US20230307471A1 - Display device having transmittance control for under-display camera pixels - Google Patents

Display device having transmittance control for under-display camera pixels Download PDF

Info

Publication number
US20230307471A1
US20230307471A1 US18/325,000 US202318325000A US2023307471A1 US 20230307471 A1 US20230307471 A1 US 20230307471A1 US 202318325000 A US202318325000 A US 202318325000A US 2023307471 A1 US2023307471 A1 US 2023307471A1
Authority
US
United States
Prior art keywords
display
pixels
camera
region
pixel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
US18/325,000
Inventor
Chia-Hao Tsai
Youcheng Lu
Ming-Jou TAI
Wei-Yen Chiu
Yung-Hsun Wu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Innolux Corp
Original Assignee
Innolux Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Innolux Corp filed Critical Innolux Corp
Priority to US18/325,000 priority Critical patent/US20230307471A1/en
Assigned to Innolux Corporation reassignment Innolux Corporation ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CHIU, WEI-YEN, LU, Youcheng, TAI, MING-JOU, TSAI, CHIA-HAO, WU, YUNG-HSUN
Publication of US20230307471A1 publication Critical patent/US20230307471A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/60OLEDs integrated with inorganic light-sensitive elements, e.g. with inorganic solar cells or inorganic photodiodes
    • H10K59/65OLEDs integrated with inorganic image sensors
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14609Pixel-elements with integrated switching, control, storage or amplification elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1462Coatings
    • H01L27/14621Colour filter arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/57Mechanical or electrical details of cameras or camera modules specially adapted for being embedded in other devices

Definitions

  • the disclosure relates to an electronic device, in particular to a display device and a driving method thereof.
  • the disclosure provides a display device and a driving method thereof, which helps to balance display quality and imaging quality.
  • the display device includes a camera region and a display region adjacent to the camera region.
  • the camera region includes a first region and a second region which allows a light beam to pass through.
  • the first region includes a plurality of first display pixels.
  • the display region includes a plurality of second display pixels. An area of each of the plurality of first display pixels is greater than an area of each of the plurality of second display pixels.
  • the first region is adjacent to the second region.
  • the first region includes a plurality of edges, and the second region is adjacent to two of the plurality of edges.
  • FIG. 1 is a schematic top diagram of a display device according to the first embodiment of the disclosure.
  • FIG. 2 is an enlarged schematic diagram of the region R in FIG. 1 .
  • FIG. 3 is a schematic timing diagram for displaying state switching of multiple camera pixels.
  • FIGS. 4 to 8 are schematic partial top diagrams of display devices according to the second embodiment to the sixth embodiment of the disclosure, respectively.
  • bonds and connection such as “connected”, “interconnected”, and the like, unless specifically defined, may mean that two structures are in direct contact, or that two structures are not indirect contact, where there are other structures located between the two structures.
  • the terms of bonding and connection may also include the case where both structures are movable or both structures are fixed.
  • electrical connection and “coupling” include any direct and indirect electrical connection means.
  • the electronic device disclosed in the disclosure may include, for example, display device, antenna device, sensing device, light emitting device, touch display, curved display, or free shape display, but the disclosure is not limited thereto.
  • the display may also be a bendable or flexible device.
  • the electron device may, for example, include liquid crystal, light emitting diode, quantum dot (QD), fluorescence, phosphor, other suitable display media, or a combination of the aforementioned material, but the disclosure is not limited thereto.
  • the light-emitting diode may include, for example, organic light-emitting diode (OLED), sub-millimeter light-emitting diode (mini LED), micro-light-emitting diode (micro LED), quantum dot light-emitting diode (including QLED, QDLED), other suitable materials, or a combination of the above, but the disclosure is not limited to thereto.
  • OLED organic light-emitting diode
  • mini LED sub-millimeter light-emitting diode
  • micro LED micro-light-emitting diode
  • quantum dot light-emitting diode including QLED, QDLED
  • the display device may, for example, include the splicing display device, but the disclosure is not limited thereto.
  • the antenna device may be, for example, a liquid crystal antenna, but the disclosure is not limited thereto.
  • the antenna device may, for example, include an antenna splicing device, but the disclosure is not limited thereto, t should be noted that the electronic device may be any combination of the foregoing, but the disclosure is not limited thereto. Moreover, the appearance of the electronic device may be rectangular, circular, polygonal, a shape with curved edges, or other suitable shapes.
  • the electronic device may have peripheral systems such as driving system, control system, light source system, rack system, and the like, so as to support a display device, an antenna device, or a splicing device.
  • the following description takes a display device as an example so as to illustrate the disclosure, but the disclosure is not limited thereto.
  • FIG. 1 is a schematic top diagram of a display device according to the first embodiment of the disclosure.
  • FIG. 2 is an enlarged schematic diagram of the region R in FIG. 1 .
  • a display device 1 of the disclosure may be a non-self-luminous display device.
  • the non-self-luminous display device may include liquid crystal display device, but the disclosure is not limited thereto.
  • the liquid crystal display device may be a liquid crystal display device that is in a dark state when no voltage is applied and is in a bright state when a voltage is applied, or may be a liquid crystal display device that is in a bright state when no voltage is applied and is a dark state when a voltage is applied, but no restriction is imposed here.
  • the liquid crystal display device reference can be made to the existing design, which will not be repeated here.
  • the display device 1 may include a display mode and a camera mode. In the display mode, the display device 1 provides a display function. In a camera mode, the display device 1 provides a shooting function. According to different requirements, the display device 1 may also provide a display function in the camera mode. For example, the display device 1 may display the acquired image while acquiring the image of a shooting subject, but the disclosure is not limited thereto.
  • the display device 1 may include a camera region R 1 .
  • FIG. 1 schematically shows a square camera region R 1 , and the camera region R 1 is disposed adjacent to one of the corners of the display device 1 .
  • the number, the disposition position, or the top view shape of the camera regions R 1 and the like may be changed as required.
  • the camera region R 1 may be configured to obtain an image of a shooting subject.
  • the camera region R 1 may include multiple camera pixels Pc.
  • the driving method of the display device 1 includes: placing the multiple camera pixels Pc in a state that a light beam is not allowed to pass through, in a display mode; and placing the multiple camera pixels Pc in a state that a light beam is allowed to pass through, in a camera mode.
  • the multiple camera pixels Pc are in a state that a light beam is not allowed to pass through; that is, the multiple camera pixels Pc are in a dark state in the display mode.
  • the multiple camera pixels Pc are in a state that a light beam is allowed to pass through; that is, the multiple camera pixels Pc are in a bright state in the camera mode.
  • the camera region R 1 may also include other sensing devices, such as fingerprint sensor, iris sensor, retina sensor, face sensor, in sensor, a movement sensor, gesture sensor, proximity sensor or other suitable sensors; the disclosure is not limited thereto.
  • the multiple camera pixels Pc may be equivalent to a black matrix in the display mode. That is, in the display mode, the multiple camera pixels Pc may be configured to block light leakage, block stray light, or block elements that are not intended to be seen by the user, or may be configured to enhance contrast.
  • the camera region R 1 may further include multiple first display pixels Pm 1 .
  • the multiple first display pixels Pm 1 may provide a display function in the display mode. According to different requirements, the multiple first display pixels Pm 1 may also provide a display function in the camera mode.
  • the first display pixel Pm 1 may emit a single color light
  • the multiple first display pixels Pm 1 may include multiple first blue pixels Pm 1 , multiple first green pixels Pm 12 , and multiple first red pixels Pm 13 .
  • Each of the multiple first blue pixels Pm 11 , the multiple first green pixels Pm 12 , and the multiple first red pixels Pm 13 may be disposed in a first direction D 1
  • the multiple first blue pixels Pm 11 , the multiple first green pixels Pm 12 , and the multiple first red pixels Pm 13 may be alternately disposed in a second direction D 2 .
  • the second direction D 2 intersects the first direction D 1
  • the second direction D 2 may be perpendicular to the first direction D 1 , but the disclosure is not limited thereto.
  • the first direction D 1 and the second direction D 2 are both perpendicular to a thickness direction (such as a third direction D 3 ) of the display device 1 .
  • a thickness direction such as a third direction D 3
  • the color type, number, shape or disposition of the pixels in the multiple first display pixels Pm 1 may be changed according to requirements.
  • the first direction D 1 may be, for example, an extending direction of a scan line (not shown) in the display device 1 , but the disclosure is not limited thereto.
  • the multiple camera pixels Pc and the multiple first display pixels Pm 1 may be alternately disposed in the second direction D 2 .
  • FIG. 2 schematically shows a pixel unit U, and the labeled pixel unit U includes one camera pixel Pc and one first blue pixel Pm 11 .
  • the camera region R 1 may include the multiple pixel units U, and each of the multiple pixel units U may include one camera pixel Pc and one first display pixel Pm 1 l (such as one first blue pixel Pm 11 , one first green pixel Pm 12 or one first red pixel Pm 13 ).
  • each of the multiple pixel units U may also include a camera pixel Pc and multiple first display pixels (such as a combination of a first blue pixel Pm 11 , a first green pixel Pm 12 , and a first red pixel Pm 13 , but the disclosure is not limited thereto).
  • the display device 1 may further include a display region R 2 .
  • the display region R 2 is adjacent to the camera region R 1 .
  • FIG. 1 schematically shows that the camera region R 1 is located at an upper right corner of the display region R 2 .
  • the respective number, the relative disposition relationship, the top view shape, the area ratio or the like of the camera region R 1 and of the display region R 2 may be changed according to requirements.
  • the camera region R 1 may also be located at an upper left corner of the display region R 2 or in the middle of one of the sides of the display region R 2 .
  • the display device 1 may include the multiple camera regions R 1 , and the multiple camera regions R 1 may be located at multiple corners or at the middle of multiple sides of the display region R 2 , or a combination of the above, but the disclosure is not limited thereto.
  • the display region R 2 may provide a display function. According to different requirements, the display region R 2 may also provide a display function in the camera mode. For example, the display region R 2 and the camera region R 1 may jointly provide the image captured by the camera region R 1 in the camera mode, but the disclosure is rot limited thereto.
  • the display region R 2 may include multiple second display pixels Pm 2 .
  • the second display pixel Pm 2 may emit a single color light.
  • the multiple second display pixels Pm 2 may include multiple second blue pixels Pm 21 , multiple second green pixels Pm 22 , and multiple second red pixels Pm 23 .
  • Each of the multiple second blue pixels Pm 21 , the multiple second green pixels Pm 22 , and the multiple second red pixels Pm 23 may be disposed in the first direction D 1
  • the multiple second blue pixels Pm 21 , the multiple second green pixels Pm 22 , and the multiple second red pixels Pm 23 may be alternately disposed in the second direction D 2 .
  • the color type, number, or disposition of the pixels in the multiple second display pixels Pm 2 may be changed according to requirements.
  • a resolution of the camera region R 1 may be lower than a resolution of the display region R 2 so as to reduce negative impact of diffraction or interference of the light beam (such as the image light beam from the shooting subject) on the imaging quality.
  • a pixel pitch d 1 in the first direction D 1 of two adjacent first red pixels Pm 13 in the camera region R 1 is greater than a pixel pitch d 2 in the first direction D 1 of the two adjacent first red pixels Pm 13 in the display area R 2 .
  • the multiple camera pixels Pc, the multiple first display pixels Pm 1 (including the multiple first blue pixels Pm 11 , the multiple first green pixels Pm 12 , and the multiple first red pixels Pm 13 ), and the multiple second display pixels Pm 2 (including the multiple second blue pixels Pm 21 , the multiple second green pixels Pm 22 , and the multiple second red pixels Pm 23 ) may have a same polarity.
  • the polarities of the multiple camera pixels, the multiple first display pixels Pm 1 , and the multiple second display pixels Pm 2 may be made all positive (represented by “+” in FIG.
  • the multiple first display pixels Pm 1 , and the multiple second display pixels Pm 2 may be made all negative (not shown in FIG. 2 ; represented by “ ⁇ ” in FIG. 4 ).
  • the polarity may be changed by making the voltage of the pixel electrode higher than the voltage of the common electrode or making the voltage of a pixel electrode lower than the voltage of a common electrode. Through polarity change, feature damage caused by liquid crystal molecule orientation to always be fixed in one direction can be reduced.
  • the camera pixel Pc, the first display pixel Pm 1 , and the second display pixel Pm 2 each have a pixel electrode and a common electrode, where the pixel electrodes of the camera pixel Pc, of the first display pixel Pm 1 , and of the second display pixel Pm 2 are separated from each other.
  • the common electrodes of the camera pixel Pc, of the first display pixel Pm 1 , and of the second display pixel Pm 2 may be separated from each other or connected to each other (such as being different parts of a continuous electrode).
  • a ratio of an area of the camera pixel Pc to an area of the one (or more) first display pixels Pm 1 may fall within a range of 0.04 to 25 (0.04 ⁇ area ratio ⁇ 25).
  • one pixel unit U may include one camera pixel Pc and at least three first display pixels Pm 1 , and the ratio of the area of one camera pixel Pc to a total area of the at least three first display pixels Pm 1 may fall within a range of 0.04 to 25.
  • the area of the first display pixel Pm 1 may be, for example, the area of the pixel electrode of the first display pixel Pm 1
  • the area of the camera pixel Pc may be, for example, an area of the pixel electrode of the camera pixel Pc.
  • the area of the first display pixel Pm 1 may be, for example, an area of a smallest imaginary rectangle surrounding the pixel electrode of the first display pixel Pm 1
  • the area of the camera pixel Pc may be, for example, an area of another smallest imaginary rectangle surrounding the pixel electrode of the camera pixel Pc, but the disclosure is not limited thereto.
  • the material of the pixel electrode and the common electrode may include a transparent conductive material, such as indium tin oxide (ITO), but the disclosure is not limited thereto.
  • the display device 1 may further include other elements or film layers.
  • the display device 1 may further include multiple active elements AD and multiple color filter patterns CF.
  • the multiple active elements AD and the multiple color filter patterns CF are located outside the multiple camera pixels Pc (that is, each camera pixel Pc may not need to include the active element AD and the color filter pattern CF) and located in the multiple first display pixels Pm 1 and the multiple second display pixels Pm 2 .
  • the color filter pattern CF may at least partially overlap the pixel electrodes of the multiple first display pixels Pm 1 and the pixel electrodes of the multiple second display pixels Pm 2 , and the color filter pattern CF may not need to overlap the pixel electrodes of the multiple camera pixels Pc.
  • the active element AD may be used as a switching element.
  • the active element AD may include a thin film transistor, but the disclosure is not limited thereto.
  • each display pixel (such as the first blue pixel Pm 11 , the first green pixel Pm 12 , the first red pixel Pm 13 , the second blue pixel Pm 21 , the second green pixel Pm 22 , or the second red pixel Pm 23 ) may include one or more active elements AD.
  • at least one active element AD in each display pixel is electrically connected to a scan line (not shown) and a data line (not shown) in the display device 1 so as to control signal input, but the disclosure is not limited thereto.
  • the color filter pattern CF allows specific light beams to pass through and filters out the remaining light beams so as to provide color display.
  • the multiple color filter patterns CF may include multiple blue filter patterns CF 1 , multiple green filter patterns CF 2 , and multiple red filter patterns CF 3 .
  • the multiple blue filter patterns CF 1 are located in the multiple first blue pixels Pm 11 and the multiple second blue pixels Pm 21 ;
  • the multiple green filter patterns CF 2 are located in the multiple first green pixels Pm 12 and the multiple second green pixels Pm 22 ;
  • the multiple red filter patterns CF 3 are located in the multiple first red pixels Pm 13 and the multiple second red pixels Pm 23 .
  • the camera pixel Pc is configured to adjust the light transmittance. For example, the camera pixel Pc switches between the camera mode and the display mode. Since the camera pixel Pc may not need to provide color display, the camera pixel Pc may not need to include the color filter pattern CF. In some embodiments, the camera pixel Pc may be electrically connected to one or more pins that output high voltage and low voltage in a driving element (such as a driver chip) so as to switch between the display mode and the camera mode. In this way, the camera pixel Pc may not need to include the active elements AD.
  • a driving element such as a driver chip
  • the display device 1 may further include a wire 10 and an outer lead bonding (OLB) region R 3
  • the outer lead bonding region R 3 may be provided with, for example, a flexible printed circuit hoard (FPC), a chip on film (COF) or related display driving circuits/elements.
  • the multiple camera pixels Pc may be electrically connected to the driving circuit or the driving element in the outer lead bonding region R 3 through the wire 10 .
  • the wire 10 may be in a different layer from the scan line and the data line.
  • the wire 10 may be disposed above the scan line and the data line and electrically connected to the pixel electrode in the camera pixel Pc through a conductive through hole CV, but the disclosure is not limited thereto.
  • the wire 10 may be fabricated together with the pixel electrode or the common electrode, that is, the wire 10 may be in the same layer as the pixel electrode or the common electrode.
  • the multiple camera pixels Pc being electrically connected to the driving elements through the wire 10 , there is no need to provide active elements in the camera pixels Pc, thereby helping to reduce the number of wires or elements required, increase the aperture ratio, or reduce the diffraction or interference of light beams.
  • the multiple camera pixels Pc may have a same polarity, such that the multiple camera pixels may be electrically connected to the wire 10 , thus the number of the wires 10 connected between the multiple camera pixels Pc and the driving element can be reduced, and the wire 10 has low influence on the border.
  • the multiple camera pixels Pc may be electrically connected to the driving element through the wire 10 .
  • the number of wires 10 may also be increased, and different wires 10 may be connected to multiple pins of the driving element so as to reduce the resistive-capacitive loading.
  • the multiple wires 10 may extend from the multiple camera pixels Pc through a same side or an opposite side of the display region R 2 (such as the left and right sides of the display region R 2 as shown in FIG. 1 ) to the driving element.
  • the camera region R 1 may also be disposed in the center so as to maintain the design of double-sided routing.
  • an oscilloscope may be configured to measure the signal and/or the waveform provided by the data line (not shown) or the wire 10 .
  • at least one data line or at least one wire 10 provides a square wave signal.
  • the square wave signal can be, for example, a positive/negative alternating current signal, and the positive/negative polarities of the first display pixel Pm 1 , the second display pixel Pm 2 , and the camera pixel Pc can be determined according to the positive/negative of the square wave signal, but this disclosure is not limited such thereto.
  • FIG. 3 is a schematic timing diagram for displaying state switching of multiple camera pixels.
  • the transition time of the multiple camera pixels increases as the number of camera pixels in the camera region increases.
  • the transition time of the camera pixel may be at least 20 times the transition time of the display pixel (such as the first display pixel or the second display pixel).
  • the state switching of the multiple camera pixels may be made to occur in the blanking time between two adjacent frames (such as the Nth frame and the N+1th frame), that is, the mode of the camera pixel is switched in the blanking time between the intervals of the adjacent two updated display screens.
  • the camera pixels may be connected to multiple wires so as to reduce the capacitive loading. Therefore, the camera pixels may be switched at the same time as is the Nth frame or the N+1th frame (that is, the screen switching of the camera pixels do not need to occur in the blanking time between the intervals of two frames).
  • FIGS. 4 to 8 are schematic partial top diagrams of display devices according to the second embodiment to the sixth embodiment of the disclosure, respectively.
  • the same or similar elements will use the same or similar reference numerals, and redundant description will be omitted.
  • the features in different embodiments may be mixed and matched arbitrarily as long as they do not violate the spirit of the disclosure or conflict with each other, and simple equivalent changes and modifications made in accordance with this specification or claims are still within the scope of this disclosure.
  • the multiple first display pixels Pm 1 (including the multiple first blue pixels Pm 11 , the multiple first green pixels Pm 12 , and the multiple first red pixels Pm 13 ) and the multiple second display pixels Pm 2 (including the multiple second blue pixels Pm 21 , the multiple second green pixels Pm 22 , and the multiple second red pixels Pm 23 ) have the same polarity, and the polarities of the multiple camera pixels Pc are opposite to the polarities of the multiple first display pixels Pm 1 and the multiple second display pixels Pm 2 .
  • the camera pixel Pc and the first display pixel Pm 1 (such as the first blue pixel Pm 11 , the first green pixel Pm 12 , or the first red pixel Pm 13 ) have opposite polarities.
  • the multiple camera pixels Pc and the multiple first display pixels Pm 1 in the camera region R 1 have opposite polarities, it is helpful to increase the light transmittance.
  • the polarity of any one of the multiple camera pixels Pc, the multiple first display pixels Pm 1 , and the multiple second display pixels Pm 2 may be switched by, for example, frame inversion.
  • each of the multiple camera pixels Pc, the multiple first display pixels Pm 1 , and the multiple second display pixels Pm 2 has an alternating positive/negative polarity in the first direction D 1
  • each of the multiple camera pixels Pc, the multiple first display pixels Pm 1 , and the multiple second display pixels Pm 2 has the same polarity in the second direction D 2
  • the camera pixel Pc and the first display pixel Pm 1 (such as the first blue pixel Pm 11 , the first green pixel Pm 12 , or the first red pixel Pm 13 ) have the same polarity.
  • the camera pixels Pc of opposite polarities may be connected to multiple pins of the driving element through different wires (such as the wire 10 and a wire 10 B).
  • wires such as the wire 10 and a wire 10 B.
  • Using multiple pins to control the state of the multiple camera pixels Pc helps reduce the resistive-capacitive loading.
  • the camera region R 1 may also be disposed in the center so as to maintain the design of double-sided routing.
  • the polarity of any one of the multiple camera pixels Pc, the multiple first display pixels Pm 1 , and the multiple second display pixels Pm 2 may be switched by, for example, column inversion.
  • the polarity conversion method of column inversion helps to reduce crosstalk.
  • the main difference between a display device 1 C and the display device 1 B of FIG. 5 is: in the pixel unit U of the display device 1 C, the camera pixel Pc and the first display pixel Pm 1 (such as the first blue pixel Pm 11 , the first green pixel Pm 12 , or the first red pixel Pm 13 ) have opposite polarities, which helps to increase the light transmittance.
  • the camera pixel Pc and the first display pixel Pm 1 such as the first blue pixel Pm 11 , the first green pixel Pm 12 , or the first red pixel Pm 13 .
  • the main difference between a display device 1 D and the display device 1 C of FIG. 6 is: in the display device 1 D, the multiple camera pixels Pc, the multiple first display pixels Pm 1 , and the multiple second display pixels Pm 2 are disposed 90 degrees rotated.
  • the polarity design of various pixels in the display device 1 D may also be changed to the polarity design shown in FIG. 2 , FIG. 4 , or FIG. 5 , which will not be repeated here.
  • the main difference between a display device 1 E and the display device 1 C of FIG. 6 lies in the design of the pixel unit U.
  • the pixel unit U includes a camera pixel Pc and three first display pixels Pm 1 (such as one first blue pixel Pm 11 , one first green pixel Pm 12 , and one first red pixel Pm 13 ), and the ratio of the area of the camera pixel Pc to the total area of the three first display pixels Pm 1 may fall within a range of 0.04 to 25.
  • one pixel unit U may include one camera pixel Pc and multiple first display pixels Pm 1 .
  • design parameters such as the shape of the pixel unit U, the shape, number, distribution, disposition, and area ratio of the camera pixel Pc or the first display pixel Pm 1 in the pixel unit U may be changed according to requirements.
  • the polarity design of various pixels in the display device 1 E may also be changed to the polarity design shown in FIG. 2 , FIG. 4 , or FIG. 5 , which will not be repeated here.
  • the multiple camera pixels in a state that a light beam is allowed to pass through, in the camera mode, it helps to increase the light transmittance of the multiple camera pixels, in the camera mode, such that the camera module located in the camera region can receive more image light beams from the shooting subject, thereby helping to improve the imaging quality.
  • the multiple camera pixels being in a state that a light beam is not allowed to pass through, in the display mode, which helps to block light leakage, block stray light, block elements that are not intended to be seen by the user, or improve contrast.
  • the resolution of the camera region may be lower than the resolution of the display region so as to reduce the negative influence of the diffraction or interference of the light beam on the imaging quality.
  • the multiple camera pixels may be electrically connected to the driving element through the wire so as to reduce the number of wires or elements required, to increase the aperture ratio, or to reduce the diffraction or interference of the light beam.
  • a wire may be configured to electrically connect the multiple camera pixels and the driving element, so as to reduce the influence of the wire on the border.
  • the number of wires may be increased, and different wires may be connected to multiple pins of the driving element so as to reduce the resistive-capacitive loading.
  • the line width of the wire, the disposition position of the wire, or the position of the camera region may be adjusted so as to make the wires of different lengths have the same or close to the same resistive-capacitive loading.
  • the state switching of the multiple camera pixels may be made to occur in a blanking time between two frames.
  • the light transmittance can be increased by making the multiple camera pixels and the multiple first display pixels in the camera region have opposite polarities.
  • the crosstalk can be reduced by changing the polarity.

Abstract

The disclosure provides a display device that includes a camera region and a display region adjacent to the camera region. The camera region includes a first region and a second region which allows a light beam to pass through. The first region includes a plurality of first display pixels. The display region includes a plurality of second display pixels. An area of each of the plurality of first display pixels is greater than an area of each of the plurality of second display pixels. The first region is adjacent to the second region. The first region includes a plurality of edges, and the second region is adjacent to two of the plurality of edges.

Description

    CROSS-REFERENCE TO RELATED APPLICATION
  • This application is a continuation application of and claims the priority benefit of U.S. application Ser. No. 17/378,781, filed on Jul. 19, 2021, which claims the priority benefit of China application serial no. 202010831165.9, filed on Aug. 18, 2020. The entirety of each of the above-mentioned patent applications is hereby incorporated by reference herein and made a part of this specification.
  • BACKGROUND 1. Technical Field
  • The disclosure relates to an electronic device, in particular to a display device and a driving method thereof.
  • 2. Description of Related Art
  • In order to meet the design requirements of narrow borders or no borders, some technologies such as placing the camera module below the display module have been proposed. In this way, the design requirements of narrow border or no border can be satisfied, and it is possible to take a picture or photograph while displaying the screen. However, in the process of imaging, the light transmission state of the display module located above the camera module will affect the imaging quality, so how to balance the display quality and the imaging quality has become one of the problems that developers are eager to solve.
  • SUMMARY
  • The disclosure provides a display device and a driving method thereof, which helps to balance display quality and imaging quality.
  • According to an embodiment of the disclosure, the display device includes a camera region and a display region adjacent to the camera region. The camera region includes a first region and a second region which allows a light beam to pass through. The first region includes a plurality of first display pixels. The display region includes a plurality of second display pixels. An area of each of the plurality of first display pixels is greater than an area of each of the plurality of second display pixels. The first region is adjacent to the second region. The first region includes a plurality of edges, and the second region is adjacent to two of the plurality of edges.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The accompanying drawings are included to provide a further understanding of the disclosure, and are incorporated in and constitute apart of the disclosure. The drawings illustrate embodiments of the disclosure and, together with the description, serve to explain the principles of the disclosure.
  • FIG. 1 is a schematic top diagram of a display device according to the first embodiment of the disclosure.
  • FIG. 2 is an enlarged schematic diagram of the region R in FIG. 1 .
  • FIG. 3 is a schematic timing diagram for displaying state switching of multiple camera pixels.
  • FIGS. 4 to 8 are schematic partial top diagrams of display devices according to the second embodiment to the sixth embodiment of the disclosure, respectively.
  • DESCRIPTION OF THE EMBODIMENTS
  • The disclosure may be understood by referring to the following detailed description in conjunction with the accompanying drawings. It should be noted that in order to make it easy for the readers to understand and for the concise of the diagrams, only a part of the electronic devices/display device is drawn in the various diagrams in the disclosure. Moreover, the specific components in the drawings are not drawn according to actual scale. In addition, the number and size of each component in the drawings are only for illustration, and are not used to limit the scope of the disclosure. For example, for the sake of clarity, the relative size, thickness, and position of each film layer, region, or structure may be reduced or enlarged.
  • Certain terms are used throughout the specification and appended claims of the disclosure to refer to specific components. Those skilled in the art should understand that electronic device manufacturers may refer to the same components by different names. The disclosure does not intend to distinguish between components that have the same function but different names. In the following specification and claims, terms such as “including” “containing”, and “having” are open-ended terms, so should be interpreted as meaning “including but not limited to . . . .”
  • The directional terms mentioned in this article, such as “upper”, “lower”, “front”, “rear”, “left” “right”, and the like, are just references to the direction of the attached drawings. Therefore, the directional terms used are to illustrate, but not to limit the disclosure. It should be understood that when a component or film layer is referred to as being disposed “on” another component or film layer, or being “connected to” another component or film layer, it may be directly disposed on or directly connected to this other component or film layer, or there may be a component or film layer inserted in between (indirection situation). On the other hand, when a component is referred to as being “directly on” or “directly connected” to another component or film, there is no component or film layer inserted in between.
  • In some embodiments of the disclosure, terms related to bonding and connection, such as “connected”, “interconnected”, and the like, unless specifically defined, may mean that two structures are in direct contact, or that two structures are not indirect contact, where there are other structures located between the two structures. The terms of bonding and connection may also include the case where both structures are movable or both structures are fixed. In addition, the terms “electrical connection” and “coupling” include any direct and indirect electrical connection means.
  • Terms such as “first”, “second”, and the like in the specification and claims are used to name different components or to distinguish different embodiments or ranges, and are not intended to limit the upper limit or lower limit of the number of the components. Nor do they represent the manufacturing order or the disposition order of the components.
  • The electronic device disclosed in the disclosure may include, for example, display device, antenna device, sensing device, light emitting device, touch display, curved display, or free shape display, but the disclosure is not limited thereto. The display may also be a bendable or flexible device. The electron device may, for example, include liquid crystal, light emitting diode, quantum dot (QD), fluorescence, phosphor, other suitable display media, or a combination of the aforementioned material, but the disclosure is not limited thereto. The light-emitting diode may include, for example, organic light-emitting diode (OLED), sub-millimeter light-emitting diode (mini LED), micro-light-emitting diode (micro LED), quantum dot light-emitting diode (including QLED, QDLED), other suitable materials, or a combination of the above, but the disclosure is not limited to thereto. The display device may, for example, include the splicing display device, but the disclosure is not limited thereto. The antenna device may be, for example, a liquid crystal antenna, but the disclosure is not limited thereto. The antenna device may, for example, include an antenna splicing device, but the disclosure is not limited thereto, t should be noted that the electronic device may be any combination of the foregoing, but the disclosure is not limited thereto. Moreover, the appearance of the electronic device may be rectangular, circular, polygonal, a shape with curved edges, or other suitable shapes. The electronic device may have peripheral systems such as driving system, control system, light source system, rack system, and the like, so as to support a display device, an antenna device, or a splicing device. The following description takes a display device as an example so as to illustrate the disclosure, but the disclosure is not limited thereto.
  • It should be noted that in the following embodiments, the technical features of several different embodiments may be replaced, reorganized, and mixed without departing from the spirit of the disclosure so as to complete other embodiments. The technical features of the embodiments may be mixed and matched arbitrarily as long as they do not violate the spirit of the disclosure or conflict with each other.
  • FIG. 1 is a schematic top diagram of a display device according to the first embodiment of the disclosure. FIG. 2 is an enlarged schematic diagram of the region R in FIG. 1 .
  • Referring to FIGS. 1 and 2 , a display device 1 of the disclosure may be a non-self-luminous display device. The non-self-luminous display device may include liquid crystal display device, but the disclosure is not limited thereto. The liquid crystal display device may be a liquid crystal display device that is in a dark state when no voltage is applied and is in a bright state when a voltage is applied, or may be a liquid crystal display device that is in a bright state when no voltage is applied and is a dark state when a voltage is applied, but no restriction is imposed here. For the detailed structure of the liquid crystal display device, reference can be made to the existing design, which will not be repeated here.
  • The display device 1 may include a display mode and a camera mode. In the display mode, the display device 1 provides a display function. In a camera mode, the display device 1 provides a shooting function. According to different requirements, the display device 1 may also provide a display function in the camera mode. For example, the display device 1 may display the acquired image while acquiring the image of a shooting subject, but the disclosure is not limited thereto.
  • In detail, the display device 1 may include a camera region R1. FIG. 1 schematically shows a square camera region R1, and the camera region R1 is disposed adjacent to one of the corners of the display device 1. However, it should be understood that the number, the disposition position, or the top view shape of the camera regions R1 and the like may be changed as required.
  • The camera region R1 may be configured to obtain an image of a shooting subject. In detail, referring to FIG. 2 , the camera region R1 may include multiple camera pixels Pc. The driving method of the display device 1 includes: placing the multiple camera pixels Pc in a state that a light beam is not allowed to pass through, in a display mode; and placing the multiple camera pixels Pc in a state that a light beam is allowed to pass through, in a camera mode. In other words, in the display mode, the multiple camera pixels Pc are in a state that a light beam is not allowed to pass through; that is, the multiple camera pixels Pc are in a dark state in the display mode. On the other hand, in the camera mode, the multiple camera pixels Pc are in a state that a light beam is allowed to pass through; that is, the multiple camera pixels Pc are in a bright state in the camera mode.
  • With the multiple camera pixels Pc being in a state that a light beam is allowed to pass through, in the camera mode, it helps to increase the light transmittance of the multiple camera pixels Pc in the camera mode, such that the camera module located in the camera region R1 can receive more image light beams from the shooting subject, thereby helping to improve the imaging quality. In some embodiments, the camera region R1 may also include other sensing devices, such as fingerprint sensor, iris sensor, retina sensor, face sensor, in sensor, a movement sensor, gesture sensor, proximity sensor or other suitable sensors; the disclosure is not limited thereto.
  • With the multiple camera pixels Pc being in a state that a light beam is not allowed to pass through, in the display mode, in some embodiments, the multiple camera pixels Pc may be equivalent to a black matrix in the display mode. That is, in the display mode, the multiple camera pixels Pc may be configured to block light leakage, block stray light, or block elements that are not intended to be seen by the user, or may be configured to enhance contrast. In some embodiments, the camera region R1 may further include multiple first display pixels Pm1. The multiple first display pixels Pm1 may provide a display function in the display mode. According to different requirements, the multiple first display pixels Pm1 may also provide a display function in the camera mode.
  • For example, the first display pixel Pm1 may emit a single color light, and the multiple first display pixels Pm1 may include multiple first blue pixels Pm1, multiple first green pixels Pm12, and multiple first red pixels Pm13. Each of the multiple first blue pixels Pm11, the multiple first green pixels Pm12, and the multiple first red pixels Pm13 may be disposed in a first direction D1, and the multiple first blue pixels Pm11, the multiple first green pixels Pm12, and the multiple first red pixels Pm13 may be alternately disposed in a second direction D2. The second direction D2 intersects the first direction D1, and the second direction D2 may be perpendicular to the first direction D1, but the disclosure is not limited thereto. The first direction D1 and the second direction D2 are both perpendicular to a thickness direction (such as a third direction D3) of the display device 1. However, it should be understood that the color type, number, shape or disposition of the pixels in the multiple first display pixels Pm1 may be changed according to requirements. In some embodiments, the first direction D1 may be, for example, an extending direction of a scan line (not shown) in the display device 1, but the disclosure is not limited thereto.
  • In some embodiments, the multiple camera pixels Pc and the multiple first display pixels Pm1 may be alternately disposed in the second direction D2. FIG. 2 schematically shows a pixel unit U, and the labeled pixel unit U includes one camera pixel Pc and one first blue pixel Pm11. However, it may be understood from FIG. 2 that the camera region R1 may include the multiple pixel units U, and each of the multiple pixel units U may include one camera pixel Pc and one first display pixel Pm1 l (such as one first blue pixel Pm11, one first green pixel Pm12 or one first red pixel Pm13). In other embodiments, each of the multiple pixel units U may also include a camera pixel Pc and multiple first display pixels (such as a combination of a first blue pixel Pm11, a first green pixel Pm12, and a first red pixel Pm13, but the disclosure is not limited thereto).
  • The display device 1 may further include a display region R2. The display region R2 is adjacent to the camera region R1. FIG. 1 schematically shows that the camera region R1 is located at an upper right corner of the display region R2. However, the respective number, the relative disposition relationship, the top view shape, the area ratio or the like of the camera region R1 and of the display region R2 may be changed according to requirements. For example, the camera region R1 may also be located at an upper left corner of the display region R2 or in the middle of one of the sides of the display region R2. Alternatively, the display device 1 may include the multiple camera regions R1, and the multiple camera regions R1 may be located at multiple corners or at the middle of multiple sides of the display region R2, or a combination of the above, but the disclosure is not limited thereto.
  • In the display mode, the display region R2 may provide a display function. According to different requirements, the display region R2 may also provide a display function in the camera mode. For example, the display region R2 and the camera region R1 may jointly provide the image captured by the camera region R1 in the camera mode, but the disclosure is rot limited thereto.
  • In detail, proceeding to refer to FIG. 2 , the display region R2 may include multiple second display pixels Pm2. The second display pixel Pm2 may emit a single color light. The multiple second display pixels Pm2 may include multiple second blue pixels Pm21, multiple second green pixels Pm22, and multiple second red pixels Pm23. Each of the multiple second blue pixels Pm21, the multiple second green pixels Pm22, and the multiple second red pixels Pm23 may be disposed in the first direction D1, and the multiple second blue pixels Pm21, the multiple second green pixels Pm22, and the multiple second red pixels Pm23 may be alternately disposed in the second direction D2. However, it should be understood that the color type, number, or disposition of the pixels in the multiple second display pixels Pm2 may be changed according to requirements.
  • In some embodiments, a resolution of the camera region R1 may be lower than a resolution of the display region R2 so as to reduce negative impact of diffraction or interference of the light beam (such as the image light beam from the shooting subject) on the imaging quality. In other embodiments, a pixel pitch d1 in the first direction D1 of two adjacent first red pixels Pm13 in the camera region R1 is greater than a pixel pitch d2 in the first direction D1 of the two adjacent first red pixels Pm13 in the display area R2.
  • In some embodiments, the multiple camera pixels Pc, the multiple first display pixels Pm1 (including the multiple first blue pixels Pm11, the multiple first green pixels Pm12, and the multiple first red pixels Pm13), and the multiple second display pixels Pm2 (including the multiple second blue pixels Pm21, the multiple second green pixels Pm22, and the multiple second red pixels Pm23) may have a same polarity. For example, by frame inversion, the polarities of the multiple camera pixels, the multiple first display pixels Pm1, and the multiple second display pixels Pm2 may be made all positive (represented by “+” in FIG. 2 ), or the polarities of the multiple camera pixels Pc, the multiple first display pixels Pm1, and the multiple second display pixels Pm2 may be made all negative (not shown in FIG. 2 ; represented by “−” in FIG. 4 ). When an absolute value of a voltage difference is fixed, the polarity may be changed by making the voltage of the pixel electrode higher than the voltage of the common electrode or making the voltage of a pixel electrode lower than the voltage of a common electrode. Through polarity change, feature damage caused by liquid crystal molecule orientation to always be fixed in one direction can be reduced. It should be understood that the camera pixel Pc, the first display pixel Pm1, and the second display pixel Pm2 each have a pixel electrode and a common electrode, where the pixel electrodes of the camera pixel Pc, of the first display pixel Pm1, and of the second display pixel Pm2 are separated from each other. On the other hand, the common electrodes of the camera pixel Pc, of the first display pixel Pm1, and of the second display pixel Pm2 may be separated from each other or connected to each other (such as being different parts of a continuous electrode). Based on different design considerations (such as light transmittance, contrast, or light leakage blocking, etc.), in each of the multiple pixel units U, a ratio of an area of the camera pixel Pc to an area of the one (or more) first display pixels Pm1 may fall within a range of 0.04 to 25 (0.04≤area ratio≤25). For example, one pixel unit U may include one camera pixel Pc and at least three first display pixels Pm1, and the ratio of the area of one camera pixel Pc to a total area of the at least three first display pixels Pm1 may fall within a range of 0.04 to 25. In some embodiments, the area of the first display pixel Pm1 may be, for example, the area of the pixel electrode of the first display pixel Pm1, and the area of the camera pixel Pc may be, for example, an area of the pixel electrode of the camera pixel Pc. In other embodiments, the area of the first display pixel Pm1 may be, for example, an area of a smallest imaginary rectangle surrounding the pixel electrode of the first display pixel Pm1, and the area of the camera pixel Pc may be, for example, an area of another smallest imaginary rectangle surrounding the pixel electrode of the camera pixel Pc, but the disclosure is not limited thereto. The material of the pixel electrode and the common electrode may include a transparent conductive material, such as indium tin oxide (ITO), but the disclosure is not limited thereto.
  • According to different requirements, the display device 1 may further include other elements or film layers. For example, the display device 1 may further include multiple active elements AD and multiple color filter patterns CF. The multiple active elements AD and the multiple color filter patterns CF are located outside the multiple camera pixels Pc (that is, each camera pixel Pc may not need to include the active element AD and the color filter pattern CF) and located in the multiple first display pixels Pm1 and the multiple second display pixels Pm2. In detail, the color filter pattern CF may at least partially overlap the pixel electrodes of the multiple first display pixels Pm1 and the pixel electrodes of the multiple second display pixels Pm2, and the color filter pattern CF may not need to overlap the pixel electrodes of the multiple camera pixels Pc.
  • The active element AD may be used as a switching element. For example, the active element AD may include a thin film transistor, but the disclosure is not limited thereto. In some embodiments, each display pixel (such as the first blue pixel Pm11, the first green pixel Pm12, the first red pixel Pm13, the second blue pixel Pm21, the second green pixel Pm22, or the second red pixel Pm23) may include one or more active elements AD. Further, at least one active element AD in each display pixel is electrically connected to a scan line (not shown) and a data line (not shown) in the display device 1 so as to control signal input, but the disclosure is not limited thereto.
  • The color filter pattern CF allows specific light beams to pass through and filters out the remaining light beams so as to provide color display. For example, the multiple color filter patterns CF may include multiple blue filter patterns CF1, multiple green filter patterns CF2, and multiple red filter patterns CF3. The multiple blue filter patterns CF1 are located in the multiple first blue pixels Pm11 and the multiple second blue pixels Pm21; the multiple green filter patterns CF2 are located in the multiple first green pixels Pm12 and the multiple second green pixels Pm22; and the multiple red filter patterns CF3 are located in the multiple first red pixels Pm13 and the multiple second red pixels Pm23.
  • Compared with the first display pixel Pm1 and the second display pixel Pm2 for displaying images (including grayscale and color changes), the camera pixel Pc is configured to adjust the light transmittance. For example, the camera pixel Pc switches between the camera mode and the display mode. Since the camera pixel Pc may not need to provide color display, the camera pixel Pc may not need to include the color filter pattern CF. In some embodiments, the camera pixel Pc may be electrically connected to one or more pins that output high voltage and low voltage in a driving element (such as a driver chip) so as to switch between the display mode and the camera mode. In this way, the camera pixel Pc may not need to include the active elements AD. For example, the display device 1 may further include a wire 10 and an outer lead bonding (OLB) region R3 The outer lead bonding region R3 may be provided with, for example, a flexible printed circuit hoard (FPC), a chip on film (COF) or related display driving circuits/elements. Moreover, the multiple camera pixels Pc may be electrically connected to the driving circuit or the driving element in the outer lead bonding region R3 through the wire 10. In some embodiments, the wire 10 may be in a different layer from the scan line and the data line. For example, the wire 10 may be disposed above the scan line and the data line and electrically connected to the pixel electrode in the camera pixel Pc through a conductive through hole CV, but the disclosure is not limited thereto. In some embodiments, the wire 10 may be fabricated together with the pixel electrode or the common electrode, that is, the wire 10 may be in the same layer as the pixel electrode or the common electrode.
  • With the multiple camera pixels Pc being electrically connected to the driving elements through the wire 10, there is no need to provide active elements in the camera pixels Pc, thereby helping to reduce the number of wires or elements required, increase the aperture ratio, or reduce the diffraction or interference of light beams. Moreover, referring to FIG. 2 , the multiple camera pixels Pc may have a same polarity, such that the multiple camera pixels may be electrically connected to the wire 10, thus the number of the wires 10 connected between the multiple camera pixels Pc and the driving element can be reduced, and the wire 10 has low influence on the border. In some embodiments, as shown in FIG. 1 , the multiple camera pixels Pc may be electrically connected to the driving element through the wire 10. In other embodiments, the number of wires 10 may also be increased, and different wires 10 may be connected to multiple pins of the driving element so as to reduce the resistive-capacitive loading. With the design of electrically connecting the multiple camera pixels Pc and the driving element through the multiple wires 10, the multiple wires 10 may extend from the multiple camera pixels Pc through a same side or an opposite side of the display region R2 (such as the left and right sides of the display region R2 as shown in FIG. 1 ) to the driving element. Considering the influence of inconsistent wire length on impedance, it is possible to make a longer wire have a larger line width and a shorter wire to have a smaller line width, or make multiple wires 10 extend from the multiple camera pixels Pc through the same side of the display area R2 to the driving element, such that wires of different lengths have the same or close to the same resistive-capacitive loading (RC loading). Alternatively, the camera region R1 may also be disposed in the center so as to maintain the design of double-sided routing.
  • In some embodiments, for example, an oscilloscope may be configured to measure the signal and/or the waveform provided by the data line (not shown) or the wire 10. When operating an electronic device, at least one data line or at least one wire 10, for example, provides a square wave signal. The square wave signal can be, for example, a positive/negative alternating current signal, and the positive/negative polarities of the first display pixel Pm1, the second display pixel Pm2, and the camera pixel Pc can be determined according to the positive/negative of the square wave signal, but this disclosure is not limited such thereto.
  • FIG. 3 is a schematic timing diagram for displaying state switching of multiple camera pixels. Referring to FIG. 3 , the transition time of the multiple camera pixels (such as the switching time between the display mode and the camera mode) increases as the number of camera pixels in the camera region increases. In some embodiments, the transition time of the camera pixel may be at least 20 times the transition time of the display pixel (such as the first display pixel or the second display pixel). At this time, the state switching of the multiple camera pixels may be made to occur in the blanking time between two adjacent frames (such as the Nth frame and the N+1th frame), that is, the mode of the camera pixel is switched in the blanking time between the intervals of the adjacent two updated display screens. In other embodiments, the camera pixels may be connected to multiple wires so as to reduce the capacitive loading. Therefore, the camera pixels may be switched at the same time as is the Nth frame or the N+1th frame (that is, the screen switching of the camera pixels do not need to occur in the blanking time between the intervals of two frames).
  • FIGS. 4 to 8 are schematic partial top diagrams of display devices according to the second embodiment to the sixth embodiment of the disclosure, respectively. In the following embodiments, the same or similar elements will use the same or similar reference numerals, and redundant description will be omitted. Moreover, the features in different embodiments may be mixed and matched arbitrarily as long as they do not violate the spirit of the disclosure or conflict with each other, and simple equivalent changes and modifications made in accordance with this specification or claims are still within the scope of this disclosure.
  • Please refer to FIG. 4 , in a display device 1A, the multiple first display pixels Pm1 (including the multiple first blue pixels Pm11, the multiple first green pixels Pm12, and the multiple first red pixels Pm13) and the multiple second display pixels Pm2 (including the multiple second blue pixels Pm21, the multiple second green pixels Pm22, and the multiple second red pixels Pm23) have the same polarity, and the polarities of the multiple camera pixels Pc are opposite to the polarities of the multiple first display pixels Pm1 and the multiple second display pixels Pm2. In other words, in the pixel unit U, the camera pixel Pc and the first display pixel Pm1 (such as the first blue pixel Pm11, the first green pixel Pm12, or the first red pixel Pm13) have opposite polarities. By making the multiple camera pixels Pc and the multiple first display pixels Pm1 in the camera region R1 have opposite polarities, it is helpful to increase the light transmittance. In the present embodiment, the polarity of any one of the multiple camera pixels Pc, the multiple first display pixels Pm1, and the multiple second display pixels Pm2 may be switched by, for example, frame inversion.
  • Referring to FIG. 5 , in a display device 1B, each of the multiple camera pixels Pc, the multiple first display pixels Pm1, and the multiple second display pixels Pm2 has an alternating positive/negative polarity in the first direction D1, and each of the multiple camera pixels Pc, the multiple first display pixels Pm1, and the multiple second display pixels Pm2 has the same polarity in the second direction D2. Moreover, in the pixel unit U, the camera pixel Pc and the first display pixel Pm1 (such as the first blue pixel Pm11, the first green pixel Pm12, or the first red pixel Pm13) have the same polarity. In some embodiments, the camera pixels Pc of opposite polarities may be connected to multiple pins of the driving element through different wires (such as the wire 10 and a wire 10B). Using multiple pins to control the state of the multiple camera pixels Pc (such as display mode or camera mode) helps reduce the resistive-capacitive loading.
  • As mentioned above, considering the influence of inconsistent wire lengths on impedance, it is possible to make a longer wire have a larger line width and a shorter wire to have a smaller line width, or make multiple wires (such as the wire 10 and the wire 10B) extend from the multiple camera pixels Pc to the driving element through the same side of the display area R2 (see FIG. 2 ), such that wires of different lengths have the same or close to the same resistive-capacitive loading. Alternatively, the camera region R1 may also be disposed in the center so as to maintain the design of double-sided routing.
  • In the present embodiment, the polarity of any one of the multiple camera pixels Pc, the multiple first display pixels Pm1, and the multiple second display pixels Pm2 may be switched by, for example, column inversion. The polarity conversion method of column inversion helps to reduce crosstalk.
  • Referring to FIG. 6 , the main difference between a display device 1C and the display device 1B of FIG. 5 is: in the pixel unit U of the display device 1C, the camera pixel Pc and the first display pixel Pm1 (such as the first blue pixel Pm11, the first green pixel Pm12, or the first red pixel Pm13) have opposite polarities, which helps to increase the light transmittance.
  • Please refer to FIG. 7 , the main difference between a display device 1D and the display device 1C of FIG. 6 is: in the display device 1D, the multiple camera pixels Pc, the multiple first display pixels Pm1, and the multiple second display pixels Pm2 are disposed 90 degrees rotated. In other embodiments, the polarity design of various pixels in the display device 1D may also be changed to the polarity design shown in FIG. 2 , FIG. 4 , or FIG. 5 , which will not be repeated here.
  • Please refer to FIG. 8 , the main difference between a display device 1E and the display device 1C of FIG. 6 lies in the design of the pixel unit U. In the display device 1E, the pixel unit U includes a camera pixel Pc and three first display pixels Pm1 (such as one first blue pixel Pm11, one first green pixel Pm12, and one first red pixel Pm13), and the ratio of the area of the camera pixel Pc to the total area of the three first display pixels Pm1 may fall within a range of 0.04 to 25. In other embodiments, one pixel unit U may include one camera pixel Pc and multiple first display pixels Pm1. However, it should be understood that design parameters such as the shape of the pixel unit U, the shape, number, distribution, disposition, and area ratio of the camera pixel Pc or the first display pixel Pm1 in the pixel unit U may be changed according to requirements. In other embodiments, the polarity design of various pixels in the display device 1E may also be changed to the polarity design shown in FIG. 2 , FIG. 4 , or FIG. 5 , which will not be repeated here.
  • In summary, in the embodiments of the disclosure, with the multiple camera pixels being in a state that a light beam is allowed to pass through, in the camera mode, it helps to increase the light transmittance of the multiple camera pixels, in the camera mode, such that the camera module located in the camera region can receive more image light beams from the shooting subject, thereby helping to improve the imaging quality. With the multiple camera pixels being in a state that a light beam is not allowed to pass through, in the display mode, which helps to block light leakage, block stray light, block elements that are not intended to be seen by the user, or improve contrast.
  • In some embodiments, the resolution of the camera region may be lower than the resolution of the display region so as to reduce the negative influence of the diffraction or interference of the light beam on the imaging quality. In some embodiments, the multiple camera pixels may be electrically connected to the driving element through the wire so as to reduce the number of wires or elements required, to increase the aperture ratio, or to reduce the diffraction or interference of the light beam. In some embodiments, a wire may be configured to electrically connect the multiple camera pixels and the driving element, so as to reduce the influence of the wire on the border. In some embodiments, the number of wires may be increased, and different wires may be connected to multiple pins of the driving element so as to reduce the resistive-capacitive loading. In some embodiments, the line width of the wire, the disposition position of the wire, or the position of the camera region may be adjusted so as to make the wires of different lengths have the same or close to the same resistive-capacitive loading. In some embodiments, the state switching of the multiple camera pixels may be made to occur in a blanking time between two frames. In some embodiments, the light transmittance can be increased by making the multiple camera pixels and the multiple first display pixels in the camera region have opposite polarities. In some embodiments, by column inversion, the crosstalk can be reduced by changing the polarity.
  • The above embodiments are only configured to illustrate the technical solutions of the disclosure, but the disclosure is not limited thereto. Although the disclosure has been described in detail with reference to the foregoing embodiments, those of ordinary skill in the art should understand that they may still modify the technical solutions described in the foregoing embodiments, or equivalently replace some or all of the technical features. Further, the modifications or replacements do not cause sprit of the corresponding technical solutions to deviate from the scope of the technical solutions of the embodiments of the disclosure.
  • Although the embodiments of the disclosure and the advantages have been disclosed as above, it should be understood that any person skilled in the art, without departing from the spirit and scope of the disclosure, may make changes, substitutions and modifications, and the features between the embodiments can be mixed and replaced at will so as to form other new embodiments. In addition, the protection scope of the disclosure is not limited to the manufacturing processes, machines, manufacturing, material composition, devices, methods, and steps in the specific embodiments described in the specification. Anyone skilled in the art may understand the current or future development processes, machines, manufacturing, material composition, devices, methods, and steps from the disclosure of this disclosure, and use the same according to the disclosure, as long as substantially the same functions can be implemented in the embodiments described herein or substantially the same results can be obtained. Therefore, the protection scope of the disclosure includes the above-mentioned manufacturing processes, machines, manufacturing, material composition, devices, methods, and steps. In addition, each claim constitutes an individual embodiment, and the protection scope of the disclosure also includes the combination of each claim and embodiment. The scope of protection of this disclosure should be defined by the appended claims.
  • Finally, it should be noted that the above embodiments are only used to illustrate the technical solution of the disclosure, but not limited thereto. Although the disclosure is described in detail with reference to the above-mentioned embodiments, those skilled in the art should understand that the technical solutions described in the above-mentioned embodiments may still be modified, and some or all of the technical features may be replaced equivalently; such modifications or replacements do not depart from the scope of the technical solutions described by the embodiments of the disclosure.

Claims (9)

What is claimed is:
1. A display device, comprising:
a camera region and a display region adjacent to the camera region, wherein the camera region comprises a first region and a second region which allows a light beam to pass through, the first region comprises a plurality of first display pixels, and the display region comprises a plurality of second display pixels,
wherein an area of each of the plurality of first display pixels is greater than an area of each of the plurality of second display pixels, and
wherein the first region is adjacent to the second region, the first region comprises a plurality of edges, and the second region is adjacent to two of the plurality of edges.
2. The display device as described in claim 1, wherein the two of the plurality of edges extend along different directions, respectively.
3. The display device as described in claim 1, wherein a pixel pitch of two adjacent ones of the plurality of first display pixels is greater than a pixel pitch of two adjacent ones of the plurality of second display pixels.
4. The display device as described in claim 1, wherein the camera region comprises a plurality of the second regions which allow the light beam to pass through, the same color of the plurality of first display pixels are arranged along a first direction and adjacent to each other, and two adjacent ones of the plurality of second regions are located on opposite sides of one of the same color of the plurality of first display pixels.
5. The display device as described in claim 1, wherein the display device further comprises an outer lead bonding region which comprises a driving circuit.
6. The display device as described in claim 1, wherein the display device further comprises a wire located between the first region and the second region.
7. The display device as described in claim 1, wherein the camera region further comprises sensing devices.
8. The display device as described in claim 1, wherein each of the plurality of first display pixels emit a single color light.
9. The display device as described in claim 1, wherein each of the plurality of second display pixels emit a single color light.
US18/325,000 2020-08-18 2023-05-28 Display device having transmittance control for under-display camera pixels Pending US20230307471A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/325,000 US20230307471A1 (en) 2020-08-18 2023-05-28 Display device having transmittance control for under-display camera pixels

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202010831165.9 2020-08-18
CN202010831165.9A CN114078365A (en) 2020-08-18 2020-08-18 Display device and driving method thereof
US17/378,781 US11705467B2 (en) 2020-08-18 2021-07-19 Display device having transmittance control for under-display camera pixels, and driving method thereof
US18/325,000 US20230307471A1 (en) 2020-08-18 2023-05-28 Display device having transmittance control for under-display camera pixels

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US17/378,781 Continuation US11705467B2 (en) 2020-08-18 2021-07-19 Display device having transmittance control for under-display camera pixels, and driving method thereof

Publications (1)

Publication Number Publication Date
US20230307471A1 true US20230307471A1 (en) 2023-09-28

Family

ID=80269859

Family Applications (2)

Application Number Title Priority Date Filing Date
US17/378,781 Active US11705467B2 (en) 2020-08-18 2021-07-19 Display device having transmittance control for under-display camera pixels, and driving method thereof
US18/325,000 Pending US20230307471A1 (en) 2020-08-18 2023-05-28 Display device having transmittance control for under-display camera pixels

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US17/378,781 Active US11705467B2 (en) 2020-08-18 2021-07-19 Display device having transmittance control for under-display camera pixels, and driving method thereof

Country Status (2)

Country Link
US (2) US11705467B2 (en)
CN (1) CN114078365A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115273653A (en) 2021-04-29 2022-11-01 群创光电股份有限公司 Display device

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100859515B1 (en) * 2002-05-03 2008-09-22 삼성전자주식회사 liquid crystal device, a device and a method for driving the same
KR101032948B1 (en) * 2004-04-19 2011-05-09 삼성전자주식회사 Liquid crystal display and driving method thereof
KR101374507B1 (en) * 2006-10-31 2014-03-26 엘지디스플레이 주식회사 Organic light emitting diode display and driving method thereof
US7697053B2 (en) * 2006-11-02 2010-04-13 Eastman Kodak Company Integrated display having multiple capture devices
US7808540B2 (en) * 2007-01-09 2010-10-05 Eastman Kodak Company Image capture and integrated display apparatus
US8502756B2 (en) * 2009-11-02 2013-08-06 Sony Corporation Image display device with imaging unit
KR101871993B1 (en) * 2011-08-23 2018-06-28 삼성디스플레이 주식회사 Display device
JP5798064B2 (en) * 2012-03-06 2015-10-21 株式会社ジャパンディスプレイ Display device, electronic equipment
KR102205610B1 (en) * 2014-04-17 2021-01-22 삼성디스플레이 주식회사 Liquid crystal display apparatus and driving method thereof
US10223987B2 (en) * 2015-10-30 2019-03-05 Nvidia Corporation Regional DC balancing for a variable refresh rate display panel
JP6794279B2 (en) * 2017-01-23 2020-12-02 株式会社ジャパンディスプレイ Display device
WO2019062187A1 (en) * 2017-09-30 2019-04-04 云谷(固安)科技有限公司 Display screen and electronic device
CN108376696B (en) * 2017-09-30 2020-08-25 云谷(固安)科技有限公司 Terminal and display screen
CN107861660B (en) * 2017-12-05 2021-03-19 合肥京东方光电科技有限公司 Touch detection device and touch detection method thereof
KR102549888B1 (en) * 2018-02-08 2023-07-03 삼성디스플레이 주식회사 Method of operating a display device supporting a normal mode and a variable frame mode, and the display device
CN108648679B (en) * 2018-05-18 2020-06-26 京东方科技集团股份有限公司 Display panel driving method and device and display equipment
CN108810201B (en) * 2018-06-04 2020-07-17 Oppo广东移动通信有限公司 Electronic device and method for taking photo by using same
WO2019242510A1 (en) * 2018-06-20 2019-12-26 京东方科技集团股份有限公司 Display substrate and driving method therefor, and display device
US10985231B2 (en) * 2018-08-10 2021-04-20 Au Optronics Corporation Display device
CN111128066B (en) * 2018-10-31 2024-01-30 北京小米移动软件有限公司 Terminal screen, screen structure, control method and device thereof and terminal
CN109521609A (en) * 2018-12-25 2019-03-26 上海中航光电子有限公司 Array substrate, display panel and display device
CN110767139B (en) * 2019-03-29 2020-12-11 昆山国显光电有限公司 Display substrate, display panel and display device
CN110767720B (en) * 2019-06-05 2020-09-08 昆山国显光电有限公司 Display substrate, display panel and display device
WO2021015790A1 (en) * 2019-07-25 2021-01-28 Hewlett-Packard Development Company, L.P. Displays with partial transparent areas
CN110429117A (en) * 2019-07-30 2019-11-08 武汉华星光电半导体显示技术有限公司 A kind of production method of organic luminescent device, display device and organic luminescent device
CN110581910A (en) * 2019-09-17 2019-12-17 Oppo广东移动通信有限公司 Image acquisition method, device, terminal and storage medium
KR20220007009A (en) * 2020-07-09 2022-01-18 엘지디스플레이 주식회사 Display device
CN111799318B (en) * 2020-07-28 2022-08-19 武汉天马微电子有限公司 Display panel and display device

Also Published As

Publication number Publication date
US11705467B2 (en) 2023-07-18
US20220059586A1 (en) 2022-02-24
CN114078365A (en) 2022-02-22

Similar Documents

Publication Publication Date Title
US11335284B2 (en) Display panel and display device
CN210515985U (en) Display substrate, display panel and display device
CN112151592B (en) Display panel and display device
US20220199710A1 (en) Display panel and display device
US11877493B2 (en) Display panel having display regions and display apparatus
WO2021208665A1 (en) Display panel and display device
US11882743B2 (en) Display panel and display apparatus
CN110794604A (en) Display device and manufacturing method thereof
US11727849B2 (en) Display panel and display apparatus
US20230307471A1 (en) Display device having transmittance control for under-display camera pixels
WO2023159868A1 (en) Display panel and display apparatus
CN112509509A (en) Display panel, driving method thereof and display device
US20240029648A1 (en) Display panel and display apparatus
US20230316977A1 (en) Display device
US20230413605A1 (en) Display panel and display apparatus
CN214122618U (en) Display panel and display device
CN110955077A (en) Display panel and display device
US11698559B2 (en) Display device
TWI826977B (en) Display panel
CN114512082B (en) Display screen, method for driving display screen and display device
US20230047640A1 (en) Display panel and display apparatus
CN115704973A (en) Display device and driving method thereof
JP2024517206A (en) Display panel and display device
CN114115568A (en) Electronic device
CN117930555A (en) Array substrate, display panel and display device

Legal Events

Date Code Title Description
AS Assignment

Owner name: INNOLUX CORPORATION, TAIWAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:TSAI, CHIA-HAO;LU, YOUCHENG;TAI, MING-JOU;AND OTHERS;REEL/FRAME:063782/0326

Effective date: 20210715

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER