OC(=O)C)OC(=O)[C@H](O)[C@@H](NC(=O)C=1C=CC=CC=1)C=1C=CC=CC=1)O)C(=O)C1=CC=CC=C1 RCINICONZNJXQF-MZXODVADSA-N 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 229960003165 vancomycin Drugs 0.000 description 1
- MYPYJXKWCTUITO-LYRMYLQWSA-N vancomycin Chemical compound O([C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1OC1=C2C=C3C=C1OC1=CC=C(C=C1Cl)[C@@H](O)[C@H](C(N[C@@H](CC(N)=O)C(=O)N[C@H]3C(=O)N[C@H]1C(=O)N[C@H](C(N[C@@H](C3=CC(O)=CC(O)=C3C=3C(O)=CC=C1C=3)C(O)=O)=O)[C@H](O)C1=CC=C(C(=C1)Cl)O2)=O)NC(=O)[C@@H](CC(C)C)NC)[C@H]1C[C@](C)(N)[C@H](O)[C@H](C)O1 MYPYJXKWCTUITO-LYRMYLQWSA-N 0.000 description 1
- MYPYJXKWCTUITO-UHFFFAOYSA-N vancomycin Natural products O1C(C(=C2)Cl)=CC=C2C(O)C(C(NC(C2=CC(O)=CC(O)=C2C=2C(O)=CC=C3C=2)C(O)=O)=O)NC(=O)C3NC(=O)C2NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(CC(C)C)NC)C(O)C(C=C3Cl)=CC=C3OC3=CC2=CC1=C3OC1OC(CO)C(O)C(O)C1OC1CC(C)(N)C(O)C(C)O1 MYPYJXKWCTUITO-UHFFFAOYSA-N 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
- 229960004528 vincristine Drugs 0.000 description 1
- OGWKCGZFUXNPDA-XQKSVPLYSA-N vincristine Chemical compound C([N@]1C[C@@H](C[C@]2(C(=O)OC)C=3C(=CC4=C([C@]56[C@H]([C@@]([C@H](OC(C)=O)[C@]7(CC)C=CCN([C@H]67)CC5)(O)C(=O)OC)N4C=O)C=3)OC)C[C@@](C1)(O)CC)CC1=C2NC2=CC=CC=C12 OGWKCGZFUXNPDA-XQKSVPLYSA-N 0.000 description 1
- OGWKCGZFUXNPDA-UHFFFAOYSA-N vincristine Natural products C1C(CC)(O)CC(CC2(C(=O)OC)C=3C(=CC4=C(C56C(C(C(OC(C)=O)C7(CC)C=CCN(C67)CC5)(O)C(=O)OC)N4C=O)C=3)OC)CN1CCC1=C2NC2=CC=CC=C12 OGWKCGZFUXNPDA-UHFFFAOYSA-N 0.000 description 1
- 210000000707 wrist Anatomy 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M5/00—Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
- A61M5/14—Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
- A61M5/168—Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters ; Monitoring media flow to the body
- A61M5/16886—Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters ; Monitoring media flow to the body for measuring fluid flow rate, i.e. flowmeters
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D5/00—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
- G01D5/12—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
- G01D5/14—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
- G01D5/16—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying resistance
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2205/00—General characteristics of the apparatus
- A61M2205/14—Detection of the presence or absence of a tube, a connector or a container in an apparatus
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2205/00—General characteristics of the apparatus
- A61M2205/33—Controlling, regulating or measuring
- A61M2205/332—Force measuring means
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2205/00—General characteristics of the apparatus
- A61M2205/33—Controlling, regulating or measuring
- A61M2205/3327—Measuring
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2205/00—General characteristics of the apparatus
- A61M2205/35—Communication
- A61M2205/3546—Range
- A61M2205/3553—Range remote, e.g. between patient's home and doctor's office
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2205/00—General characteristics of the apparatus
- A61M2205/35—Communication
- A61M2205/3546—Range
- A61M2205/3561—Range local, e.g. within room or hospital
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2205/00—General characteristics of the apparatus
- A61M2205/35—Communication
- A61M2205/3576—Communication with non implanted data transmission devices, e.g. using external transmitter or receiver
- A61M2205/3584—Communication with non implanted data transmission devices, e.g. using external transmitter or receiver using modem, internet or bluetooth
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2205/00—General characteristics of the apparatus
- A61M2205/50—General characteristics of the apparatus with microprocessors or computers
Definitions
- the present disclosure provides systems, devices, and methods to monitor a fluid flow path between a medication reservoir and a medication dispense assembly in a medication delivery device.
- non-adherence In the medical field one of the largest challenges with at-home medication is the issue of non-adherence caused by patients, either advertently or inadvertently, not following their prescribed medication regimen.
- This non-adherence includes but is not limited to patients failing to take medication at the prescribed times of day, for the prescribed duration of time and/or for the prescribed number of times per day.
- Outpatient care is typically much less expensive than inpatient care, and as a result, healthcare providers have drastically increased the proportion of patients receiving outpatient care compared to inpatient care over the past few decades. However, with reduced oversight from providers (i.e. doctors and nurses), non-adherence has become a more prevalent problem. Therefore, a method to objectively monitor outpatient medication regimen adherence is useful.
- One aspect of the present disclosure encompasses a system for monitoring a state of a fluid flow path between a medication reservoir and a medication dispense assembly in a medication delivery device.
- the system comprises (a) an electrical contact sensor attached to the medication delivery device at a connector between the medication reservoir and the medication dispense assembly and operable to communicate a state of an electrical connection, the electrical contact sensor comprising an enclosure comprising a first electrical contact, a second electrical contact, and a first spring operable to bias the first and second contacts from establishing the electrical connection, wherein the state of the electrical connection is a presence or absence of the electrical current; and (b) a controller in electrical communication with the contact sensor, the controller comprising an input component operable to receive the state of the electrical connection communicated by the sensor and at least one processor operable to assign one or more event times, wherein each event time indicates the time of a change in the state of the electrical connection.
- a force applied to the contact sensor to connect the medication reservoir with the dispense assembly causes the contact of the first and second electrical contacts thereby establishing the electrical connection between the first and second contact sensors, and wherein an electrical connection signals the connection of the medication reservoir with the dispense assembly and formation of the fluid flow path between the medication reservoir and dispense assembly and the absence of an electrical connection signals disconnection of the medication reservoir with the dispense assembly.
- the enclosure can comprise an elongated body comprising a cavity, a proximal surface comprising a top surface, a bottom surface, and an orifice extending from the top surface to the bottom surface, and a distal opening; and a support comprising a distal surface, a proximal surface, a perimeter complementary to an inside perimeter of the enclosure, an orifice extending from the distal surface to the proximal surface of the support, wherein the orifice is concentric with the orifice in the body, forming a channel extending from the orifice in the enclosure to the orifice in the support, wherein the support is operable to be displaced along a longitudinal axis within the enclosure.
- the contact sensor can be attached to the medication device through the channel extending from the orifice in the enclosure to the orifice in the support.
- the first electrical contact and the second electrical contact can be attached to the proximal surface of the support in a shape operable to surround the orifice in the support.
- the first spring can surround the channel and extend from the bottom surface of the enclosure to the proximal surface of the support, and the spring can be operable to bias the support from the bottom surface of the enclosure.
- the enclosure can further comprise an electrically conductive ring attached to the bottom surface of the body.
- the conductive ring can be operable to contact and establish an electrical connection between the first and second electrical contacts when a force applied to the enclosure and/or support to connect the medication reservoir with the dispense assembly through the channel causes the enclosure and/or support to be displaced along the longitudinal axis.
- the electrical connection signals the connection of the medication reservoir with the dispense assembly and the formation of the fluid flow path between the medication reservoir and dispense assembly.
- the conductive ring can be a finger disk spring.
- the medication delivery device can further comprise a first section of tubing comprising a first end and a second end, wherein the first end of the first section of tubing is attached to and in fluid communication with the medication reservoir, and a second section of tubing comprising a first end and a second end, wherein the first end of the second section of tubing is attached to and in fluid communication with the medication delivery device, and wherein each of the second end of the first section of tubing and the second end of the second section of tubing comprise a connector for connecting the second ends of the sections of tubing, thereby forming a fluid flow path between the medication reservoir and the dispense assembly.
- the contact sensor can be attached at a connector between the medication reservoir and the first end of the first section of tubing, at a connector between the dispense assembly and the first end of the second section of tubing, or at the connector for connecting the second ends of the sections of tubing.
- the connector can be a luer connector.
- the system can be further operable to communicate the one or more event times to an individual.
- the controller can further be operable to communicate the one or more event times to an individual.
- the individual can be a patient, a caretaker for the patient, an individual monitoring administration of the medication to a subject, or any other entity designated by one of the aforementioned.
- the controller can also be operable to communicate the one or more event times to a secondary device.
- the controller can further comprise a transmitter operable to communicate the one or more event times to the secondary device wirelessly using a wireless communication protocol.
- the wireless communication protocol is selected from an NFC communication, a Radio-frequency identification (RFID) communication, Bluetooth, LTE, ZigBee, LoraWAN, or Wi-Fi.
- the wireless communication protocol is Bluetooth.
- the secondary device can be a mobile computing device such as a cellular phone, a portable computer, a wearable device, a portable computer with no user interface, and/or a personal digital assistant (PDA).
- the secondary device can also be a cloud computing device.
- the dispense assembly can be an intravenous dispense assembly.
- the dispense assembly is peripherally inserted central catheter (PICC line).
- Another aspect of the present disclosure encompasses an electrical contact sensor device for monitoring a state of a fluid flow path between a medication reservoir and medication dispense assembly in a medication delivery device.
- the device comprises an enclosure comprising a first electrical contact and a second electrical contact and a first spring operable to bias the first and second contacts from establishing an electrical connection.
- the state of the electrical connection is a presence or absence of the electrical connection.
- a force applied to the contact sensor to connect the medication reservoir with the dispense assembly causes the contact of the first and second electrical contacts thereby establishing a connection between the first and second contact sensors, and the electrical connection signals the connection of the medication reservoir with the dispense assembly and formation of the fluid flow path between the medication reservoir and dispense assembly and the absence of an electrical connection signals disconnection of the medication reservoir with the dispense assembly.
- the enclosure can comprise an elongated body comprising a cavity, a proximal surface comprising a top surface, a bottom surface, and an orifice extending from the top surface to the bottom surface, and a distal opening; and a support comprising a distal surface, a proximal surface, a perimeter complementary to an inside perimeter of the enclosure, an orifice extending from the distal surface to the proximal surface of the support, wherein the orifice is concentric with the orifice in the body, forming a channel extending from the orifice in the enclosure to the orifice in the support, wherein the support is operable to be displaced along a longitudinal axis within the enclosure.
- the contact sensor can be attached to the medication device through the channel extending from the orifice in the enclosure to the orifice in the support.
- the first electrical contact and the second electrical contact can be attached to the proximal surface of the support in a shape operable to surround the orifice in the support.
- the first spring can surround the channel and extends from the bottom surface of the enclosure to the proximal surface of the support, and the spring can be operable to bias the support from the bottom surface of the enclosure.
- the enclosure can further comprise an electrically conductive ring attached to the bottom surface of the body, wherein the conductive ring is operable to contact and establish an electrical connection between the first and second electrical contacts when a force applied to the enclosure and/or support to connect the medication reservoir with the dispense assembly through the channel causes the support, the enclosure, or both, to be displaced along the longitudinal axis, wherein an electrical connection signals the connection of the medication reservoir with the dispense assembly and the formation of the fluid flow path between the medication reservoir and dispense assembly.
- the conductive ring can be a finger disk spring.
- the medication delivery device can further comprise a first section of tubing comprising a first end and a second end, wherein the first end of the first section of tubing is attached to and in fluid communication with the medication reservoir, and a second section of tubing comprising a first end and a second end, wherein the first end of the second section of tubing is attached to and in fluid communication with the medication delivery device, and wherein each of the second end of the first section of tubing and the second end of the second section of tubing comprise a connector for connecting the second ends of the sections of tubing, thereby forming a fluid flow path between the medication reservoir and the dispense assembly.
- the contact sensor can be attached through the channel at a connector between the medication reservoir and the first end of the first section of tubing, at a connector between the dispense assembly and the first end of the second section of tubing, or at the connector for connecting the second ends of the sections of tubing.
- the connector can be a luer connector.
- FIG. 1 illustrates a diagram of an aspect of a system in accordance with an aspect of the invention.
- FIG. 2 is a diagram of an example of a contact sensor attached to a first section of an IV line at a connector before attaching the first section of the IV line with a second section of the IV line at the connector. A medication reservoir attached to the second section of the IV line is shown.
- FIG. 3 is an exploded perspective view of an aspect of a contact sensor.
- FIG. 4 is an exploded perspective view of an aspect of a contact sensor.
- FIG. 5 is a perspective cross section view of the contact sensor.
- FIG. 6 is a perspective cross section exploded view of the contact sensor.
- FIG. 7 is a diagram of an aspect of components of a controller.
- FIG. 8 is a flow chart of a method of use of the system.
- Parenteral administration can be subcutaneous, intramuscular, intraperitoneal, or intravenous administration.
- systems disclosed herein monitor intravenous (IV) administration of medication by an IV administration device.
- the IV administration is an infusion of a medication.
- An IV infusion is a controlled administration of medication into your bloodstream over time.
- the infusion can be through standard IV lines.
- Standard IV lines are typically used for short-term needs. For instance, they may be used during a short hospital stay or in an outpatient setting to administer medication during surgery or to give pain medications, nausea medications, or antibiotics.
- a standard IV line can typically be used for up to four days.
- a needle can be inserted into a vein in the wrist, elbow, or the back of the hand. The catheter is then pushed over the needle. The needle is removed, and the catheter remains in your vein.
- Infusion can be pump infusion wherein a pump is attached to an IV line to send medication and a solution, such as sterile saline, into your catheter in a slow, steady manner. Pumps may be used when the medication dosage must be precise and controlled.
- infusion can be drip infusion. This method uses gravity to deliver a constant amount of medication over a set period of time. With a drip, the medication and solution drip from a bag through a tube and into the catheter.
- An infusion can also be through a central venous catheter.
- Long-term medication treatment such as chemotherapy or total parenteral nutrition, usually requires a central venous catheter (CVC) instead of a standard IV catheter.
- CVC central venous catheter
- a CVC is inserted into a vein in your neck, chest, arm, or groin area.
- a CVC can stay in place for several weeks or even months.
- a CVC can be a peripherally inserted central catheter (PICC).
- PICC peripherally inserted central catheter
- a PICC has a long line that sends medication from the area of insertion, through your blood vessels, all the way to a vein near your heart.
- a PICC is typically placed in a vein above your elbow in your upper arm.
- a CVC can also be a tunneled catheter.
- a tunneled catheter medication can be sent directly into blood vessels in the heart.
- One end of the catheter is placed into a vein in the neck or chest during a short surgical procedure.
- the rest of the catheter is tunneled through the body, with the other end coming out through the skin. Medications can then be given into that end of the catheter.
- a CVC can be an implanted port.
- an implanted port inserts a catheter into a vein in the neck or chest.
- This device is also placed during a short surgical procedure. But unlike a tunneled catheter, an implanted port is located completely beneath the skin. To use this device, a healthcare provider injects medication through the skin into the port, which sends the medication into the bloodstream.
- the systems, devices, methods, and computer program products allow for monitoring when and for how long the patient is using the apparatus for the parenteral administration of medication.
- Monitoring administration allows interested parties (e.g., medical professionals, patient caregivers, patient family and friends, etc.) be kept up to date on the patient's adherence.
- Practical uses for this information include but are not limited to: determining which patients need check-ups (e.g., in person, via telephone, via Internet such as instant messaging or video conference, etc.) to adjust their habits of usage, alerting physicians to patients who may be potentially abusing their medical devices, and/or tracking the non-adherence of patients, which would allow insurance companies and healthcare professional to determine which patients are more at-risk.
- One advantage of the systems and methods described herein includes providing objective verification of medication adherence of Outpatient Parenteral Antibiotic Therapy (OPAT) patients.
- OPT Outpatient Parenteral Antibiotic Therapy
- the systems and methods described herein require minimal effort from patients, and this is particularly important for non-adherent patients.
- the systems, devices, and methods described herein also benefit from a simple and inexpensive design.
- a contact sensor 200 for attachment to a medication delivery device.
- the device can be removably attached to the medication delivery device.
- the electrical contact sensor 200 comprises an enclosure 201 comprising a first electrical contact 202 , a second electrical contact 203 , and a first spring 204 (shown in FIG. 3 ) operable to bias the first and second contacts from establishing an electrical connection.
- system 100 further comprises a controller 300 in electrical communication with the contact sensor 200 through electrical wiring 208 .
- a secondary device 400 may be in communication with the controller 300 of system 100 .
- a cloud database 500 may also be in communication with the controller 300 or the secondary device 400 where one or more time events and/or states of the fluid flow path is stored for access by an individual of interest through an API 600 .
- the individual can be the patient, or an individual monitoring the administration of the medication to the subject, such as a caretaker.
- Tubing 701 and 702 are shown attached to the contact sensor 200 .
- FIG. 2 the figure shows an example of a contact sensor 200 attached to a first end of a first section 802 of an IV line at a connector (not shown).
- a medication delivery device (not shown) is connected to a second end of the first section 802 .
- a second section 801 of an IV line is also shown.
- the figure shows the contact sensor and the IV lines before connecting the first and second sections of the IV line.
- the device and IV lines are shown before attaching the first section 702 of the IV line with the second section 801 of the IV line at the connector.
- the arrow shows the direction of the fluid flow path from the medication reservoir 803 to the medication delivery device.
- the first electrical contact 202 and the second electrical contact 203 are attached to the proximal surface 212 of the support 210 in a shape operable to surround the orifice 213 in the support.
- the first spring 204 is shown, surrounding the channel and extending from the bottom surface 205 of the body 214 to the proximal surface 212 of the support 210 .
- the spring 204 is operable to bias the support 210 from the bottom surface 205 of the body 214 .
- the spring can be a compression spring, an extension spring, a torsion spring, a constant force spring, or a washer spring. In one aspect, the spring is a compression spring.
- the enclosure 201 further comprises an electrically conductive ring 206 attached to the bottom surface 205 of the body 214 .
- the conductive ring 206 is operable to contact and establish an electrical connection between the first electrical contact 202 and second electrical contact 203 when a force applied to the body 214 and/or support 210 to connect the medication reservoir with the dispense assembly through the channel causes the support 210 to compress the first spring 204 and be displaced along the longitudinal axis of the enclosure 201 .
- the formation of an electrical connection signals the connection of the medication reservoir with the dispense assembly and the formation of the fluid flow path between the medication reservoir and dispense assembly.
- the conductive ring 206 is a finger disk spring.
- the electrical contact sensor 200 is attached at a connector.
- the medication delivery device further comprises a first section of tubing 801 comprising a first end and a second end, wherein the first end of the first section of tubing is attached to and in fluid communication with the medication reservoir, and a second section of tubing 802 comprising a first end and a second end, wherein the first end of the second section of tubing is attached to and in fluid communication with the medication delivery device, and wherein each of the second end of the first section of tubing and the second end of the second section of tubing comprise a connector for connecting the second ends of the sections of tubing, thereby forming a fluid flow path between the medication reservoir and the dispense assembly.
- the contact sensor is removably attached to a connector.
- the contact sensor can be attached around the outside surface of the connector.
- the contact sensor can be attached within a housing of the connector. It should be noted however, that a contact sensor of the disclosure does not form a part of and is not in contact with the fluid flow path.
- Connectors can be any fitting appropriate for use with a peritoneal medication delivery device, such as luer tapers.
- the system further comprises a controller 300 in electrical communication with the contact sensor 200 through electrical wiring 208 .
- the state of the electrical connection is the presence or absence of the electrical connection.
- the controller 300 comprises an input controller operable to receive the state of the electrical connection communicated by the sensor and at least one processor operable and assign one or more event times. Each event time indicates the time of a change in the state of the connection.
- the example controller 300 shows the at least one processor 302 .
- the controller 300 shown in FIG. 7 further comprise memory 304 , storage component 306 , input component 308 , output component 310 , and communication interface 312 .
- a power source can provide power to the controller 300 .
- Memory 304 may include a random-access memory (RAM), a read only memory (ROM), and/or another type of dynamic or static storage device (e.g., a flash memory, a magnetic memory, an optical memory, etc.) that stores information and/or instructions for use by controller 300 .
- RAM random-access memory
- ROM read only memory
- static storage device e.g., a flash memory, a magnetic memory, an optical memory, etc.
- the controller 300 can include addition input components that permits input by a user (e.g., a touch screen display, a keyboard, a keypad, a mouse, a button, a switch, a microphone, etc.).
- a user e.g., a touch screen display, a keyboard, a keypad, a mouse, a button, a switch, a microphone, etc.
- Communication interface 312 may include a transceiver-like component (e.g., a transceiver, a separate receiver and transmission source, etc.) that enables controller 300 to communicate the one or more event times to a secondary device, such as via a wireless connection using a wireless communication protocol, a wired connection, or a combination of wired and wireless connections.
- a wired connection can include an Ethernet interface, an optical interface, a coaxial interface, an infrared interface, a universal serial bus (USB) interface, and/or the like.
- a wireless communication protocol can include an NFC communication, a Radio-frequency identification (RFID) communication, Bluetooth, LTE, ZigBee, LoraWAN, Wi-Fi, and/or the like.
- RFID Radio-frequency identification
- the example method 700 is a method for monitoring a fluid flow path of a medication for parenteral administration from a medication reservoir to a subject, and alerting an individual of interest of any change in the status of the fluid flow path.
- the example method 700 can begin at block 701 .
- a connection is established between the controller 300 and a secondary device 400 .
- the state of the electric connection is received by the controller from the contact sensor.
- the state of the electrical connection can be the presence or absence of an electrical connection.
- the controller assigns an event time, wherein each event time indicates the time of a change in the state of the electrical current.
- the controller 300 communicates the event time to a secondary device 400 .
- an individual receives the event time on the secondary device.
- the secondary device 400 can alert the individual when an even time is received.
- the individual can take appropriate action based on the alert. For example, the individual can call instruct the patient to re-connect the medication device.
- the terms “communication” and “communicate” may refer to the reception, receipt, transmission, transfer, provision, and/or the like, of information (e.g., data, signals, messages, instructions, commands, and/or the like).
- one unit e.g., a device, a system, a component of a device or system, combinations thereof, and/or the like
- to be in communication with another unit means that the one unit is able to directly or indirectly receive information from and/or transmit information to the other unit.
- This may refer to a direct or indirect connection (e.g., a direct communication connection, an indirect communication connection, and/or the like) that is wired and/or wireless in nature.
- the term “computing device” may refer to one or more electronic devices that are operable to directly or indirectly communicate with or over one or more networks.
- the computing device may be a mobile device.
- the term “mobile device” may refer to one or more portable electronic devices operable to communicate with one or more networks.
- a mobile device may include a cellular phone (e.g., a smartphone or standard cellular phone), a portable computer (e.g., a tablet computer, a laptop computer, etc.), a wearable device (e.g., a watch, pair of glasses, lens, clothing, and/or the like), a portable computer with no user interface, a personal digital assistant (PDA), and/or other like devices.
- PDA personal digital assistant
- an “application” or “application program interface” refers to computer code, a set of rules, or other data sorted on a computer-readable medium that may be executed by a processor to facilitate interaction between software components, such as a client-side front-end and/or server-side back-end for receiving data from the client.
- An “interface” refers to a generated display, such as one or more graphical user interfaces (GUIs) with which a user may interact, either directly or indirectly (e.g., through a keyboard, mouse, etc.).
- GUIs graphical user interfaces
- medication refers to any substance (in liquid form) that is used to treat a health condition experienced by the patient.
- Non-limiting examples of medication include chemo drugs, nutrition delivered in total parenteral nutrition (TPN), hemotherapy drugs such as doxorubicin, vincristine, cisplatin, and paclitaxel, antibiotics such as vancomycin, meropenem, and gentamicin, antifungal drugs such as micafungin and amphotericin, pain medications such as hydromorphone and morphine, drugs for low blood pressure such as dopamine, epinephrine, norepinephrine, and dobutamine, and immunoglobulin medications (IVIG)
- TPN total parenteral nutrition
- hemotherapy drugs such as doxorubicin, vincristine, cisplatin, and paclitaxel
- antibiotics such as vancomycin, meropenem, and gentamicin
- antifungal drugs such as micafungin and amphotericin
Landscapes
- Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Hematology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Anesthesiology (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Fluid Mechanics (AREA)
- Vascular Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- General Physics & Mathematics (AREA)
- Infusion, Injection, And Reservoir Apparatuses (AREA)
Abstract
Systems, devices, and methods described herein monitor when the fluid path of a medication in a parenteral medication delivery device is established or interrupted.
Description
- This application is a continuation application of U.S. application Ser. No. 16/846,012, filed Apr. 10, 2020, which claims the benefit of U.S. Provisional Patent Application No. 62/832,058 filed Apr. 10, 2019, the entire disclosure of which is incorporated herein by reference.
- The present disclosure provides systems, devices, and methods to monitor a fluid flow path between a medication reservoir and a medication dispense assembly in a medication delivery device.
- In the medical field one of the largest challenges with at-home medication is the issue of non-adherence caused by patients, either advertently or inadvertently, not following their prescribed medication regimen. This non-adherence includes but is not limited to patients failing to take medication at the prescribed times of day, for the prescribed duration of time and/or for the prescribed number of times per day. Outpatient care is typically much less expensive than inpatient care, and as a result, healthcare providers have drastically increased the proportion of patients receiving outpatient care compared to inpatient care over the past few decades. However, with reduced oversight from providers (i.e. doctors and nurses), non-adherence has become a more prevalent problem. Therefore, a method to objectively monitor outpatient medication regimen adherence is useful.
- Currently, the only consistent methods for dealing with outpatient non-adherence are with house visits and phone calls. The latter has limited effectiveness and both take time and resources that could be more efficiently allocated and administered. As the median age of people in the United States continues to increase the need for a system of monitoring patient adherence will also become more valuable. Conventional solutions have put the onus on the non-adherent patients to do extra work in order for these solutions to monitor adherence, but this is not effective because non-adherent patients typically do not go out of their way to follow extra directions.
- One aspect of the present disclosure encompasses a system for monitoring a state of a fluid flow path between a medication reservoir and a medication dispense assembly in a medication delivery device. The system comprises (a) an electrical contact sensor attached to the medication delivery device at a connector between the medication reservoir and the medication dispense assembly and operable to communicate a state of an electrical connection, the electrical contact sensor comprising an enclosure comprising a first electrical contact, a second electrical contact, and a first spring operable to bias the first and second contacts from establishing the electrical connection, wherein the state of the electrical connection is a presence or absence of the electrical current; and (b) a controller in electrical communication with the contact sensor, the controller comprising an input component operable to receive the state of the electrical connection communicated by the sensor and at least one processor operable to assign one or more event times, wherein each event time indicates the time of a change in the state of the electrical connection. A force applied to the contact sensor to connect the medication reservoir with the dispense assembly causes the contact of the first and second electrical contacts thereby establishing the electrical connection between the first and second contact sensors, and wherein an electrical connection signals the connection of the medication reservoir with the dispense assembly and formation of the fluid flow path between the medication reservoir and dispense assembly and the absence of an electrical connection signals disconnection of the medication reservoir with the dispense assembly.
- The enclosure can comprise an elongated body comprising a cavity, a proximal surface comprising a top surface, a bottom surface, and an orifice extending from the top surface to the bottom surface, and a distal opening; and a support comprising a distal surface, a proximal surface, a perimeter complementary to an inside perimeter of the enclosure, an orifice extending from the distal surface to the proximal surface of the support, wherein the orifice is concentric with the orifice in the body, forming a channel extending from the orifice in the enclosure to the orifice in the support, wherein the support is operable to be displaced along a longitudinal axis within the enclosure. The contact sensor can be attached to the medication device through the channel extending from the orifice in the enclosure to the orifice in the support. The first electrical contact and the second electrical contact can be attached to the proximal surface of the support in a shape operable to surround the orifice in the support. The first spring can surround the channel and extend from the bottom surface of the enclosure to the proximal surface of the support, and the spring can be operable to bias the support from the bottom surface of the enclosure.
- The enclosure can further comprise an electrically conductive ring attached to the bottom surface of the body. The conductive ring can be operable to contact and establish an electrical connection between the first and second electrical contacts when a force applied to the enclosure and/or support to connect the medication reservoir with the dispense assembly through the channel causes the enclosure and/or support to be displaced along the longitudinal axis. The electrical connection signals the connection of the medication reservoir with the dispense assembly and the formation of the fluid flow path between the medication reservoir and dispense assembly. The conductive ring can be a finger disk spring.
- The medication delivery device can further comprise a first section of tubing comprising a first end and a second end, wherein the first end of the first section of tubing is attached to and in fluid communication with the medication reservoir, and a second section of tubing comprising a first end and a second end, wherein the first end of the second section of tubing is attached to and in fluid communication with the medication delivery device, and wherein each of the second end of the first section of tubing and the second end of the second section of tubing comprise a connector for connecting the second ends of the sections of tubing, thereby forming a fluid flow path between the medication reservoir and the dispense assembly. The contact sensor can be attached at a connector between the medication reservoir and the first end of the first section of tubing, at a connector between the dispense assembly and the first end of the second section of tubing, or at the connector for connecting the second ends of the sections of tubing. The connector can be a luer connector.
- The system can be further operable to communicate the one or more event times to an individual. The controller can further be operable to communicate the one or more event times to an individual. The individual can be a patient, a caretaker for the patient, an individual monitoring administration of the medication to a subject, or any other entity designated by one of the aforementioned. The controller can also be operable to communicate the one or more event times to a secondary device. The controller can further comprise a transmitter operable to communicate the one or more event times to the secondary device wirelessly using a wireless communication protocol. The wireless communication protocol is selected from an NFC communication, a Radio-frequency identification (RFID) communication, Bluetooth, LTE, ZigBee, LoraWAN, or Wi-Fi. In some aspects, the wireless communication protocol is Bluetooth.
- The secondary device can be a mobile computing device such as a cellular phone, a portable computer, a wearable device, a portable computer with no user interface, and/or a personal digital assistant (PDA). The secondary device can also be a cloud computing device.
- The dispense assembly can be an intravenous dispense assembly. For instance, the dispense assembly is peripherally inserted central catheter (PICC line).
- Another aspect of the present disclosure encompasses an electrical contact sensor device for monitoring a state of a fluid flow path between a medication reservoir and medication dispense assembly in a medication delivery device. The device comprises an enclosure comprising a first electrical contact and a second electrical contact and a first spring operable to bias the first and second contacts from establishing an electrical connection. The state of the electrical connection is a presence or absence of the electrical connection. A force applied to the contact sensor to connect the medication reservoir with the dispense assembly causes the contact of the first and second electrical contacts thereby establishing a connection between the first and second contact sensors, and the electrical connection signals the connection of the medication reservoir with the dispense assembly and formation of the fluid flow path between the medication reservoir and dispense assembly and the absence of an electrical connection signals disconnection of the medication reservoir with the dispense assembly.
- The enclosure can comprise an elongated body comprising a cavity, a proximal surface comprising a top surface, a bottom surface, and an orifice extending from the top surface to the bottom surface, and a distal opening; and a support comprising a distal surface, a proximal surface, a perimeter complementary to an inside perimeter of the enclosure, an orifice extending from the distal surface to the proximal surface of the support, wherein the orifice is concentric with the orifice in the body, forming a channel extending from the orifice in the enclosure to the orifice in the support, wherein the support is operable to be displaced along a longitudinal axis within the enclosure. The contact sensor can be attached to the medication device through the channel extending from the orifice in the enclosure to the orifice in the support.
- The first electrical contact and the second electrical contact can be attached to the proximal surface of the support in a shape operable to surround the orifice in the support. The first spring can surround the channel and extends from the bottom surface of the enclosure to the proximal surface of the support, and the spring can be operable to bias the support from the bottom surface of the enclosure.
- The enclosure can further comprise an electrically conductive ring attached to the bottom surface of the body, wherein the conductive ring is operable to contact and establish an electrical connection between the first and second electrical contacts when a force applied to the enclosure and/or support to connect the medication reservoir with the dispense assembly through the channel causes the support, the enclosure, or both, to be displaced along the longitudinal axis, wherein an electrical connection signals the connection of the medication reservoir with the dispense assembly and the formation of the fluid flow path between the medication reservoir and dispense assembly. The conductive ring can be a finger disk spring.
- The medication delivery device can further comprise a first section of tubing comprising a first end and a second end, wherein the first end of the first section of tubing is attached to and in fluid communication with the medication reservoir, and a second section of tubing comprising a first end and a second end, wherein the first end of the second section of tubing is attached to and in fluid communication with the medication delivery device, and wherein each of the second end of the first section of tubing and the second end of the second section of tubing comprise a connector for connecting the second ends of the sections of tubing, thereby forming a fluid flow path between the medication reservoir and the dispense assembly. The contact sensor can be attached through the channel at a connector between the medication reservoir and the first end of the first section of tubing, at a connector between the dispense assembly and the first end of the second section of tubing, or at the connector for connecting the second ends of the sections of tubing. The connector can be a luer connector.
- The description will be more fully understood with reference to the following figures, which are presented as various embodiments of the disclosure and should not be construed as a complete recitation of the scope of the disclosure, wherein:
-
FIG. 1 illustrates a diagram of an aspect of a system in accordance with an aspect of the invention. -
FIG. 2 is a diagram of an example of a contact sensor attached to a first section of an IV line at a connector before attaching the first section of the IV line with a second section of the IV line at the connector. A medication reservoir attached to the second section of the IV line is shown. -
FIG. 3 is an exploded perspective view of an aspect of a contact sensor. -
FIG. 4 is an exploded perspective view of an aspect of a contact sensor. -
FIG. 5 is a perspective cross section view of the contact sensor. -
FIG. 6 is a perspective cross section exploded view of the contact sensor. -
FIG. 7 is a diagram of an aspect of components of a controller. -
FIG. 8 is a flow chart of a method of use of the system. - The systems, devices, methods, and computer program products for monitoring a fluid flow path will be understood from the accompanying drawings, taken in conjunction with the accompanying description. It is noted that, for purposes of illustrative clarity, certain elements in various drawings may not be drawn to scale. Several variations of the system are presented herein. It should be understood that various components, parts, and features of the different variations may be combined together and/or interchanged with one another, all of which are within the scope of the present application, even though not all variations and particular variations are shown in the drawings. It should also be understood that the mixing and matching of features, elements, and/or functions between various variations is expressly contemplated herein so that one of ordinary skill in the art would appreciate from this disclosure that the features, elements, and/or functions of one variation may be incorporated into another variation as appropriate, unless described otherwise.
- Provided herein are systems, devices, methods, and computer program products for monitoring a fluid flow path of a medication for parenteral administration from a medication reservoir to a subject in need thereof. Parenteral administration can be subcutaneous, intramuscular, intraperitoneal, or intravenous administration.
- In some aspects, systems disclosed herein monitor intravenous (IV) administration of medication by an IV administration device. In one aspect, the IV administration is an infusion of a medication. An IV infusion is a controlled administration of medication into your bloodstream over time. The infusion can be through standard IV lines. Standard IV lines are typically used for short-term needs. For instance, they may be used during a short hospital stay or in an outpatient setting to administer medication during surgery or to give pain medications, nausea medications, or antibiotics. A standard IV line can typically be used for up to four days. With standard IV administration, a needle can be inserted into a vein in the wrist, elbow, or the back of the hand. The catheter is then pushed over the needle. The needle is removed, and the catheter remains in your vein. All IV catheters are typically given in a hospital or clinic, or for outpatient IV therapy. Infusion can be pump infusion wherein a pump is attached to an IV line to send medication and a solution, such as sterile saline, into your catheter in a slow, steady manner. Pumps may be used when the medication dosage must be precise and controlled. Alternatively, infusion can be drip infusion. This method uses gravity to deliver a constant amount of medication over a set period of time. With a drip, the medication and solution drip from a bag through a tube and into the catheter.
- An infusion can also be through a central venous catheter. Long-term medication treatment, such as chemotherapy or total parenteral nutrition, usually requires a central venous catheter (CVC) instead of a standard IV catheter. A CVC is inserted into a vein in your neck, chest, arm, or groin area. A CVC can stay in place for several weeks or even months. A CVC can be a peripherally inserted central catheter (PICC). A PICC has a long line that sends medication from the area of insertion, through your blood vessels, all the way to a vein near your heart. A PICC is typically placed in a vein above your elbow in your upper arm. A CVC can also be a tunneled catheter. With a tunneled catheter, medication can be sent directly into blood vessels in the heart. One end of the catheter is placed into a vein in the neck or chest during a short surgical procedure. The rest of the catheter is tunneled through the body, with the other end coming out through the skin. Medications can then be given into that end of the catheter. Additionally a CVC can be an implanted port. Like a tunneled catheter, an implanted port inserts a catheter into a vein in the neck or chest. This device is also placed during a short surgical procedure. But unlike a tunneled catheter, an implanted port is located completely beneath the skin. To use this device, a healthcare provider injects medication through the skin into the port, which sends the medication into the bloodstream.
- The systems, devices, methods, and computer program products, allow for monitoring when and for how long the patient is using the apparatus for the parenteral administration of medication. Monitoring administration allows interested parties (e.g., medical professionals, patient caregivers, patient family and friends, etc.) be kept up to date on the patient's adherence. Practical uses for this information include but are not limited to: determining which patients need check-ups (e.g., in person, via telephone, via Internet such as instant messaging or video conference, etc.) to adjust their habits of usage, alerting physicians to patients who may be potentially abusing their medical devices, and/or tracking the non-adherence of patients, which would allow insurance companies and healthcare professional to determine which patients are more at-risk. One advantage of the systems and methods described herein includes providing objective verification of medication adherence of Outpatient Parenteral Antibiotic Therapy (OPAT) patients. The systems and methods described herein require minimal effort from patients, and this is particularly important for non-adherent patients. The systems, devices, and methods described herein also benefit from a simple and inexpensive design.
- Referring to
FIG. 1 , one aspect of thesystem 100 is presented in accordance with an example in which acontact sensor 200 for attachment to a medication delivery device. The device can be removably attached to the medication delivery device. Theelectrical contact sensor 200 comprises anenclosure 201 comprising a firstelectrical contact 202, a secondelectrical contact 203, and a first spring 204 (shown inFIG. 3 ) operable to bias the first and second contacts from establishing an electrical connection. As shown inFIG. 1 ,system 100 further comprises acontroller 300 in electrical communication with thecontact sensor 200 throughelectrical wiring 208. Asecondary device 400 may be in communication with thecontroller 300 ofsystem 100. Acloud database 500 may also be in communication with thecontroller 300 or thesecondary device 400 where one or more time events and/or states of the fluid flow path is stored for access by an individual of interest through anAPI 600. The individual can be the patient, or an individual monitoring the administration of the medication to the subject, such as a caretaker.Tubing contact sensor 200. - Referring to
FIG. 2 , the figure shows an example of acontact sensor 200 attached to a first end of afirst section 802 of an IV line at a connector (not shown). A medication delivery device (not shown) is connected to a second end of thefirst section 802. Also shown is asecond section 801 of an IV line. Amedication reservoir 803 attached to thesecond section 801 of the IV line is shown. The figure shows the contact sensor and the IV lines before connecting the first and second sections of the IV line. The device and IV lines are shown before attaching thefirst section 702 of the IV line with thesecond section 801 of the IV line at the connector. The arrow shows the direction of the fluid flow path from themedication reservoir 803 to the medication delivery device. - Referring now to
FIGS. 3-6 , an aspect of thecontact sensor 200 is shown. Theelectrical contact sensor 200 comprises anenclosure 201. Theenclosure 201 comprises anelongated body 214 comprising a cavity, aproximal surface 216 comprising atop surface 218, abottom surface 205, and anorifice 224 extending from thetop surface 218 to thebottom surface 205. Thebody 214 comprises adistal opening 207. Theenclosure 201 also comprises asupport 210 comprising adistal surface 211, aproximal surface 212, a perimeter complementary to the inside perimeter of the enclosure, anorifice 213 extending from thedistal surface 211 to theproximal surface 212 of thesupport 210. Theorifice 213 is concentric with theorifice 224 in thebody 214, forming a channel extending from theorifice 224 in thebody 214 to theorifice 213 in thesupport 210. Thesupport 210 is operable to be displaced along a longitudinal axis within the cavity of thebody 214. In the aspect of thecontact sensor 200 depicted inFIG. 2 andFIG. 3 , the firstelectrical contact 202 and the secondelectrical contact 203 are attached to theproximal surface 212 of thesupport 210 in a shape operable to surround theorifice 213 in the support. Thefirst spring 204 is shown, surrounding the channel and extending from thebottom surface 205 of thebody 214 to theproximal surface 212 of thesupport 210. Thespring 204 is operable to bias thesupport 210 from thebottom surface 205 of thebody 214. The spring can be a compression spring, an extension spring, a torsion spring, a constant force spring, or a washer spring. In one aspect, the spring is a compression spring. - In the aspect of the
contact sensor 200 depicted inFIGS. 3-6 , theenclosure 201 further comprises an electricallyconductive ring 206 attached to thebottom surface 205 of thebody 214. Theconductive ring 206 is operable to contact and establish an electrical connection between the firstelectrical contact 202 and secondelectrical contact 203 when a force applied to thebody 214 and/orsupport 210 to connect the medication reservoir with the dispense assembly through the channel causes thesupport 210 to compress thefirst spring 204 and be displaced along the longitudinal axis of theenclosure 201. The formation of an electrical connection signals the connection of the medication reservoir with the dispense assembly and the formation of the fluid flow path between the medication reservoir and dispense assembly. In some aspects, theconductive ring 206 is a finger disk spring. - The
electrical contact sensor 200 is attached at a connector. In some aspects, the medication delivery device further comprises a first section oftubing 801 comprising a first end and a second end, wherein the first end of the first section of tubing is attached to and in fluid communication with the medication reservoir, and a second section oftubing 802 comprising a first end and a second end, wherein the first end of the second section of tubing is attached to and in fluid communication with the medication delivery device, and wherein each of the second end of the first section of tubing and the second end of the second section of tubing comprise a connector for connecting the second ends of the sections of tubing, thereby forming a fluid flow path between the medication reservoir and the dispense assembly. In an aspect, the contact sensor is attached at a connector between the medication reservoir and the first end of the first section of tubing. In another aspect, the contact sensor is attached at a connector between the dispense assembly and the first end of the second section of tubing. In yet another aspect, the contact sensor is attached at the connector for connecting the second ends of the sections of tubing. - In some aspects, the contact sensor is removably attached to a connector. The contact sensor can be attached around the outside surface of the connector. Alternatively, the contact sensor can be attached within a housing of the connector. It should be noted however, that a contact sensor of the disclosure does not form a part of and is not in contact with the fluid flow path.
- Connectors can be any fitting appropriate for use with a peritoneal medication delivery device, such as luer tapers.
- The system further comprises a
controller 300 in electrical communication with thecontact sensor 200 throughelectrical wiring 208. As explained above, the state of the electrical connection is the presence or absence of the electrical connection. Thecontroller 300 comprises an input controller operable to receive the state of the electrical connection communicated by the sensor and at least one processor operable and assign one or more event times. Each event time indicates the time of a change in the state of the connection. - The
controller 300 can be operable to communicate the one or more event times to an individual. For instance, thecontroller 300 can further comprise an output component to indicate a time event to an individual. Alternatively, thecontroller 300 can communicate the one or more event times to asecondary device 400. For example, the output component can be a transmitter operable to communicate the one or more event times to asecondary device 400 wirelessly using a wireless communication protocol. - Referring now to
FIG. 7 ,FIG. 7 is diagram of components in accordance with anexample controller 300. Thecontroller 300 is provided by way of example, as thecontroller 300 can comprise other components, such as a transmitter, a computer monitor etc., that may be present for functioning of the controller in various aspects of the disclosure. Each block shown inFIG. 7 represents one or more component ofcontroller 300. Furthermore, the illustrated order of blocks is illustrative only and the order of the blocks can change according to the present disclosure. Additional blocks may be added or fewer blocks may be utilized, without departing from this disclosure. - The
example controller 300 shows the at least oneprocessor 302. Thecontroller 300 shown inFIG. 7 further comprisememory 304,storage component 306,input component 308,output component 310, andcommunication interface 312. A power source can provide power to thecontroller 300. -
Memory 304 may include a random-access memory (RAM), a read only memory (ROM), and/or another type of dynamic or static storage device (e.g., a flash memory, a magnetic memory, an optical memory, etc.) that stores information and/or instructions for use bycontroller 300. -
Storage component 306 may store information and/or software related to the operation and use ofcontroller 300. For example,storage component 306 can include a hard disk (e.g., a magnetic disk, an optical disk, a magneto-optic disk, a solid state disk, etc.), a compact disc (CD), a digital versatile disc (DVD), a floppy disk, a cartridge, a magnetic tape, and/or another type of computer-readable medium, along with a corresponding drive. - In addition to the
input component 308 operable to receive the state of the electrical connection communicated by the sensor, thecontroller 300 can include addition input components that permits input by a user (e.g., a touch screen display, a keyboard, a keypad, a mouse, a button, a switch, a microphone, etc.). -
Output component 310 may include a component that provides output information from controller 300 (e.g., a display, a speaker, one or more light-emitting diodes (LEDs), etc.). -
Communication interface 312 may include a transceiver-like component (e.g., a transceiver, a separate receiver and transmission source, etc.) that enablescontroller 300 to communicate the one or more event times to a secondary device, such as via a wireless connection using a wireless communication protocol, a wired connection, or a combination of wired and wireless connections. A wired connection can include an Ethernet interface, an optical interface, a coaxial interface, an infrared interface, a universal serial bus (USB) interface, and/or the like. A wireless communication protocol can include an NFC communication, a Radio-frequency identification (RFID) communication, Bluetooth, LTE, ZigBee, LoraWAN, Wi-Fi, and/or the like. - The
secondary device 400 can be a stationary computing device such as a desktop computer. Alternatively, thesecondary device 400 can be mobile computing device such as a cellular phone (e.g., a smartphone or standard cellular phone), a portable computer (e.g., a tablet computer, a laptop computer, etc.), a wearable device (e.g., a watch, a pair of glasses, a lens, clothing, and/or the like), a personal digital assistant (PDA), a computing device with no user interface, and/or other like devices. - Referring to
FIG. 8 , a flowchart is presented in accordance with anexample method 700 of using thesystem 100. Themethod 700 is provided by way of example, as there are a variety of methods to use thesystem 100. Each block shown inFIG. 5 represents one or more processes, methods or subroutines, carried out in theexample method 700. Furthermore, the illustrated order of blocks is illustrative only and the order of the blocks can change according to the present disclosure. Additional blocks may be added or fewer blocks may be utilized, without departing from this disclosure. - The
example method 700 is a method for monitoring a fluid flow path of a medication for parenteral administration from a medication reservoir to a subject, and alerting an individual of interest of any change in the status of the fluid flow path. Theexample method 700 can begin atblock 701. Atblock 701, a connection is established between thecontroller 300 and asecondary device 400. Atblock 703, the state of the electric connection is received by the controller from the contact sensor. The state of the electrical connection can be the presence or absence of an electrical connection. Atblock 705, the controller assigns an event time, wherein each event time indicates the time of a change in the state of the electrical current. Atblock 707, thecontroller 300 communicates the event time to asecondary device 400. Atblock 709, an individual receives the event time on the secondary device. For instance thesecondary device 400 can alert the individual when an even time is received. Atblock 711, the individual can take appropriate action based on the alert. For example, the individual can call instruct the patient to re-connect the medication device. - Unless defined otherwise, all technical and scientific terms used herein have the meaning commonly understood by a person skilled in the art to which this invention belongs. The following references provide one of skill with a general definition of many of the terms used in this invention: Singleton et al., Dictionary of Microbiology and Molecular Biology (2nd ed. 1994); The Cambridge Dictionary of Science and Technology (Walker ed., 1988); The Glossary of Genetics, 5th Ed., R. Rieger et al. (eds.), Springer Verlag (1991); and Hale & Marham, The Harper Collins Dictionary of Biology (1991). As used herein, the following terms have the meanings ascribed to them unless specified otherwise.
- When introducing elements of the present disclosure or the preferred aspects(s) thereof, the articles “a”, “an”, “the” and “said” are intended to mean that there are one or more of the elements. The terms “comprising”, “including” and “having” are intended to be inclusive and mean that there may be additional elements other than the listed elements.
- As used herein, the terms “communication” and “communicate” may refer to the reception, receipt, transmission, transfer, provision, and/or the like, of information (e.g., data, signals, messages, instructions, commands, and/or the like). For one unit (e.g., a device, a system, a component of a device or system, combinations thereof, and/or the like) to be in communication with another unit means that the one unit is able to directly or indirectly receive information from and/or transmit information to the other unit. This may refer to a direct or indirect connection (e.g., a direct communication connection, an indirect communication connection, and/or the like) that is wired and/or wireless in nature. Additionally, two units may be in communication with each other even though the information transmitted may be modified, processed, relayed, and/or routed between the first and second unit. For example, a first unit may be in communication with a second unit even though the first unit passively receives information and does not actively transmit information to the second unit. Alternatively, a first unit may be in communication with a second unit if at least one intermediary unit (e.g., a third unit located between the first unit and the second unit) processes information received from the first unit and communicates the processed information to the second unit.
- As used herein, the term “computing device” may refer to one or more electronic devices that are operable to directly or indirectly communicate with or over one or more networks. The computing device may be a mobile device. As used herein, the term “mobile device” may refer to one or more portable electronic devices operable to communicate with one or more networks. As an example, a mobile device may include a cellular phone (e.g., a smartphone or standard cellular phone), a portable computer (e.g., a tablet computer, a laptop computer, etc.), a wearable device (e.g., a watch, pair of glasses, lens, clothing, and/or the like), a portable computer with no user interface, a personal digital assistant (PDA), and/or other like devices. The computing device may not be a mobile device, such as a desktop computer. Furthermore, the term “computer” may refer to any computing device that includes the necessary components to receive, process, and output data, and normally includes a display, a processor, a memory, an input device, and a network interface.
- As used herein, the term “application” or “application program interface” (API) refers to computer code, a set of rules, or other data sorted on a computer-readable medium that may be executed by a processor to facilitate interaction between software components, such as a client-side front-end and/or server-side back-end for receiving data from the client. An “interface” refers to a generated display, such as one or more graphical user interfaces (GUIs) with which a user may interact, either directly or indirectly (e.g., through a keyboard, mouse, etc.).
- As used herein, the term “medication” refers to any substance (in liquid form) that is used to treat a health condition experienced by the patient. Non-limiting examples of medication include chemo drugs, nutrition delivered in total parenteral nutrition (TPN), hemotherapy drugs such as doxorubicin, vincristine, cisplatin, and paclitaxel, antibiotics such as vancomycin, meropenem, and gentamicin, antifungal drugs such as micafungin and amphotericin, pain medications such as hydromorphone and morphine, drugs for low blood pressure such as dopamine, epinephrine, norepinephrine, and dobutamine, and immunoglobulin medications (IVIG)
- As various changes could be made in the above-described systems without departing from the scope of the invention, it is intended that all matter contained in the above description and in the examples given below, shall be interpreted as illustrative and not in a limiting sense.
Claims (22)
1.-20. (canceled)
21. A method of monitoring a state of a fluid flow path through a medication delivery device, the method comprising:
attaching a contact sensor around an outside surface of at least one portion of the medication delivery device, wherein the contact sensor is not within the fluid flow path;
receiving, with one or more controllers, a state of electrical connection from the contact sensor, wherein the state of the electrical connection is a presence or absence of current; and
assigning, with one or more processing units, one or more event times, wherein each of the one or more event times indicates a time of a change in the state of the electrical connection.
22. The method of claim 21 , further comprising connecting the fluid flow path at a connection point, wherein the medication delivery device is located at the connection point.
23. The method of claim 22 , wherein connecting the fluid flow path at the connection point causes a change in the state of the electrical connection.
24. The method of claim 22 , wherein connecting the fluid flow path at the connection point causes at least a portion of the contact sensor to be displaced along an axis.
25. The method of claim 22 , further comprising flowing fluid through the medication delivery device.
26. The method of claim 22 , wherein connecting the fluid flow path at the connection point includes connecting a first section and a second section.
27. The method of claim 26 , wherein the first section is a first section of tubing, wherein the second section is a second section of tubing.
28. The method of claim 26 , wherein the first section comprises a first end and a second end, wherein the second section comprises a first end and a second end, wherein connecting the first section and the second section includes connecting the second end of the first section and the second end of the second section.
29. The method of claim 28 , further comprising connecting the first end of the first section to a medication reservoir such that the first section is in fluid communication with the medication reservoir.
30. The method of claim 28 , further comprising connecting the first end of the second section to a medication dispense assembly such that the second section is in communication with the medication dispense assembly.
31. The method of claim 21 , further comprising establishing a connection between the one or more controllers and a secondary device.
32. The method of claim 31 , further comprising communicating, with the one or more controllers, the one or more event times to one or more secondary devices.
33. The method of claim 32 , wherein the one or more controllers includes one or more transmitters that communicates the one or more event times to the one or more secondary devices wirelessly using a wireless communication protocol.
34. The method of claim 21 , further comprising communicating the one or more event times to at least one of: a patient, a physician, a nurse, a coordinator, medical practitioner, a caretaker for the patient, or an individual monitoring administration of medication to the patient; wherein each of the one or more event times indicates a change in a state of connection of the fluid flow path.
35. The method of claim 21 , wherein the state of the electrical connection corresponds to the state of the fluid flow path.
36. The method of claim 21 , wherein the contact sensor is removably attached around the outside surface.
37. The method of claim 21 , wherein the contact sensor comprises a single-piece enclosure.
38. The method of claim 21 , wherein the outside surface of the at least one portion of the medication delivery device is part of a connector.
39. The method of claim 38 , wherein the connector is a luer connector.
40. The method of claim 21 , wherein the at least one portion of the medication delivery device is located at one end of a connection point within the fluid flow path.
41. The method of claim 21 , wherein the contact sensor encloses 360-degrees around the outside surface.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US18/196,927 US20230355872A1 (en) | 2019-04-10 | 2023-05-12 | Contact sensor for monitoring medication adherence |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201962832058P | 2019-04-10 | 2019-04-10 | |
US16/846,012 US11684715B2 (en) | 2019-04-10 | 2020-04-10 | Contact sensor for monitoring medication adherence |
US18/196,927 US20230355872A1 (en) | 2019-04-10 | 2023-05-12 | Contact sensor for monitoring medication adherence |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/846,012 Continuation US11684715B2 (en) | 2019-04-10 | 2020-04-10 | Contact sensor for monitoring medication adherence |
Publications (1)
Publication Number | Publication Date |
---|---|
US20230355872A1 true US20230355872A1 (en) | 2023-11-09 |
Family
ID=72747540
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/846,012 Active 2041-12-16 US11684715B2 (en) | 2019-04-10 | 2020-04-10 | Contact sensor for monitoring medication adherence |
US18/196,927 Pending US20230355872A1 (en) | 2019-04-10 | 2023-05-12 | Contact sensor for monitoring medication adherence |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/846,012 Active 2041-12-16 US11684715B2 (en) | 2019-04-10 | 2020-04-10 | Contact sensor for monitoring medication adherence |
Country Status (1)
Country | Link |
---|---|
US (2) | US11684715B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11511099B2 (en) * | 2019-10-08 | 2022-11-29 | Medtronic Minimed, Inc. | Apparatus for detecting mating of a cap with a fluid delivery device and method |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3876234A (en) * | 1973-01-11 | 1975-04-08 | Extracorporeal Med Spec | Twist-lock connector |
US5429614A (en) * | 1993-06-30 | 1995-07-04 | Baxter International Inc. | Drug delivery system |
US7935081B2 (en) | 2004-08-31 | 2011-05-03 | Ethicon Endo-Surgery, Inc. | Drug delivery cassette and a medical effector system |
WO2009016635A2 (en) * | 2007-08-01 | 2009-02-05 | Medingo Ltd. | Detachable portable infusion device |
US9752914B2 (en) * | 2008-06-24 | 2017-09-05 | Fize Research Ltd | Measuring apparatus system and method |
EP2442725B1 (en) | 2009-06-18 | 2013-08-21 | Quanta Fluid Solutions Ltd | Vascular access monitoring device |
EP2461853B1 (en) | 2009-08-07 | 2016-03-30 | Unomedical A/S | Delivery device with sensor and one or more cannulas |
US8998840B2 (en) * | 2009-12-30 | 2015-04-07 | Medtronic Minimed, Inc. | Connection and alignment systems and methods |
TW201345578A (en) | 2012-01-31 | 2013-11-16 | Sanofi Aventis Deutschland | Limiting life time of dispense assembly |
US8870818B2 (en) * | 2012-11-15 | 2014-10-28 | Medtronic Minimed, Inc. | Systems and methods for alignment and detection of a consumable component |
US11083838B2 (en) * | 2014-07-21 | 2021-08-10 | Medtronic Minimed, Inc. | Smart connection interface |
IL267822B2 (en) * | 2017-01-06 | 2023-09-01 | Univ Boston | Infusion system and components thereof |
CA3094531A1 (en) | 2018-04-19 | 2019-10-24 | Becton, Dickinson And Company | System, method, and computer program product for identifying device connections |
-
2020
- 2020-04-10 US US16/846,012 patent/US11684715B2/en active Active
-
2023
- 2023-05-12 US US18/196,927 patent/US20230355872A1/en active Pending
Also Published As
Publication number | Publication date |
---|---|
US11684715B2 (en) | 2023-06-27 |
US20200324047A1 (en) | 2020-10-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7051120B2 (en) | Healthcare personal area identification network method and system | |
AU2014302608B2 (en) | Infusion system configured for transfer of data | |
US20230390543A1 (en) | Implantable medication infusion port with physiologic monitoring | |
US20230355872A1 (en) | Contact sensor for monitoring medication adherence | |
US20220347385A1 (en) | Medical device with automated modality switching | |
US20150041531A1 (en) | Infusion system housing medication scanner and user interface device displaying delivery data | |
US20140379360A1 (en) | Low glucose treatment for people with diabetes | |
US20240221890A1 (en) | Infusion management system | |
Hobbs et al. | Protocol for a randomised crossover trial to evaluate patient and nurse satisfaction with electronic and elastomeric portable infusion pumps for the continuous administration of antibiotic therapy in the home: the Comparing Home Infusion Devices (CHID) study | |
EP3998936A1 (en) | Implantable venous access port with remote physiological monitoring capabilities | |
CN107085818A (en) | A kind of medical system of implantable medical devices | |
Panda et al. | Smart and portable iot drug dispensing system for elderly and disabled person | |
US20240165324A1 (en) | Infusion management system | |
WO2016035098A2 (en) | Portable and smart intensive care unit | |
US20230302219A1 (en) | Contact sensor for monitoring medication adherence | |
KR20160000985A (en) | System for providing u-health service for oda recipient countries | |
KR20100048753A (en) | Patient relationship information service system and method for a home health care service | |
US20230395261A1 (en) | Method and system for automatically determining a quantifiable score | |
CN114945395A (en) | Modular power and connection system for infusion devices | |
CN116195001A (en) | Active patient-specific monitoring system | |
Alexandrou | Ultrasound Phlebotomy Improves the Experience of Liver Clinic Patients with Difficult Veins | |
WO2016099522A1 (en) | Identification of patient-connected medical devices |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |