US20230279505A1 - Methods and materials for canine breed identification - Google Patents

Methods and materials for canine breed identification Download PDF

Info

Publication number
US20230279505A1
US20230279505A1 US18/063,532 US202218063532A US2023279505A1 US 20230279505 A1 US20230279505 A1 US 20230279505A1 US 202218063532 A US202218063532 A US 202218063532A US 2023279505 A1 US2023279505 A1 US 2023279505A1
Authority
US
United States
Prior art keywords
canid
breed
seq
markers
breeds
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
US18/063,532
Inventor
Elaine Ostrander
Leonid Kruglyak
Heidi G. Parker
Lisa V. Kim
Matthew Stephens
Tiffany B. Malek
Nathan B. Sutter
Scott Carlson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fred Hutchinson Cancer Center
Original Assignee
Fred Hutchinson Cancer Research Center
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=34700139&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20230279505(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Fred Hutchinson Cancer Research Center filed Critical Fred Hutchinson Cancer Research Center
Priority to US18/063,532 priority Critical patent/US20230279505A1/en
Publication of US20230279505A1 publication Critical patent/US20230279505A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B20/00ICT specially adapted for functional genomics or proteomics, e.g. genotype-phenotype associations
    • G16B20/20Allele or variant detection, e.g. single nucleotide polymorphism [SNP] detection
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B20/00ICT specially adapted for functional genomics or proteomics, e.g. genotype-phenotype associations
    • G16B20/40Population genetics; Linkage disequilibrium
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/156Polymorphic or mutational markers
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B20/00ICT specially adapted for functional genomics or proteomics, e.g. genotype-phenotype associations

Definitions

  • sequence listing XML associated with this application is provided in XML format in lieu of a paper copy and is hereby incorporated by reference into the specification.
  • the name of the XML file containing the sequence listing is 1894-P4USCON2_Seq_List_20221208.xml.
  • the XML file is 482,945 bytes; was created on Dec. 8, 2022; and was submitted electronically via Patent Center with the filing of the specification.
  • Table 3 (Table3.txt, 424 kb, created Feb. 25, 2010) and Table 4 (Table4.txt, 55 kb, created Feb. 25, 2010) are both incorporated herein by reference in their entireties.
  • the invention relates to determining the contribution of one or more canid populations to the genome of a canid using polymorphic markers.
  • Canis familiaris is a single species divided into more than 400 phenotypically divergent genetic isolates termed breeds, 152 of which are recognized by the American Kennel Club in the United States (American Kennel Club (1998) The Complete Dog Book, eds. Crowley & Adelman, Howell Book Hues, New York, NY). Distinct breeds of dog are characterized by unique constellations of morphology, behavior, and disease susceptibility (Ostrander et al. (2000) Trends in Genetics 16:117-23). A variety of dog morphologies have existed for millennia, and reproductive isolation between them was formalized with the advent of breed clubs and breed standards in the mid 19th century. Since that time, the promulgation of the “breed barrier” rule—no dog may become a registered member of a breed unless both its dam and sire are registered members—has ensured a relatively closed genetic pool among dogs of each breed.
  • microsatellite loci could be used to assign dogs from five breeds to their breed of origin, demonstrating large genetic distances among these breeds (Koskinen (2003) Anim. Genet. 34:297).
  • Another study used microsatellites to detect relatedness of two breed pairs in a collection of 28 breeds but could not establish broader phylogenetic relationships among the breeds (Irion et al. (2003) J. Hered. 94(1):81-7). The failure to find such relationships could reflect the properties of microsatellite loci (Irion et al. (2003) J. Hered. 94(1):81-7), the limited number of breeds examined, or the analytical methods used in the study. Alternatively, it may reflect the complex structure in purebred dog populations, due to the recent origin of most breeds and the mixing of ancestral types in their creation.
  • the invention provides methods for determining the contributions of canid populations to a canid genome.
  • the methods comprise the steps of: (a) obtaining the identity of one or both alleles in a test canid genome for each of a set of markers; and (b) determining the contributions of canid populations to the test canid genome by comparing the alleles in the test canid genome to a database comprising canid population profiles, wherein each canid population profile comprises genotype information for the set of markers in the canid population.
  • the set of markers may comprise at least about five markers, for example, at least about five markers set forth on the map of the canine genome.
  • markers suitable for use in the methods of the invention include, for example, microsatellite markers, single nucleotide polymorphisms (SNPs), mitochondrial markers, and restriction fragment length polymorphisms.
  • the set of markers may comprise at least 5 of the SNP markers set forth in Table 2, and/or at least 5 microsatellite markers set forth in Table 1.
  • the set of markers may comprise one or more population-specific markers, such as one or more population-specific SNP markers or one or more population-specific microsatellite markers.
  • one or more SNP markers may be selected from the group consisting of 372c5t-82, 372e13t-57, 372m6t-88, 372m23t-76, 373a15t-112, 373e1t-50, 373e1t-130, 373g19t-246, 373i8s-224, 373k8s-181, 372c5s-168, 372C155-196, 372e15s-71, and 373a21t-93.
  • step (a) of the methods may comprise amplifying genomic DNA of the test canid using primers specific for each of the set markers and determining the size of the amplification product.
  • step (a) may also comprise amplifying genomic DNA of the test canid using primers specific for each of the set of markers and determining the nucleotide sequence of the amplification product.
  • the primers are selected from the group consisting of SEQ ID NOs:1-200.
  • the primers are selected from the group consisting of SEQ ID NOs:1-244-327.
  • the genotype information in a canid population profile may comprise information such as the identity of one or both alleles of most or all the markers in the set of markers in one or more canids that are members of that canid population, and/or estimated allele frequencies for at least one allele of most or all of the markers in the set of markers in that canid population.
  • Each estimated allele frequency in a canid population profile is typically based on the identities of one or both alleles in at least two genomes of canids that are members of the canid population.
  • the database of canid population profiles may comprise between about five and several hundreds of canid population profiles, such as at least about 100 canid population profiles.
  • the canid population profiles comprise profiles of registered breeds, such as breeds registered by the American Kennel Club.
  • the set of markers comprises fewer than about 1500 SNP markers and wherein the method determines the contributions of at least 87 canid populations to the test canid genome. In some embodiments, the set of markers comprises fewer than about 200 SNP markers (such as about 100 SNP markers, or about 50 SNP markers) and wherein the method determines the contributions of at least 87 canid populations to the test canid genome.
  • step (b) of the method the likelihood that one or more canid populations contributed to the test canid genome may be determined using any suitable algorithm, such as Bayesian model-based clustering algorithms or assignment algorithms.
  • step (b) comprises determining the probability that a specific canid population contributed to the genome of the test canid by determining the conditional probability that the alleles in the test canid genome would occur in the specific canid population divided by the sum of conditional probabilities that the alleles in the test canid genome would occur in each canid population in the database.
  • step (b) comprises discriminating between the contributions of two or more genetically related canid populations to the test canid genome by comparing the alleles in the test canid genome to a database comprising profiles of the two or more genetically related canid populations.
  • Exemplary genetically related canid populations include, but are not limited to, Belgian Sheep Dog and Belgian Tervuren; Collie and Shetland Sheep Dog; Whippet and Greyhound; Siberian Husky and Alaskan Malamute; Mastiff and Bullmastiff; Greater Swiss Mountain Dog and Bemese Mountain Dog; West Highland White Terrier and Cairn Terrier; and Lhasa Apso, Shih Tzu, and Pekinese.
  • the methods of the invention further comprise the step of providing a document displaying the contributions of one or more canid populations to the genome of the test canid genome.
  • the document may provide information regarding the one or more canid populations that contributed to the genome of the test canid or the test canid, such as health-related information (e.g., disease predispositions), insurance information, or any other kind of information.
  • the document may also provide a certification of the contributions of one or more canid populations to the genome of the test canid genome.
  • the document provides a representation (e.g., a photograph, drawing, or other depiction) of the one or more canid populations that contributed to the genome of the test canid.
  • the invention provides methods for defining one or more canid populations, comprising: (a) for each of a set of canid genomes, obtaining the identity of one or both alleles for each of a set of markers; and (b) defining one or more canid populations by determining the likelihood that one or more members of the set of canid genomes define distinct canid populations characterized by a set of allele frequencies for each marker using statistical modeling.
  • the invention provides substrates comprising nucleic acid sequences for obtaining the identity of one or both alleles in a canid genome for each of a set of markers.
  • the invention provides a computer-readable medium comprising a data structure stored thereon for use in distinguishing canid populations, the data structure comprising: (a) a marker field, which is capable of storing the name of a marker or of an allele of the marker; and (b) a genotype information field, which is capable of storing genotype information for the marker in a canid population, wherein a record comprises an instantiation of the marker field and an instantiation of the genotype information field and a set of records represents a canid population profile.
  • the genotype information field may be capable of storing an estimate of the frequency of the allele of a marker (e.g., an SNP marker) in a canid population.
  • the genotype information field may also be capable of storing the identity of one or both alleles of each of a set of markers in one or more canids that are members of that canid population.
  • the computer readable medium comprises a substrate having stored thereon: computer-readable information comprising (a) a data structure for use in distinguishing canid populations, the data structure comprising: (i) a marker field, which is capable of storing the name of a marker or of an allele of the marker; and (ii) a genotype information field, which is capable of storing genotype information for the marker in a canid population, wherein a record comprises an instantiation of the marker field and an instantiation of the genotype information field and a set of records represents a canid population profile; and, (b) computer-executable instructions for implementing a method for determining the contributions of canid populations to a canid genome, comprising: (i) obtaining the identity of one or both alleles in a test canid
  • FIG. 1 shows an exemplary document displaying the contributions of two canid populations (Border Collie and Bullmastiff) to the genome of a test canid (Fido), along with information about disease predispositions for the two canid populations.
  • FIG. 2 shows a consensus neighbor-joining tree of 85 dog breeds and the gray wolf, as described in EXAMPLE 4.
  • Nine breeds that form branches with statistical support are shown.
  • the remaining 76 breeds show little phylogenetic structure and have been combined into one branch labeled “All Other Breeds” for simplification.
  • the trees that formed the consensus are based on the chord distance measure. 500 bootstrap replicates of the data were carried out, and the fraction of bootstraps supporting each branch is indicated at the corresponding node as a percentage for those branches supported in over 50% of the replicates.
  • the wolf population at the root of the tree consists of 8 individuals, one from each of the following countries: China, Oman, Iran, Sweden, Italy, Mexico, Canada and the United States. Branch lengths are proportional to bootstrap values.
  • the invention provides methods for determining the contributions of canid populations to a canid genome, comprising: (a) obtaining the identity of one or both alleles in a test canid genome for each of a set of markers; and (b) determining the contributions of canid populations to the test canid genome by comparing the alleles in the test canid genome to a database comprising canid population profiles, wherein each canid population profile comprises genotype information for the set of markers in the canid population.
  • determining the contributions of canid populations refers to estimating or inferring using statistical methods the contributions of canid populations to draw conclusions regarding whether one or more canid populations contributed to the genome of a test canid.
  • canid refers to an animal that is a member of the family Canidae, which includes wolves, jackals, foxes, coyotes, and the domestic dog.
  • a canid may be a domestic dog, a wolf, or an animal that has some genetic contributions from more than one species of the family Canidae.
  • canid population refers to a group of canids related by descent, such as a domestic dog breed.
  • breeding refers to an intraspecies group of animals with relatively uniform phenotypic traits that have been selected for under controlled conditions by man.
  • the methods of the invention may be used to estimate the genetic contributions of any dog breed, including, but not limited to Academic Hound, Airedale Terrier, Akita, Alaskan Malamute, American Eskimo Dog, American Foxhound, American Hairless Rat Terrier, American Staffordshire Terrier, American Water Dogl, Australian Cattle Dog, Australian Shepherd, Australian Terrier, Basenji, Basset Hound, Beagle, Bearded Collie, Bedlington Terrier, Belgian Laekenois, Belgian Malinois, Belgian Sheepdog, Belgian Tervuren, Bernese Mountain Dog, Bichon Frise, Bloodhound, Border Collie, Border Terrier, Borzoi, Boston Terrier, Bouvier des Flandres, Boykin Dog, Boxer, Briard, Brittany, Bulldog, Brussels Griffon, Bullmastiff, Bull Terrier, Cairn Terrier, Cardigan Welsh Corgi, Cavalier King Charles Dogl, Chesapeake Bay Retriever, Chihuahua, Chinese Crested, Chinese Shar-Pe
  • the methods of the invention may also be used to determine genetic contributions from canid populations that are subsets of recognized breeds, for example, a group of Dalmatians originating from a particular breeder, or a group of canids that are not, or not yet, recognized as a breed. Similarly, the methods of the invention may be used to determine genetic contributions from canid populations that are not domestic dogs.
  • the first step in the methods of the invention comprises obtaining the identity of one or both alleles in a test canid genome for each of a set of markers.
  • the term “marker” refers to any polymorphic genomic locus that is sufficiently informative across the canid populations used in the methods of the invention to be useful for estimating the genetic contribution of these canid populations to the genome of a test canid.
  • a genomic locus is polymorphic if it has at least two alleles.
  • allele refers to a particular form of a genomic locus that may be distinguished from other forms of the genomic locus by its nucleic acid sequence. Thus, different alleles of a genomic locus represent alternative nucleic acid sequences at that locus. In any individual canid genome, there are two alleles for each marker. If both alleles are the same, the genome is homozygous for that marker. Conversely, if the two alleles differ, the genome is heterozygous for that marker.
  • Population-specific alleles are alleles that are present at some frequency in one canid population but have not been observed in the sampled canids from comparison canid populations (although they may be present at a significantly lower frequency). Population-specific alleles may be used to assign an individual to a particular population. Accordingly, the difference in allele frequencies between populations can be used for determining genetic contributions.
  • a “set of markers” refers to a minimum number of markers that are sufficient for determining the genetic contribution of the canid populations used in the methods of the invention to the genome of a test canid. The minimum number of markers required depends on the informativeness of the markers for the particular canid populations that are being used, as further described below.
  • the set of markers may comprise at least about 5 markers, at least about 10 markers, at least about 50 markers, or more than about 100 markers.
  • markers that may be used according to the invention include microsatellite markers, mitochondrial markers, restriction fragment length polymorphisms, and single nucleotide polymorphisms (SNPs).
  • Useful canine microsatellite markers include, but are not limited to, dinucleotide repeats, such as (CA) n , trinucleotide repeats, and tetranucleotide repeats, such as (GAAA) n (Francisco et al. (1996) Mamm. Genome 7:359-62; Ostrander et al. (1993) Genomics 16:207-13).
  • Exemplary markers for use in the methods of the invention include the microsatellite markers set forth in Table 1, the SNP markers set forth in Table 2, and the markers described in Guyon et al. (2003) Proc. Natl. Acad. Sci U.S.A. 100(9):5296-5301.
  • the set of markers used in the methods of the invention may comprise at least about 5 markers from the microsatellite markers in Table 1 and/or at least about 5 markers from the SNP markers in Table 2.
  • the set of markers are selected from the group consisting of 372c5t-82, 372e13t-57, 372m6t-88, 372m23t-76, 373a15t-112, 373e1t-50, 373e1t-130, 373g19t-246, 373i8s-224, 373k8s-181, 372c5s-168, 372C15S-196, 372e15s-71, and 373a21t-93.
  • a set of markers comprising fewer than about 1500 SNP markers is used to determine the contributions of at least 87 canid populations to the test canid genome.
  • a set of markers comprising fewer than about 200 SNP markers is used to determine the contributions of at least 87 canid populations to the test canid genome.
  • the identities of one or both alleles of each marker may be obtained.
  • the identities of one or both alleles of a marker in a test canid may be determined experimentally using methods that are standard in the art.
  • the identities of one or both alleles of a genomic marker may be determined using any genotyping method known in the art. Exemplary genotyping methods include, but are not limited to, the use of hybridization, Polymerase Chain Reaction (PCR), size fractionation, DNA sequencing, DNA microarrays, high density fiber-optic arrays of beads (see, e.g., Jianbing et al. (2003) Chin. Sci. Bull.
  • the genomic DNA of the test canid may be amplified using primers specific for the markers, followed by size analysis or sequencing of the amplification product. Exemplary methods for obtaining the identities of one or both alleles of markers in canid genomes are described in EXAMPLE 1.
  • the primers used for amplifying genomic DNA containing microsatellite markers are selected from the group consisting of SEQ ID NOs:1-200, although other primers and other microsatellite markers may be used.
  • the primers used for amplifying genomic DNA containing SNP markers are selected from the group consisting of SEQ ID NOs:244 to 327, although other primers and other SNP markers may be used.
  • the minimum number of markers included in the set of markers used in the first step of the methods of the invention depends on the informativeness of the markers for the particular canid populations that are being used.
  • the informativeness of a marker is a function of the number of different alleles within and between the canid populations used in the methods of the invention, the frequency of these alleles, and the rate of mutation rate at the locus.
  • the degree of polymorphism of a genomic locus may be evaluated by an estimation of the polymorphic information content (PIC), which is a function of the number of alleles and their frequency distribution.
  • PIC polymorphic information content
  • Exemplary PIC values for microsatellite markers suitable for use in the methods of the invention are set forth in Table 1. Suitable markers for use in the methods of the invention may have an average PIC value of about 0.65%, as shown in EXAMPLE 1.
  • EXAMPLE 1 Methods of determining the number of alleles of markers in different canid populations and their frequencies within and between canid populations are described in EXAMPLE 1. For example, the mean number of alleles per maker, the expected heterozygosity (based on Hardy-Weinberg Equilibrium assumptions), the observed heterozygosity, and the estimated inbreeding coefficients across 95 microsatellite markers in 94 canids, including 90 dogs representing 18 breeds, and 4 wolves, are described in EXAMPLE 1.
  • EXAMPLE 2 The influence of the number of distinct alleles of a marker in a dataset on the informativeness of the marker is shown in EXAMPLE 2. For example, in an analysis of 19 canid populations and 95 microsatellite markers, 86% of canids were correctly assigned to their breed using 5 markers that each had more than 10 distinct alleles, and 95% of canids were correctly assigned using 10 or more markers that each had more than 10 distinct alleles. For markers with 1-3 distinct alleles, 46% of canids were correctly assigned to their breed using 5 markers, and 62% of canids were correctly assigned using 10 or more markers.
  • EXAMPLE 2 The influence of the number of markers used on the ability to discriminate between 19 canid populations using genotype information for 95 markers for 4 or 5 canids per canid population is shown in EXAMPLE 2.
  • the minimum number of markers required to successfully assign 100% of individuals to the correct canid population ranged between 2 (Pekingese) and 52 (American Hairless Terrier) depending on the canid population.
  • the second step of the methods of the first aspect of the invention comprises determining the contributions of canid populations to the test canid genome by comparing the alleles in the test canid genome to a database comprising canid population profiles, wherein each canid population profile comprises genotype information for alleles of the markers in the set of markers in the canid population.
  • a “canid population profile” as used herein refers to the collection of genotype information for the set of markers in a canid population.
  • a canid population profile may comprise genotype information for most or all alleles of most or all markers in the set of markers in the canid population.
  • a canid population profile may comprise genotype information for each allele of each marker in the set of markers in the canid population.
  • the genotype information in a canid population profile may comprise information such as the identity of one or both alleles of most or all of the markers in the set of markers in one or more canids that are members of that canid population, and/or estimated allele frequencies for at least one allele of most or all of the markers in the set of markers in that canid population.
  • An “allele frequency” refers to the rate of occurrence of an allele in a population. Allele frequencies are typically estimated by direct counting.
  • allele frequencies in a canid population are estimated by obtaining the identity of one or both alleles for each of the set of markers in at least about five members of that canid population.
  • a “database of canid population profiles” refers to the collection of canid population profiles for all of the canid populations used in an exemplary method of the invention.
  • the database of canid population profiles comprises between about five and about 500 canid population profiles, such as about 20 canid population profiles, about 50 canid population profiles, or about 100 canid population profiles.
  • Determining the contributions of canid populations to the test canid genome encompasses both assigning a canid genome to a particular canid population and determining the fraction of the canid genome that was derived from one or more canid populations.
  • a Bayesian model-based clustering approach is used. There are two broad classes of clustering methods that are used to assign individuals to populations (Pritchard et al. (2000) Genetics 155:945-59). Distance based methods calculate a pairwise distance matrix to provide the distance between every pair of individuals.
  • Model-based methods proceed by assuming that observations from each cluster are random draws from some parametric model; inference for the parameters corresponding to each cluster is then done jointly with inference for the cluster membership of each individual, using standard statistical methods. Any standard statistical method may be used in the methods of the invention, including maximum likelihood, bootstrapping methodologies, Bayesian methods and any other statistical methodology that can be used to analyze genotype data. These statistical methods are well-known in the art. Many software programs for population genetics studies have been developed and may be used in the methods of the invention, including, but not limited to TFPGA, Arlequin, GDA, GENEPOP, GeneStrut, POPGENE (Labate (2000) Crop. Sci. 40:1521-1528), and structure (Pritchard et al. (2000) Genetics 155:945-59).
  • An exemplary Bayesian model-based clustering approach is provided by the genotype clustering program structure (Pritchard et al. (2000) Genetics 155:945-59), which has proven useful for defining populations within a species (Rosenburg et al. (2001) Genetics 159:699-713; Rosenburg et al. (2002) Science 298:2381-5; Falush et al. (2003) Genetics 164(4):1567-87).
  • the clustering method used by structure requires no prior information about either phenotype or genetic origin to accurately place an individual or set of related individuals in a population.
  • Any algorithms useful for multi-locus genotype analysis may be used in the methods of the invention, for example, classic assignment algorithms. Suitable algorithms include those described in Ranala & Mountain (1997) Proc. Natl. Acad. Sci. USA 94:9197-9201 and Cornuet et al. (1999) Genetics 153:1989-2000 and variations thereof. Exemplary programs available for multi-locus genotype analysis can be found on the worldwide web and include Doh (available at the University of Alberta website) and GeneClass (available at the website of CBPG of the French National Institute for Agricultural Research (INRA)).
  • the methods of the invention comprise determining the probability that a specific canid population contributed to the genome of the test canid by determining the conditional probability that the alleles in the test canid genome would occur in the specific canid population divided by the sum of conditional probabilities that the alleles in the test canid genome would occur in each canid population in the database.
  • Some embodiments of the methods of the invention comprise discriminating between the contributions of two or more genetically related canid populations to the test canid genome by comparing the alleles in the test canid genome to a database comprising profiles of the two or more genetically related canid populations.
  • the two or more genetically related canid populations may comprise Belgian Sheep Dog and Belgian Tervuren; Collie and Shetland Sheep Dog; Whippet and Greyhound; Siberian Husky and Alaskan Malamute; Mastiff and Bullmastiff; Greater Swiss Mountain Dog and Bernese Mountain Dog; West Highland White Terrier and Cairn Terrier; or Lhasa Apso, Shih Tzu, and Pekinese.
  • the methods of the invention are also useful for determining the contributions of canid populations to mixed-breed canids.
  • Admixed individuals represent approximately 50% of the canine population.
  • Models that detect an individual's admixed state can be considered to group into two classes: models that require a combinatoric set of unique alleles for each of the possible mixtures of ancestral populations (Nason & Ellstrand (1993) J. Hered. 84:1-12; Epifanio & Philipp (1997) J. Hered. 88:62-65, and Bayesian methods where ancestral populations are not required to contain a combination describing unique alleles, but instead assign individuals to admixed states probabilistically based on differences in allele frequencies between populations (Corander et al.
  • the methods of the invention have been used to identify in silico mixing at the parent level with 100% accuracy, as described in EXAMPLE 5.
  • the methods of the invention were also highly accurate at detecting in silico mixing at the grandparent level, and fairly accurate at detecting in silico mixing at the great-grandparent level, as shown in EXAMPLE 5.
  • the methods of the invention may be used to discriminate mixes at the parent and grandparent level from pure-bred dogs (as well as 1 ⁇ 2 wolf and 1 ⁇ 4 wolf mixes from dogs) and identify breed contributions in the genome of a mixed-breed dog.
  • the methods of the invention may further comprise the step of providing a document displaying the contributions of one or more canid populations to the genome of the test canid genome.
  • the term “document” refers to a chart, certificate, card, or any other kind of documentation.
  • the document may display the contributions of one or more canid populations to the test canid genome in a numeric format or in a graphic format.
  • the document may include photographs or other depictions, drawings, or representations of the one or more canid populations.
  • the document may also provide confidence values for the determined contributions (such as 80%, 85%, 90% 95%, or 99% confidence).
  • the document provides a certification of the contributions of one or more canid populations to the genome of the test canid genome.
  • the document additionally provides information regarding the one or more canid populations that contributed to the genome of the test canid or the test canid.
  • the information regarding canid populations that contributed to the genome of the test canid may include information related to the characteristics and origin of the canid population or any other kind of information that would be useful to the owner of the test canid.
  • the information includes health-related information. Many canid populations have predispositions to particular diseases or conditions.
  • a mixed breed dog that is found to be a mixture of Newfoundland and Bernese Mountain Dog should be actively monitored for genetic diseases that occur with rare frequency in the general population of dogs, but occur with significant frequency in these specific breeds; thus, a mixed-breed individual of this type would benefit from screens for malignant histiocytosis (disease heritability of 0.298 in Bernese Mountain dogs, Padgett et al. (1995) J. Small Anim. Pract. 36(3):93-8) in addition to Type I cystinuria genetic screens (nonsense mutation isolated in Newfoundlands at exon 2 of SLC3A1 gene, Henthorn et al. (2000) Hum. Genet. 107(4):295-303).
  • Health-related information may also include potential treatments, special diets or products, diagnostic information, and insurance information.
  • An exemplary document displaying the contributions of one or more canid populations to the genome of a test canid is shown in FIG. 1 .
  • the invention provides methods for defining one or more canid populations, comprising: (a) for each of a set of canid genomes, obtaining the identity of one or both alleles for each of a set of markers; and (b) defining one or more canid populations by determining the likelihood that one or more members of the set of canid genomes define distinct canid populations characterized by a set of allele frequencies for each marker. Exemplary methods of the invention for defining one or more canid populations are described in EXAMPLES 3 and 4.
  • the invention provides substrates comprising nucleic acid sequences for determining the identity of one or both alleles in a canid genome for each of a set of markers.
  • the substrates may be in any form suitable for determining the identity of alleles of markers.
  • the substrate may be in the form of a microarray or a collection of beads.
  • the invention provides a computer-readable medium comprising a data structure stored thereon for use in distinguishing canid populations, the data structure comprising: a marker field, which is capable of storing the name of a marker (for example, an SNP marker) or the name of an allele of a marker; and a genotype information field, which is capable of storing genotype information for the marker (for example, the identity of one or both alleles of the marker in a canid genome or an estimate of the frequency of an allele of the marker in a canid population), wherein a record comprises an instantiation of the marker field and an instantiation of the genotype information field and a set of records represents a canid population profile.
  • a marker field which is capable of storing the name of a marker (for example, an SNP marker) or the name of an allele of a marker
  • a genotype information field which is capable of storing genotype information for the marker (for example, the identity of one or both alleles of the marker in a can
  • a “computer-readable medium” refers to any available medium that can be accessed by computer and includes both volatile and nonvolatile media, removable and non-removable media.
  • computer-readable media may comprise computer storage media and communication media.
  • Computer storage media includes both volatile and nonvolatile, removable, and non-removable media implemented in any method or technology for storage of information, such as computer readable instructions, data structures, program modules, or other data.
  • Computer storage media include, but are not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disks (DVD) or other optical disk storage, magnetic cassettes, magnetic tapes, magnetic disk storage or other magnetic storage devices, or any other computer storage media.
  • Communication media typically embody computer-readable instructions, data structures, program modules or other data in a modulated data signal, such as a carrier wave or other transport mechanism that includes any information delivery media.
  • modulated data signal means a signal that has one or more of its characteristics set or changed in such a manner as to encode information in the signal.
  • communication media include wired media, such as a wired network or direct-wired connection, and wireless media, such as acoustic, RF infrared, and other wireless media. A combination of any of the above should also be included within the scope of computer-readable media.
  • a “data structure” refers to a conceptual arrangement of data and is typically characterized by rows and columns, with data occupying or potentially occupying each cell formed by a row-column intersection.
  • the data structure in the computer-readable medium of the invention comprises a marker field and a genotype information field, as described above.
  • the instantiation of the marker field and the genotype information field provides a record, and a set of records provides a canid population profile.
  • the data structure may be used to create a database of canid population profiles.
  • the computer readable medium comprises a substrate having stored thereon: (a) a data structure for use in distinguishing canid populations, the data structure comprising: (i) a marker field, which is capable of storing the name of a marker or of an allele of a marker; and (ii) a genotype information field, which is capable of storing genotype information for the marker, wherein a record comprises an instantiation of the marker field and an instantiation of the frequency field and a set of records represents a canid population profile; and (b) computer-executable instructions for implementing a method for determining the contributions of canid populations to a canid genome, comprising: (i) obtaining the identity of one or both alleles in a test canid genome for each of a set of markers; and (ii) determining the contributions of canid populations to the test canid genome by comparing the alleles in the test canid genome to a database comprising canid population profiles, wherein each cani
  • This example describes a representative method of the invention for obtaining the identity of one or both alleles for a set of markers and selecting markers suitable for determining the contribution of canid populations to the genome of a canid.
  • buccal (cheek) swabs and/or blood samples from volunteers at dog shows and dog club specialty events, as well as by mail-in donations.
  • Buccal swabs were collected in a manner similar to that suggested by the American Kennel Club (AKC) website using cytology brushes (Medical Packaging Corp., Camarillo, CA). DNA was extracted from buccal swabs using QiaAmp® blood kits following manufacturers' protocol (Qiagen, Valencia, CA). DNA extraction from blood was done as described previously (Comstock et al. (2002) Mol. Ecol. 11:2489-98).
  • dinucleotide microsatellites were chosen from the 1596 microsatellites currently localized on the 3300 marker map of the dog (Guyon et al. (2003) Proc. Natl. Acad. Sci U.S.A. 100(9):5296-5301) (Table 1). Markers were selected based on informativeness, calculated as a PIC value, and distribution across all 38 autosomes. Selected markers had an average PIC value of 0.65% (range 36%-86%) and an average spacing of 29.5 Mb (range 21.5-50.9 Mb). Dinucleotide, rather than tetranucleotide microsatellites, were chosen to reduce the number of spurious mutations observed that could hamper breed identification.
  • DNA samples were arrayed on five 96-well plates. A positive control was included on each plate to ensure consistent allele binning PCR was performed in 10 microliter reactions containing 1 ng of genomic DNA and final concentrations of the following reagents: 16 mM ammonium sulfate, 67 mM Tris-HCl pH 8.8, 2.0 mM MgCl 2 , 0.1 mM dNTPs, 300 nM forward primers (SEQ ID NOs:1-100), reverse primers (SEQ ID NOs:101-200), and dye-labeled M13 Primers (PE Applied Biosystems, Foster City, CA USA).
  • Forward primers were redesigned to include a 19 base M13 forward ( ⁇ 29) sequence, 5′-CACGACGTTGTAAAACGAC-3′ (SEQ ID NO:201), on the 5 prime end.
  • Samples were labeled by the addition of 0.25 pmol of an M13 primer (SEQ ID NO:201) tagged with either 6FAMTM, VICTM, NEDTM or PETTM (ABI, Foster City, CA) dyes to each reaction.
  • PCR incubation was carried out according to standard protocols (see, e.g., Lowe et al. (2003) Genomics 82:86-95). Annealing temperatures used are provided in Table 1.
  • BACs canine bacterial artificial chromosomes
  • the Primer3 program (available on line) was used to design primers from each BAC end sequence.
  • the resulting amplicons averaged 334 base pairs.
  • Primers were used to amplify 19867 base pairs of non-continuous genomic sequence in 189 dogs representing 67 domestic dog breeds, coyote, and the gray wolf.
  • the resulting PCR products were sequenced using standard methods on an ABI 3700 capillary sequencer with standard ABI dye terminator chemistry (ABI, Foster City, CA), and resequenced. All sequence reads were aligned and viewed using Phred, Phrap and Consed (Ewing & Green (1998) Genome Res. 8:186-94; Ewing et al. (1998) Genome Res. 8: 175-85).
  • the computer program Polyphred was used to identify regions of polymorphism, both SNP and insertion/deletion, within and between sequence reads (Nickerson et al. (1997) Nucl. Acids Res. 25:2745-51). All allele calls were confirmed manually and confirmed through visual inspection of the traces.
  • AMOVA molecular variance
  • 148 alleles were found to be unique to a specific canid population: 1 each to ACKR, AUST, BORD, BOX, BULD, DACH, GOLD, GSHP, GSMD, IBIZ, KEES, NELK, PEKE, POM, ROTT, SFXT, TERV, and WHIP, 2 each to BEAG, CAIR, HUSK, IRSE, MAST, OES, SCHP, SCWT, SPOO, and SSHP, 3 each to AMAL, BMD, KOMO, NEWF, STBD, and WSSP, 4 each to KUVZ, PNTR, and PRES, 5 each to BSJI and SHAR, 6 to AKIT, and 64 to WOLF.
  • the first dataset included genotype information for microsatellite markers (microsatellite markers 1-14, 16, 18-21, 23-36, 39-100, see Table 1) in 94 canids, including 90 canids representing 18 breeds and 4 wolves (dataset 1, Table 6).
  • the second dataset included genotype information for 68 microsatellite markers (microsatellite markers 2-8, 11, 12, 14-16, 18-21, 23, 24, 26-32, 34-36, 38, 41, 42, 44-46, 50, 51, 53, 54, 56, 60-64, 67, 68, 70-74, 78, 79, 81-83, 85, 87-91, 93-98, see Table 1) in 341 canids representing 72 breeds (dataset 2, Table 7).
  • the third dataset included genotype information for 96 microsatellite markers (microsatellite markers 1-9, 11-38, 40-42, 44-75, 77-100, see Table 1) in 414 canids representing 85 breeds (dataset 3, Table 8).
  • the fourth dataset included genotype information for microsatellite markers (microsatellite markers 1-9, 11-38, 40-42, 44-75, 77-100, see Table 1) in 85 canids, including 81 dogs representing 18 breeds, and 4 wolves (dataset 4, Table 9).
  • the fifth dataset included genotype information for 96 microsatellite markers (microsatellite markers 1-9, 11-38, 40-42, 44-75, 77-100, see Table 1) in 429 canids representing 88 breeds.
  • the sixth dataset included genotype information for 72 of the microsatellite markers in Table 1 in 160 mixed-breed canids, as set forth in Table 3 (filed herewith on a compact disc).
  • the proportion of polymorphic markers, the mean number of alleles per maker, the mean number of alleles per polymorphic maker, the expected heterozygosity (based on Hardy-Weinberg Equilibrium assumptions), the observed heterozygosity, and the estimated inbreeding coefficients across 95 microsatellite markers in dataset 1 are shown in Table 10.
  • the expected heterozygosity of 85 canid populations averaged over 96 microsatellites (dataset 3) using Tajima's unbiased estimator is shown in Table 11.
  • This example describes a representative method of the invention for estimating the contributions of canid populations to a canid genome using an assignment test calculator on genotype information for 95 microsatellite markers from 94 canids, and on genotype information for 68 microsatellite markers from 341 canids.
  • Dataset 1 included genotype information for 95 microsatellite markers from 94 canids, including 90 dogs representing 18 breeds, and 4 wolves (AHRT, AKIT, BEAG, BMD, BOX, BULD, BULM, CHIH, DACH, GOLD, IBIZ, MAST, NEWF, PEKE, POM, PRES, PUG, ROTT, WOLF, see Table 5 for abbreviations of canid populations).
  • the 95 microsatellite markers were microsatellite markers 1-14, 16, 18-21, 23-36, 39-100 (Table 1).
  • the dataset contained genotype information from 5 canids for each breed and 4 wolves (Table 6).
  • the genotype information for the canids in dataset 1 is set forth in Table 3 (filed herewith on a compact disc).
  • Dataset 2 included genotype information for 68 markers from 341 canids representing 72 breeds (ACKR, AFGH, AHRT, AIRT, AKIT, AMAL, AMWS, AUSS, AUST, BASS, BEAG, BEDT, BELS, BLDH, BMD, BORD, BORZ, BOX, BSJI, BULD, BULM, CAIR, CHBR, CHIH, CKCS, CLSP, COLL, DACH, DANE, DNDT, DOBP, ECKR, FCR, GOLD, GREY, GSD, GSHP, GSMD, HUSK, IBIZ, IRSE, IRTR, IWOF, KEES, KOMO, KUVZ, LAB, MAST, MBLT, MNTY, NELK, NEWF, OES, PEKE, PNTR, POM, PRES, PTWD, PUG, RHOD, ROTT, SCHP, SCWT, SFXT, SHAR, SP
  • the 68 microsatellite markers were microsatellite markers 2-8, 11, 12, 14-16, 18-21, 23, 24, 26-32, 34-36, 38, 41, 42, 44-46, 50, 51, 53, 54, 56, 60-64, 67, 68, 70-74, 78, 79, 81-83, 85, 87-91, 93-98 (Table 1).
  • the dataset contained genotype information from 5 canids for each breed, except for SFXT (2 canids), ACKR, AFGH, DNDT, OES (3 canids each), AIRT, BASS, BEDT, IRTR, MNTY, SCHP, SCWT, and TERV (4 canids each) (Table 7).
  • the genotype information for the canids in dataset 2 is set forth in Table 3 (filed herewith on a compact disc).
  • the assignment test calculator Doh (available at the University of Alberta website) was used for an analysis of the two datasets of genotype information. All individual canids were designated with their known population except for the canid to be tested, which was then assigned by the program to the canid population with the highest probability of generating the test canid's genotype. The program repeats this procedure with each canid as the test canid.
  • genotype information in dataset 1 including genotype information for 95 microsatellite markers in 94 canids (90 dogs representing 18 breeds, and 4 wolves), 99% of the canids were assigned to the correct canid population. 100% canids were correctly assigned for the following breeds: AHRT, AKIT, BEAG, BMD, BOX, BULD, CHIH, DACH, GOLD, IBIZ, MAST, NEWF, PEKE, POM, PUG, ROTT, WOLF The only canid that was misassigned was one dog (out of 5 dogs) of the Presa Canario breed. The misassigned Presa Canario dog was assigned to Chihuahua.
  • the discrimination power of the allelic patterns depended on the number of independent microsatellite loci, the allelic diversity at each locus, and the number of individuals sampled from each breed.
  • a Doh assignment analysis for the first 19 breeds was performed with 5, 10, 15, and 20 markers, binning markers with 1-3 distinct alleles found in the dataset, 4-6 distinct alleles, 7-10 distinct alleles, and more than 10 distinct alleles. For the bins that did not contain markers, the maximum number of markers was used.
  • markers with more than 10 distinct alleles 86% of canids were correctly assigned to their breed using five markers, and 95% of canids were correctly assigned using 10, 15, or 20 markers.
  • markers with 7-10 distinct alleles 84% of canids were correctly assigned to their breed using 5 markers and 91% of canids were correctly assigned using 10 markers, and 94% of canids were correctly assigned using 15, or 20 markers.
  • markers with 4-6 distinct alleles 62% of canids were correctly assigned to their breed using 5 markers, and 71% of canids were correctly assigned using 10, 15, or 20 markers.
  • markers with 1-3 distinct alleles 46% of canids were correctly assigned to their breed using 5 markers, and 62% of canids were correctly assigned using 10, 15, or 20 markers.
  • the minimum number of microsatellite markers found in a 2-class (0-1) directed search of the allele frequency patterns within the 95 markers required to successfully assign 100% of the individuals to the correct canid populations (incorrect assignment is to any other breed) was 2 for PEKE, 3 for BOX, POM, and WOLF, 4 for AKIT, MAST, and PUG, 5 for NEWF and ROTT, 6 for BMD, 8 for BEAG, 11 for I131Z, 12 for GOLD, 17 for DACH, 19 for BULD, 26 for BULM, 44 for PRES, 49 for CHIH, and 52 for AHRT.
  • There is a positive correlation between the minimum number of microsatellite markers required for 100% (0-1) discrimination, and the mean number of alleles across the 95 microsatellite markers for the 94 canids tested in 19 canid populations see Table 10).
  • the discrimination power reflects the level of inbreeding observed in each breed. For example, certain breeds have allelic variation 3-fold less than the average breed allelic variation and those breeds have both higher discrimination power and the characteristic population dynamics of long population bottlenecks and small effective population sizes
  • genotype information in dataset 2 including genotype information for 68 markers from 341 canids representing 72 breeds, 96% of the dogs tested were assigned to the correct breed, as shown in Table 13. If both Belgian breeds (Belgian Sheepdog and Belgian Tervuren) were counted as one breed, 98% of the dogs tested were assigned to the correct breed.
  • This example describes a representative method of the invention for estimating the contributions of canid populations to a canid genome using cluster analysis on genotype information for 95 microsatellite markers from 94 canids.
  • Dataset 1 included genotype information for 95 microsatellite markers from 94 canids, including 90 dogs representing 18 breeds, and 4 wolves, as described in EXAMPLE 2.
  • Cluster analysis was performed using the multilocus genotype clustering program structure (Pritchard et al. (2000) Genetics 155:945-59; Falush et al. (2003) Science 299:1582-5), which employs a Bayesian model-based clustering algorithm to identify genetically distinct subpopulations based on patterns of allele frequencies. Multiple runs were completed for each value of K (number of genetic clusters) with burn-in lengths of 10,000 steps and 100,000 iterations of the Gibbs sampler. The correlated allele frequency model was used with asymmetric admixture allowed. All values of K from 2 to 80 were tested and the clustering solutions that produced the highest likelihood were retained for further verification. To choose the overall best clustering solution for the data set, an all-pairs Wilcoxon two-sample test was performed for the 5 highest likelihood values of K.
  • the one individual that was not assigned to its breed group was a single Presa Canario, which was placed between the Bulldog and the Bullmastiff groups.
  • the Presa Canario is a recreated breed that has been developed through admixture of various mastiff types.
  • the misassigned dog in particular, can trace its heritage to both a bulldog and a Bullmastiff within the last 12 generations.
  • the clustering assignment was not able to distinguish between the Bullmastiffs and the Mastiffs at this level of analysis, but this was solved by nested analysis, as shown in Tables 15A-D.
  • the same clustering algorithms were applied in a stepwise fashion. First, the entire set was divided into two populations. Based on maximum likelihood, one of these two populations was then divided into two to provide a total of three populations. This process was repeated until all populations were resolved. The divisions from five to nine groups clearly show the relationships between the mastiff type breeds. This relationship and the hierarchy predicted conforms perfectly to that expected from breed accounts.
  • This example describes a representative method of the invention for estimating the contributions of canid populations to a canid genome using cluster analysis on genotype information for 96 microsatellite markers in 85 canid populations.
  • Dataset 3 included genotype information for 96 markers from 414 canids representing 85 breeds (ACKR, AFGH, AHRT, AIRT, AKIT, AMAL, AMWS, AUSS, AUST, BASS, BEAG, BEDT, BELS, BICH, BLDH, BMD, BORD, BORZ, BOX, BSJI, BULD, BULM, CAIR, CHBR, CHIH, CHOW, CKCS, CLSP, COLL, DACH, DANE, DOBP, ECKR, FBLD, FCR, GOLD, GREY, GSD, GSHP, GSMD, GSNZ, HUSK, IBIZ, IRSE, IRTR, ITGR, IWOF, KEES, KERY, KOMO, KUVZ, LAB, LHSA, MAST, MBLT, MNTY, MSNZ, NELK, NEWF, OES, PEKE, PHAR, PNTR, POM, PRES, PTWD
  • the 96 microsatellite markers were microsatellite markers 1-9, 11-38, 40-42, 44-75, 77-100 (Table 1).
  • the dataset contained genotype information for 5 canids for all breeds, except for AIRT, BASS, BEDT, BICH, FBLD, IRTR, MNTY, PHAR, SCHP, SCWT, TERV (4 canids each) (Table 8).
  • the genotype information for the canids in this dataset is set forth in Table 3 (filed herewith on a compact disc).
  • K As K is increased, structure first separates the most divergent groups into clusters, followed by separation of more closely related groups (Rosenberg et al. (2002) Science 298:2381).
  • the assignment test was carried out with the Doh assignment test calculator available from J. Brzustowski (available at the University of Alberta website). All dogs were designated with their known breed except for the one dog to be tested, which was then assigned by the program to the breed with the highest probability of generating the test dog's genotype. The program repeats this procedure with each dog as the test dog.
  • the Belgian Sheepdog and Belgian Tervuren breeds were combined into one designation for this analysis; when they are treated as separate breeds the individual dogs are assigned to one or the other essentially at random.
  • the second split separated the Basenji, an ancient African breed.
  • the third split separated two Arctic spitz-type breeds, the Alaskan Malamute and Siberian Husky, and the fourth split separated two Middle Eastern sight hounds, the Philippine and Saluki, from the remaining breeds.
  • the first four splits exceeded the “majority rule” criterion, appearing in more than half of the bootstrap replicates.
  • the remaining breeds showed few consistent phylogenetic relationships, except for close groupings of five breed pairs that also clustered together in the structure analysis, one new pairing of the closely related West Highland White Terrier and Cairn Terrier, and the significant grouping of three Asian companion breeds of similar appearance, the Lhasa Apso, Shih Tzu, and Pekingese. A close relationship among these three breeds was also observed in the structure analysis, with at least two of the three clustering together in a majority of runs.
  • the flat topology of the tree likely reflects a largely common founder stock and occurrence of extensive gene flow between phenotypically dissimilar dogs before the advent of breed clubs and breed barrier rules. In addition, it probably reflects the recreation of some historically older breeds that died out during the famines, depressions and wars of the 19th and 20th centuries, using stock from phenotypically similar or historically related dogs.
  • the new third cluster consisted primarily of breeds related in heritage and appearance to the Mastiff and is anchored by the Mastiff, Bulldog and Boxer, along with their close relatives the Bullmastiff, French Bulldog, Miniature Bull Terrier and Perro de Presa Canario. Also included in the cluster are the Rottweiler, Newfoundland and Bernese Mountain Dog, large breeds that are reported to have gained their size from ancient Mastiff-type ancestors. Less expected is the inclusion of the German Shepherd Dog.
  • the results paint the following picture of the relationships among domestic dog breeds. Different breeds are genetically distinct, and individuals can be readily assigned to breeds based on their genotypes. This level of divergence is surprising given the short time since the origin of most breeds from mixed ancestral stocks and supports strong reproductive isolation within each breed as a result of the breed barrier rule.
  • the results support at least four distinct breed groupings representing separate “adaptive radiations.” A subset of breeds with ancient Asian and African origins splits off from the rest of the breeds and shows shared patterns of allele frequencies.
  • Dog breeds have traditionally been grouped on the basis of their roles in human activities, physical phenotypes, and historical records. The results described above provide an independent classification based on patterns of genetic variation. This classification supports a subset of traditional groupings and also reveals previously unrecognized connections among breeds. An accurate understanding of the genetic relationships among breeds lays the foundation for studies aimed at uncovering the complex genetic basis of breed differences in morphology, behavior, and disease susceptibility.
  • This example describes an in silico method for estimating the contribution of parent, grandparent and great-grandparent canids from different canid populations to the genomes of mixed progeny canids using microsatellite markers.
  • Dataset 4 included genotype information for 95 markers from 85 canids, consisting of 81 dogs from 18 different dog breeds and 4 wolves (AHRT, AKIT, BEAG, BMD, BOX, BULD, BULM, CHIH, DACH, GOLD, IBIZ, MAST, NEWF, PEKE, POM, PRES, PUG, ROTT, WOLF, see Table 5 for abbreviations of canid populations).
  • the 95 microsatellite markers were microsatellite markers 1-14, 16, 18-21, 23-36, 39-100 (Table 1). This dataset was chosen on the basis of the fact that greater than 90% of each of the 85 canids' genome was assigned to the correct breed. The four wolves were designated as one canid population.
  • In silico canid mixes were created by randomly drawing one of the two alleles from each parent at each locus and designating them as the mix's alleles at that locus.
  • An F1 mix was produced by an in silico mixing of alleles of two of the original 81 canids.
  • An N2 mix was then produced by in silico mixing the F1 with one of its two parents, and an N3 mix was produced by in silico mixing the N2 with that same parent.
  • test mixes Three types of mixes were formed, test mixes, control mixes, and grandparent mixes.
  • the two parents were selected from two different breeds, chosen at random. 100 F1, N2, and N3 mixes were formed. Note that an F1 mix has two parents from different breeds, an N2 mix has three of four grandparents from one breed and one from another, and an N3 mix has seven of eight great-grandparents from one breed and one from another.
  • Each of the 85 canids was designated as belonging to its appropriate breed, and the mixes were not assigned to any breed.
  • each mix was always assigned by the program to the correct breed, and the fraction of the genome assigned to that breed exceeded 95% in all 300 cases (the minimum was 95.75%), 98% in 297 cases, and 99% in 266 cases. Therefore, assignment of ⁇ 95% of genome to a single breed provided unambiguous detection of mixing for the test mixes, and assignment of ⁇ 98% provides strong evidence of mixing at the 0.99 confidence level.
  • N3 test mixes 85 of 100 cases had ⁇ 98% of the genome assigned to one breed, and 77 of 100 cases had ⁇ 95% of the genome assigned to one breed, showing fairly good ability to detect mixing at the great-grandparent level. In all cases where mixing was detected, both breeds contributing to the mix were accurately identified. In all cases, the N3 mixes could be reliably discriminated from F1 mixes (that is, it could be determined that the mixing occurred at the level of great-grandparents and not parents), but there was less ability to distinguish between mixes at the grandparent and great-grandparent levels.
  • This example describes a representative method of the invention for estimating the contribution of canid populations to the genome of test canids using SNP markers.
  • SNPs single nucleotide polymorphisms
  • each dog was temporarily removed from the database and assigned to a breed based on comparison of the dog's genotypes to allele frequencies of each breed.
  • Bayes' Theorem was used for the assignment: the probability that a dog comes from a given breed is the conditional probability that the observed genotype would occur in a dog of that breed divided by the sum of conditional probabilities that the observed genotype would occur for every breed in the database (essentially as described in Cornuet et al. (1999) Genetics 153:1989-2000).
  • Software was developed to implement this algorithm. Breeds with only two individuals were included in the database but no attempt was made to classify their members because temporarily removing one of the two members did not leave enough information to calculate reliable allele frequencies.
  • the output of this analysis was, for each dog, a list of the probabilities that the dog had come from each breed in the database, as shown in Table 21. Eighty percent of dogs were assigned to the correct breed with a probability of 99% or greater. For breeds in which genotypes were obtained for five or more individuals, 88% of the dogs were assigned to the correct breed with 99 percent probability. Fourteen dogs (sixteen percent of the total tested) were not assigned to the correct breed with better than 65% probability. Of these, thirteen were assigned incorrectly with a probability of fifty percent or better, nearly three-quarters with a probability of greater than ninety percent. The remaining dog was assigned 20-45% probabilities of coming from several breeds, one of which was correct.
  • This example describes a na ⁇ ve Bayesian classification model for estimating the contribution of parent and grandparent canids from different canid populations to the genomes of mixed progeny canids using microsatellite markers.
  • Dataset 5 included genotype information for 96 markers from 429 canids representing 88 breeds (ACKR, AFGH, AHRT, AIRT, AKIT, AMAL, AMWS, ASBT, AUSS, AUST, BASS, BEAG, BEDT, BELS, BICH, BLDH, BMD, BORD, BORZ, BOX, BRIA, BSJI, BULD, BULM, CAIR, CHBR, CHIH, CHOW, CKCS, CLSP, COLL, DACH, DANE, DOBP, ECKR, FBLD, FCR, GOLD, GREY, GSD, GSHP, GSMD, GSNZ, HUSK, IBIZ, IRSE, IRTR, ITGR, IWOF, KEES, KERY, KOMO, KUVZ, LAB, LHSA, MAST, MBLT, MNTY, MSNZ, NELK, NEWF, OES, PEKE, PHAR, PNTR, POM
  • microsatellite markers were microsatellite markers 1-9, 11-38, 40-42, 44-75, 77-100 (Table 1).
  • genotype information for the canids in this dataset is set forth in Table 3 (filed herewith on a compact disc).
  • Dataset 6 included genotype information for 72 of the markers in Table 1 from 160 mixed-breed canids with known admixture composition.
  • the genotype information for the mixed-breed canids in this dataset is set forth in Table 3 (filed herewith on a compact disc).
  • a na ⁇ ve Bayesian classification model was developed that incorporates linked and unlinked microsatellite loci information, higher-dimensioned ancestral populations, and higher-ordered generation pedigrees for the probabilistic assignment of individuals to mixtures of ancestral subpopulations.
  • Two- and three-generational models were implemented for exact admixture detection and assignment, simultaneously addressing the generation, subpopulation, and linkage limitations of previous models.
  • the 2-generational model closely follows the model outlined in Anderson & Thompson (2002) Genetics 160:1217-29, with extensions for greater than two classes of “pure” subpopulations.
  • L unlinked loci we have N subpopulations (deemed breeds), and j l alleles at the l th locus.
  • j l alleles at the l th locus.
  • Aggregating subpopulation allele information provides information about the frequency of any given allele, denoted as f lj (i) .
  • the 3-generation model allows the extension of the model to consider 4subpopulation, 2-generation representation across the N subpopulations:
  • model validation was performed via a leave-one-out cross validation, where sampled alleles used in creating the in silico mixed-breed individual are removed from the ancestral population and allele frequencies are updated prior to maximum likelihood mixture proportion assignment.
  • a 1 dog was misassigned to Presa Canario.
  • b 2 dogs were misassigned to Belgian Tervuren.
  • c 1 dog was misassigned to Cairn Terrier.
  • d 1 dog was misassigned to Kuvasz and 1 dog was misassigned to Standard Poodle.
  • e 3 dogs were misassigned to Belgian Sheepdog.
  • ECKR 1376 ⁇ 1 0.008 0.001 0.001 0.001 0.006 0.003 0.004 0.002 0.072 0.009
  • ECKR 1377 ⁇ 2 0.003 0.003 0.002 0.002 0.003 0.003 0.005 0.003 0.023 0.002
  • ECKR 1400 ⁇ 2 0.001 0.001 0 0.001 0.001 0.001 0 0.001 0.002 0
  • ECKR 1404 ⁇ 7 0.001 0.002 0.001 0.003 0.001 0.001 0.001 0.001 0.001 0.001 ECKR 1511 ⁇ 6 0.001 0.001 0.005 0.003 0.001 0.002 0.002 0.004 0.002 0.001 ACKR 1035 ⁇ 2 0.007 0.003 0.023 0.001 0.001 0.007 0.002 0.003 0.004 0.001 ACKR 2261 ⁇ 2 0.001 0.00
  • AKIT 1130 0.9724 0.0276 AKIT 1131 0.993 0.007 AKIT 1132 0.9934 0.0066 AKIT 1133 0.995 0.005 AKIT 1134 0.994 0.006 AMAL 1629 0.5876 0.4124 AMAL 1779 0.516 0.484 AMAL 1845 0.6802 0.3198 AMAL 2132 0.755 0.245 AMAL 2214 0.7298 0.2702 BSJI 1338 0.7944 0.2056 BSJI 1339 0.976 0.024 BSJI 1645 0.9792 0.0208 BSJI 1675 0.9718 0.0282 BSJI 1717 0.9672 0.0328 SHAR 1573 0.9318 0.0682 SHAR 1593 0.914 0.086 SHAR 1619 0.8048 0.1952 SHAR 1998 0.6918 0.3082 SHAR 1999 0.9372 0.0628 HUSK 1469 0.702 0.298 HUSK 1883 0.7878 0.2122 HUSK 2115 0.5934 0.4066 HUSK 2117 0.5412

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Biophysics (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Wood Science & Technology (AREA)
  • Theoretical Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Medical Informatics (AREA)
  • Evolutionary Biology (AREA)
  • Microbiology (AREA)
  • Physiology (AREA)
  • Ecology (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

In one aspect, the invention provides methods for determining the contributions of canid populations to a canid genome. The methods comprise the steps of: (a) obtaining the identity of one or both alleles in a test canid genome for each of a set of markers; and (b) determining the contributions of canid populations to the test canid genome by comparing the alleles in the test canid genome to a database comprising canid population profiles, wherein each canid population profile comprises genotype information for the set of markers in the canid populations.

Description

    CROSS-REFERENCES TO RELATED APPLICATIONS
  • This application is a continuation of U.S. application Ser. No. 13/039,240, filed Mar. 2, 2011, now abandoned, which is a continuation of U.S. application Ser. No. 12/768,427, filed Apr. 27, 2010, now abandoned, which is a continuation of U.S. application Ser. No. 10/536,369, filed Feb. 1, 2006, now U.S. Pat. No. 7,729,863, issued Jun. 1, 2010, which is a national stage of International Application No. PCT/US04/42267, filed Dec. 15, 2004, which claims the benefit of U.S. Provisional Application No. 60/530,464, filed Dec. 17, 2003, the disclosures of which are hereby expressly incorporated by reference.
  • STATEMENT OF GOVERNMENT LICENSE RIGHTS
  • This invention was made with government support under grant number HG000035 awarded by the National Institutes of Health. The government has certain rights in the invention.
  • STATEMENT REGARDING SEQUENCE LISTING
  • The sequence listing XML associated with this application is provided in XML format in lieu of a paper copy and is hereby incorporated by reference into the specification. The name of the XML file containing the sequence listing is 1894-P4USCON2_Seq_List_20221208.xml. The XML file is 482,945 bytes; was created on Dec. 8, 2022; and was submitted electronically via Patent Center with the filing of the specification.
  • REFERENCE TO TABLES SUBMITTED ELECTRONICALLY
  • Submitted herewith in ASCII text file format are large Tables 3 and 4. Table 3 (Table3.txt, 424 kb, created Feb. 25, 2010) and Table 4 (Table4.txt, 55 kb, created Feb. 25, 2010) are both incorporated herein by reference in their entireties.
  • FIELD OF THE INVENTION
  • The invention relates to determining the contribution of one or more canid populations to the genome of a canid using polymorphic markers.
  • LENGTHY TABLES
    The patent application contains a lengthy table section. A copy of the table is available in electronic form from the USPTO web site (https://seqdata.uspto.gov/?pageRequest=docDetail&DocID=US20230279505A1). An electronic copy of the table will also be available from the USPTO upon request and payment of the fee set forth in 37 CFR 1.19(b)(3).
  • BACKGROUND OF THE INVENTION
  • Canis familiaris, the domestic dog, is a single species divided into more than 400 phenotypically divergent genetic isolates termed breeds, 152 of which are recognized by the American Kennel Club in the United States (American Kennel Club (1998) The Complete Dog Book, eds. Crowley & Adelman, Howell Book Hues, New York, NY). Distinct breeds of dog are characterized by unique constellations of morphology, behavior, and disease susceptibility (Ostrander et al. (2000) Trends in Genetics 16:117-23). A variety of dog morphologies have existed for millennia, and reproductive isolation between them was formalized with the advent of breed clubs and breed standards in the mid 19th century. Since that time, the promulgation of the “breed barrier” rule—no dog may become a registered member of a breed unless both its dam and sire are registered members—has ensured a relatively closed genetic pool among dogs of each breed.
  • Over 350 inherited disorders segregate in the purebred dog population (Patterson et al. (1988) J. Am. Vet. Med. Assoc. 193:1131.) Many of these mimic common human disorders and are restricted to particular breeds or groups of breeds as a result of 20 aggressive inbreeding programs used to generate specific morphologies.
  • There are many potential uses for objectively determining the breed of an individual dog, such as the certification of dogs as belonging to a particular breed. Because historical records vary in reliability from breed to breed, a genetic analysis that does not rely on prior population information is the most direct and accurate method for determining population structure. Over the past decade, molecular methods have been used to enhance our understanding of wild canid species and to determine their relationships to the domestic dog. Mitochondrial DNA sequence analyses describe the relationship between the domestic dog and the wolf, elucidating the multiple domestication events that occurred 40,000-100,000 years ago (Vila et al. (1997) Science 276:1687-9; Savolainen et al. (2002) Science 298:1610-3, Leonard et al. (2002) Science 298:1613-6). However, the evolution of mitochondrial DNA is too slow to allow inference of relationships among modern dog breeds, most of which have existed for fewer than 400 years. In addition, phylogenetic distances measures and tree building programs are not equipped to deal with reticulate evolution as is commonly observed in dog populations (Zajc et al. (1997) Mamm. Genome 8(3):182-5; Koskinen & Bredbacka (2000) Animal Genetics 31:310-17; Irion et al. (2003) J. Hered. 94(1):81-7). One previous study showed that nuclear microsatellite loci could be used to assign dogs from five breeds to their breed of origin, demonstrating large genetic distances among these breeds (Koskinen (2003) Anim. Genet. 34:297). Another study used microsatellites to detect relatedness of two breed pairs in a collection of 28 breeds but could not establish broader phylogenetic relationships among the breeds (Irion et al. (2003) J. Hered. 94(1):81-7). The failure to find such relationships could reflect the properties of microsatellite loci (Irion et al. (2003) J. Hered. 94(1):81-7), the limited number of breeds examined, or the analytical methods used in the study. Alternatively, it may reflect the complex structure in purebred dog populations, due to the recent origin of most breeds and the mixing of ancestral types in their creation.
  • There is a need for methods for defining related groups of breeds and for unambiguously identifying breed contributions to the genome of an individual dog. The present invention addresses this and other needs.
  • SUMMARY OF THE INVENTION
  • In one aspect, the invention provides methods for determining the contributions of canid populations to a canid genome. The methods comprise the steps of: (a) obtaining the identity of one or both alleles in a test canid genome for each of a set of markers; and (b) determining the contributions of canid populations to the test canid genome by comparing the alleles in the test canid genome to a database comprising canid population profiles, wherein each canid population profile comprises genotype information for the set of markers in the canid population. The set of markers may comprise at least about five markers, for example, at least about five markers set forth on the map of the canine genome. Exemplary markers suitable for use in the methods of the invention include, for example, microsatellite markers, single nucleotide polymorphisms (SNPs), mitochondrial markers, and restriction fragment length polymorphisms. For example, the set of markers may comprise at least 5 of the SNP markers set forth in Table 2, and/or at least 5 microsatellite markers set forth in Table 1. The set of markers may comprise one or more population-specific markers, such as one or more population-specific SNP markers or one or more population-specific microsatellite markers. For example, one or more SNP markers may be selected from the group consisting of 372c5t-82, 372e13t-57, 372m6t-88, 372m23t-76, 373a15t-112, 373e1t-50, 373e1t-130, 373g19t-246, 373i8s-224, 373k8s-181, 372c5s-168, 372C155-196, 372e15s-71, and 373a21t-93.
  • The identity of one or both alleles in a test canid genome for each of the set of markers may be obtained using methods standard in the art, such as hybridization, Polymerase Chain Reaction, size fractionation, DNA sequencing, etc. For example, step (a) of the methods may comprise amplifying genomic DNA of the test canid using primers specific for each of the set markers and determining the size of the amplification product. Step (a) may also comprise amplifying genomic DNA of the test canid using primers specific for each of the set of markers and determining the nucleotide sequence of the amplification product. In some embodiments, the primers are selected from the group consisting of SEQ ID NOs:1-200. In some embodiments, the primers are selected from the group consisting of SEQ ID NOs:1-244-327.
  • The genotype information in a canid population profile may comprise information such as the identity of one or both alleles of most or all the markers in the set of markers in one or more canids that are members of that canid population, and/or estimated allele frequencies for at least one allele of most or all of the markers in the set of markers in that canid population. Each estimated allele frequency in a canid population profile is typically based on the identities of one or both alleles in at least two genomes of canids that are members of the canid population. The database of canid population profiles may comprise between about five and several hundreds of canid population profiles, such as at least about 100 canid population profiles. In some embodiments, the canid population profiles comprise profiles of registered breeds, such as breeds registered by the American Kennel Club.
  • In some embodiments, the set of markers comprises fewer than about 1500 SNP markers and wherein the method determines the contributions of at least 87 canid populations to the test canid genome. In some embodiments, the set of markers comprises fewer than about 200 SNP markers (such as about 100 SNP markers, or about 50 SNP markers) and wherein the method determines the contributions of at least 87 canid populations to the test canid genome.
  • In step (b) of the method, the likelihood that one or more canid populations contributed to the test canid genome may be determined using any suitable algorithm, such as Bayesian model-based clustering algorithms or assignment algorithms. In some embodiments, step (b) comprises determining the probability that a specific canid population contributed to the genome of the test canid by determining the conditional probability that the alleles in the test canid genome would occur in the specific canid population divided by the sum of conditional probabilities that the alleles in the test canid genome would occur in each canid population in the database. In some embodiments, step (b) comprises discriminating between the contributions of two or more genetically related canid populations to the test canid genome by comparing the alleles in the test canid genome to a database comprising profiles of the two or more genetically related canid populations. Exemplary genetically related canid populations include, but are not limited to, Belgian Sheep Dog and Belgian Tervuren; Collie and Shetland Sheep Dog; Whippet and Greyhound; Siberian Husky and Alaskan Malamute; Mastiff and Bullmastiff; Greater Swiss Mountain Dog and Bemese Mountain Dog; West Highland White Terrier and Cairn Terrier; and Lhasa Apso, Shih Tzu, and Pekinese.
  • In some embodiments, the methods of the invention further comprise the step of providing a document displaying the contributions of one or more canid populations to the genome of the test canid genome. The document may provide information regarding the one or more canid populations that contributed to the genome of the test canid or the test canid, such as health-related information (e.g., disease predispositions), insurance information, or any other kind of information. The document may also provide a certification of the contributions of one or more canid populations to the genome of the test canid genome. In some embodiments, the document provides a representation (e.g., a photograph, drawing, or other depiction) of the one or more canid populations that contributed to the genome of the test canid.
  • In some embodiments, the invention provides methods for defining one or more canid populations, comprising: (a) for each of a set of canid genomes, obtaining the identity of one or both alleles for each of a set of markers; and (b) defining one or more canid populations by determining the likelihood that one or more members of the set of canid genomes define distinct canid populations characterized by a set of allele frequencies for each marker using statistical modeling.
  • In another aspect, the invention provides substrates comprising nucleic acid sequences for obtaining the identity of one or both alleles in a canid genome for each of a set of markers.
  • In a further aspect, the invention provides a computer-readable medium comprising a data structure stored thereon for use in distinguishing canid populations, the data structure comprising: (a) a marker field, which is capable of storing the name of a marker or of an allele of the marker; and (b) a genotype information field, which is capable of storing genotype information for the marker in a canid population, wherein a record comprises an instantiation of the marker field and an instantiation of the genotype information field and a set of records represents a canid population profile. For example, the genotype information field may be capable of storing an estimate of the frequency of the allele of a marker (e.g., an SNP marker) in a canid population. The genotype information field may also be capable of storing the identity of one or both alleles of each of a set of markers in one or more canids that are members of that canid population. In some embodiments, the computer readable medium comprises a substrate having stored thereon: computer-readable information comprising (a) a data structure for use in distinguishing canid populations, the data structure comprising: (i) a marker field, which is capable of storing the name of a marker or of an allele of the marker; and (ii) a genotype information field, which is capable of storing genotype information for the marker in a canid population, wherein a record comprises an instantiation of the marker field and an instantiation of the genotype information field and a set of records represents a canid population profile; and, (b) computer-executable instructions for implementing a method for determining the contributions of canid populations to a canid genome, comprising: (i) obtaining the identity of one or both alleles in a test canid genome for each of a set of markers; and (ii) determining the contributions of canid populations to the test canid genome by comparing the alleles in the test canid genome to a database comprising canid population profiles, wherein each canid population profile comprises genotype information for the set of markers in the canid population.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The foregoing aspects and many of the attendant advantages of this invention will become more readily appreciated as the same become better understood by reference to the following detailed description, when taken in conjunction with the accompanying drawings, wherein:
  • FIG. 1 shows an exemplary document displaying the contributions of two canid populations (Border Collie and Bullmastiff) to the genome of a test canid (Fido), along with information about disease predispositions for the two canid populations.
  • FIG. 2 shows a consensus neighbor-joining tree of 85 dog breeds and the gray wolf, as described in EXAMPLE 4. Nine breeds that form branches with statistical support are shown. The remaining 76 breeds show little phylogenetic structure and have been combined into one branch labeled “All Other Breeds” for simplification. The trees that formed the consensus are based on the chord distance measure. 500 bootstrap replicates of the data were carried out, and the fraction of bootstraps supporting each branch is indicated at the corresponding node as a percentage for those branches supported in over 50% of the replicates. The wolf population at the root of the tree consists of 8 individuals, one from each of the following countries: China, Oman, Iran, Sweden, Italy, Mexico, Canada and the United States. Branch lengths are proportional to bootstrap values.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
  • Unless specifically defined herein, all terms used herein have the same meaning as they would to one skilled in the art of the present invention.
  • In a first aspect, the invention provides methods for determining the contributions of canid populations to a canid genome, comprising: (a) obtaining the identity of one or both alleles in a test canid genome for each of a set of markers; and (b) determining the contributions of canid populations to the test canid genome by comparing the alleles in the test canid genome to a database comprising canid population profiles, wherein each canid population profile comprises genotype information for the set of markers in the canid population.
  • As used here, the term “determining the contributions of canid populations” refers to estimating or inferring using statistical methods the contributions of canid populations to draw conclusions regarding whether one or more canid populations contributed to the genome of a test canid.
  • The term “canid” as used herein refers to an animal that is a member of the family Canidae, which includes wolves, jackals, foxes, coyotes, and the domestic dog. For example, a canid may be a domestic dog, a wolf, or an animal that has some genetic contributions from more than one species of the family Canidae. The term “canid population” refers to a group of canids related by descent, such as a domestic dog breed. The term “breed” refers to an intraspecies group of animals with relatively uniform phenotypic traits that have been selected for under controlled conditions by man. For example, the American Kennel Club (AKC) recognizes 152 breeds distributed in seven breed groups (Herding, Hound, Nonsporting, Sporting, Terrier, Toy, and Working) (American Kennel Club (1998) The Complete Dog Book, eds. Crowley & Adelman, Howell Book Hues, New York, NY). The methods of the invention may be used to estimate the genetic contributions of any dog breed, including, but not limited to Afghan Hound, Airedale Terrier, Akita, Alaskan Malamute, American Eskimo Dog, American Foxhound, American Hairless Rat Terrier, American Staffordshire Terrier, American Water Spaniel, Australian Cattle Dog, Australian Shepherd, Australian Terrier, Basenji, Basset Hound, Beagle, Bearded Collie, Bedlington Terrier, Belgian Laekenois, Belgian Malinois, Belgian Sheepdog, Belgian Tervuren, Bernese Mountain Dog, Bichon Frise, Bloodhound, Border Collie, Border Terrier, Borzoi, Boston Terrier, Bouvier des Flandres, Boykin Spaniel, Boxer, Briard, Brittany, Bulldog, Brussels Griffon, Bullmastiff, Bull Terrier, Cairn Terrier, Cardigan Welsh Corgi, Cavalier King Charles Spaniel, Chesapeake Bay Retriever, Chihuahua, Chinese Crested, Chinese Shar-Pei, Chow Chow, Clumber Spaniel, Cocker Spaniel, Collie, Curly-Coated Retriever, Dachshund, Dalmatian, Dandie Dinmont Terrier, Doberman Pinscher, Dogo Canario, English Cocker Spaniel, English Foxhound, English Setter, English Springer Spaniel, Entlebucher Mountain Dog, Field Spaniel, Flat-Coated Retriever, French Bulldog, German Longhaired Pointer, German Shepherd Dog, German Shorthaired Pointer, German Wirehaired Pointer, Giant Schnauzer, Golden Retriever, Gordon Setter, Great Dane, Great Pyrenees, Greater Swiss Mountain Dog, Greyhound, Harrier, Havanese, Ibizan Hound, Irish Setter, Irish Terrier, Irish Water Spaniel, Irish Wolfhound, Italian Greyhound, Jack Russell Terrier, Keeshond, Kerry Blue Terrier, Komondor, Kuvasz, Labrador Retriever, Leonberger, Lhasa Apso, Lowchen, Maltese, Manchester Terrier—Standard, Manchester Terrier—Toy, Mastiff, Miniature Bull Terrier, Miniature Pinscher, Miniature Poodle, Miniature Schnauzer, Munsterlander, Neapolitan Mastiff, Newfoundland, New Guinea Singing Dog, Norwegian Elkhound, Norwich Terrier, Old English Sheepdog, Papillon, Pekingese, Pembroke Welsh Corgi, Petit Basset Griffon Vendeen, Pharaoh Hound, Pointer, Polish Lowland Sheepdog, Pomeranian, Portuguese Water Dog, Presa Canario, Pug, Puli, Pumi, Rhodesian Ridgeback, Rottweiler, Saint Bernard, Saluki, Samoyed, Schipperke, Scottish Deerhound, Scottish Terrier, Silky Terrier, Shetland Sheepdog, Shiba Inu, Shih Tzu, Siberian Husky, Smooth Fox Terrier, Soft Coated Wheaten Terrier, Spinone Italiano, Staffordshire Bull Terrier, Standard Poodle, Standard Schnauzer, Sussex Spaniel, Tibetan Spaniel, Tibetan Terrier, Toy Fox Terrier, Toy Poodle, Vizsla, Weimaraner, Welsh Springer Spaniel, Welsh Terrier, West Highland White Terrier, Wirehaired Pointing Griffon, Whippet, Yorkshire Terrier.
  • The methods of the invention may also be used to determine genetic contributions from canid populations that are subsets of recognized breeds, for example, a group of Dalmatians originating from a particular breeder, or a group of canids that are not, or not yet, recognized as a breed. Similarly, the methods of the invention may be used to determine genetic contributions from canid populations that are not domestic dogs.
  • The first step in the methods of the invention comprises obtaining the identity of one or both alleles in a test canid genome for each of a set of markers. The term “marker” refers to any polymorphic genomic locus that is sufficiently informative across the canid populations used in the methods of the invention to be useful for estimating the genetic contribution of these canid populations to the genome of a test canid. A genomic locus is polymorphic if it has at least two alleles. The term “allele” refers to a particular form of a genomic locus that may be distinguished from other forms of the genomic locus by its nucleic acid sequence. Thus, different alleles of a genomic locus represent alternative nucleic acid sequences at that locus. In any individual canid genome, there are two alleles for each marker. If both alleles are the same, the genome is homozygous for that marker. Conversely, if the two alleles differ, the genome is heterozygous for that marker.
  • Population-specific alleles are alleles that are present at some frequency in one canid population but have not been observed in the sampled canids from comparison canid populations (although they may be present at a significantly lower frequency). Population-specific alleles may be used to assign an individual to a particular population. Accordingly, the difference in allele frequencies between populations can be used for determining genetic contributions.
  • A “set of markers” refers to a minimum number of markers that are sufficient for determining the genetic contribution of the canid populations used in the methods of the invention to the genome of a test canid. The minimum number of markers required depends on the informativeness of the markers for the particular canid populations that are being used, as further described below. The set of markers may comprise at least about 5 markers, at least about 10 markers, at least about 50 markers, or more than about 100 markers.
  • Representative markers that may be used according to the invention include microsatellite markers, mitochondrial markers, restriction fragment length polymorphisms, and single nucleotide polymorphisms (SNPs). Useful canine microsatellite markers include, but are not limited to, dinucleotide repeats, such as (CA)n, trinucleotide repeats, and tetranucleotide repeats, such as (GAAA)n (Francisco et al. (1996) Mamm. Genome 7:359-62; Ostrander et al. (1993) Genomics 16:207-13). Exemplary markers for use in the methods of the invention include the microsatellite markers set forth in Table 1, the SNP markers set forth in Table 2, and the markers described in Guyon et al. (2003) Proc. Natl. Acad. Sci U.S.A. 100(9):5296-5301. The set of markers used in the methods of the invention may comprise at least about 5 markers from the microsatellite markers in Table 1 and/or at least about 5 markers from the SNP markers in Table 2. In some embodiments, the set of markers are selected from the group consisting of 372c5t-82, 372e13t-57, 372m6t-88, 372m23t-76, 373a15t-112, 373e1t-50, 373e1t-130, 373g19t-246, 373i8s-224, 373k8s-181, 372c5s-168, 372C15S-196, 372e15s-71, and 373a21t-93. In some embodiments, a set of markers comprising fewer than about 1500 SNP markers is used to determine the contributions of at least 87 canid populations to the test canid genome. In some embodiments, a set of markers comprising fewer than about 200 SNP markers is used to determine the contributions of at least 87 canid populations to the test canid genome.
  • According to the methods of the invention, the identities of one or both alleles of each marker may be obtained. In some embodiments, the identities of one or both alleles of a marker in a test canid may be determined experimentally using methods that are standard in the art. For example, the identities of one or both alleles of a genomic marker may be determined using any genotyping method known in the art. Exemplary genotyping methods include, but are not limited to, the use of hybridization, Polymerase Chain Reaction (PCR), size fractionation, DNA sequencing, DNA microarrays, high density fiber-optic arrays of beads (see, e.g., Jianbing et al. (2003) Chin. Sci. Bull. 48(18):1903-5), primer extension, mass spectrometry (see, e.g., Jurinke et al. (2002) Meth. Mol. Biol. 187:179-92), and whole-genome sampling analysis (see, e.g., Kennedy et al. (2003) Nat. Biotechnol. 21(10):1233-7). The identities of alleles of markers in a test canid may also have been previously determined and be available from sources such as published literature.
  • In some embodiments, the genomic DNA of the test canid may be amplified using primers specific for the markers, followed by size analysis or sequencing of the amplification product. Exemplary methods for obtaining the identities of one or both alleles of markers in canid genomes are described in EXAMPLE 1. In some embodiments, the primers used for amplifying genomic DNA containing microsatellite markers are selected from the group consisting of SEQ ID NOs:1-200, although other primers and other microsatellite markers may be used. In some embodiments, the primers used for amplifying genomic DNA containing SNP markers are selected from the group consisting of SEQ ID NOs:244 to 327, although other primers and other SNP markers may be used. The identities of alleles of 68-100 microsatellite markers in 422 canids, including 414 dogs representing 85 breeds, and 8 wolves are set forth in Table 3 (filed herewith on a compact disc). The identities of alleles of 100 SNP markers in 189 canids, including 186 dogs representing 67 breeds, two wolves, and a coyote are set forth in Table 4 (filed herewith on a compact disc).
  • The minimum number of markers included in the set of markers used in the first step of the methods of the invention depends on the informativeness of the markers for the particular canid populations that are being used. The informativeness of a marker is a function of the number of different alleles within and between the canid populations used in the methods of the invention, the frequency of these alleles, and the rate of mutation rate at the locus. The degree of polymorphism of a genomic locus may be evaluated by an estimation of the polymorphic information content (PIC), which is a function of the number of alleles and their frequency distribution. Exemplary PIC values for microsatellite markers suitable for use in the methods of the invention are set forth in Table 1. Suitable markers for use in the methods of the invention may have an average PIC value of about 0.65%, as shown in EXAMPLE 1.
  • Methods of determining the number of alleles of markers in different canid populations and their frequencies within and between canid populations are described in EXAMPLE 1. For example, the mean number of alleles per maker, the expected heterozygosity (based on Hardy-Weinberg Equilibrium assumptions), the observed heterozygosity, and the estimated inbreeding coefficients across 95 microsatellite markers in 94 canids, including 90 dogs representing 18 breeds, and 4 wolves, are described in EXAMPLE 1.
  • The existence of breed barriers would predict that dogs from the same breed should be more similar genetically than dogs from different breeds. To test this prediction, the proportion of genetic variation between individual dogs that could be attributed to breed membership was estimated. Analysis of molecular variance for microsatellite data including 96 markers in 328 dogs representing 68 breeds showed that variation between breeds accounts for more than 27% of total genetic variation, as described in EXAMPLE 1. Similarly, the genetic distance between breeds calculated from SNP marker data including 75 SNPs in 120 dogs representing 60 breeds was FST=0.36, as described in EXAMPLE 1. These observations are consistent with previous reports that analyzed fewer dog breeds (Koskinen (2003) Anim. Genet. 34:297; Trion et al. (2003) J. Hered. 94:81), confirming the prediction that breed barriers have led to strong genetic isolation among breeds, and are in striking contrast to the much lower genetic differentiation (typically in the range of 5-10%) found between human populations (Rosenberg et al. (2002) Science 298:2381-5; Cavelli-Sforza et al. (1994) The History and Geography of Human Genes, Princeton University Press, Princeton). Variation among breeds in dogs is on the high end of the range reported for livestock populations (MacHugh et al. (1998) Anim. Genet. 29:333; Laval et al. (2000) Gen. Sel. Evol. 32:187). Strong genetic differentiation among dog breeds indicates that breed membership may be determined from genotype information for individual canids.
  • The influence of the number of distinct alleles of a marker in a dataset on the informativeness of the marker is shown in EXAMPLE 2. For example, in an analysis of 19 canid populations and 95 microsatellite markers, 86% of canids were correctly assigned to their breed using 5 markers that each had more than 10 distinct alleles, and 95% of canids were correctly assigned using 10 or more markers that each had more than 10 distinct alleles. For markers with 1-3 distinct alleles, 46% of canids were correctly assigned to their breed using 5 markers, and 62% of canids were correctly assigned using 10 or more markers.
  • The influence of the number of markers used on the ability to discriminate between 19 canid populations using genotype information for 95 markers for 4 or 5 canids per canid population is shown in EXAMPLE 2. For example, the minimum number of markers required to successfully assign 100% of individuals to the correct canid population ranged between 2 (Pekingese) and 52 (American Hairless Terrier) depending on the canid population. The minimum number of microsatellite markers required to successfully assign at least 90% of all 94 tested individuals across the 19 canid populations, with the chosen canid population having 100% accuracy, ranged between 8 (for Pekingese) to 95 (for Preso Canario, Chihuahua, and American Hairless Terrier).
  • The second step of the methods of the first aspect of the invention comprises determining the contributions of canid populations to the test canid genome by comparing the alleles in the test canid genome to a database comprising canid population profiles, wherein each canid population profile comprises genotype information for alleles of the markers in the set of markers in the canid population. A “canid population profile” as used herein refers to the collection of genotype information for the set of markers in a canid population. Thus, a canid population profile may comprise genotype information for most or all alleles of most or all markers in the set of markers in the canid population. For example, a canid population profile may comprise genotype information for each allele of each marker in the set of markers in the canid population. The genotype information in a canid population profile may comprise information such as the identity of one or both alleles of most or all of the markers in the set of markers in one or more canids that are members of that canid population, and/or estimated allele frequencies for at least one allele of most or all of the markers in the set of markers in that canid population. An “allele frequency” refers to the rate of occurrence of an allele in a population. Allele frequencies are typically estimated by direct counting. Generally, allele frequencies in a canid population are estimated by obtaining the identity of one or both alleles for each of the set of markers in at least about five members of that canid population. A “database of canid population profiles” refers to the collection of canid population profiles for all of the canid populations used in an exemplary method of the invention. In some embodiments, the database of canid population profiles comprises between about five and about 500 canid population profiles, such as about 20 canid population profiles, about 50 canid population profiles, or about 100 canid population profiles.
  • Determining the contributions of canid populations to the test canid genome encompasses both assigning a canid genome to a particular canid population and determining the fraction of the canid genome that was derived from one or more canid populations. In some embodiments of the method, a Bayesian model-based clustering approach is used. There are two broad classes of clustering methods that are used to assign individuals to populations (Pritchard et al. (2000) Genetics 155:945-59). Distance based methods calculate a pairwise distance matrix to provide the distance between every pair of individuals. Model-based methods proceed by assuming that observations from each cluster are random draws from some parametric model; inference for the parameters corresponding to each cluster is then done jointly with inference for the cluster membership of each individual, using standard statistical methods. Any standard statistical method may be used in the methods of the invention, including maximum likelihood, bootstrapping methodologies, Bayesian methods and any other statistical methodology that can be used to analyze genotype data. These statistical methods are well-known in the art. Many software programs for population genetics studies have been developed and may be used in the methods of the invention, including, but not limited to TFPGA, Arlequin, GDA, GENEPOP, GeneStrut, POPGENE (Labate (2000) Crop. Sci. 40:1521-1528), and structure (Pritchard et al. (2000) Genetics 155:945-59).
  • An exemplary Bayesian model-based clustering approach is provided by the genotype clustering program structure (Pritchard et al. (2000) Genetics 155:945-59), which has proven useful for defining populations within a species (Rosenburg et al. (2001) Genetics 159:699-713; Rosenburg et al. (2002) Science 298:2381-5; Falush et al. (2003) Genetics 164(4):1567-87). The clustering method used by structure requires no prior information about either phenotype or genetic origin to accurately place an individual or set of related individuals in a population.
  • Any algorithms useful for multi-locus genotype analysis may be used in the methods of the invention, for example, classic assignment algorithms. Suitable algorithms include those described in Ranala & Mountain (1997) Proc. Natl. Acad. Sci. USA 94:9197-9201 and Cornuet et al. (1999) Genetics 153:1989-2000 and variations thereof. Exemplary programs available for multi-locus genotype analysis can be found on the worldwide web and include Doh (available at the University of Alberta website) and GeneClass (available at the website of CBPG of the French National Institute for Agricultural Research (INRA)).
  • In some embodiments, the methods of the invention comprise determining the probability that a specific canid population contributed to the genome of the test canid by determining the conditional probability that the alleles in the test canid genome would occur in the specific canid population divided by the sum of conditional probabilities that the alleles in the test canid genome would occur in each canid population in the database.
  • Some embodiments of the methods of the invention comprise discriminating between the contributions of two or more genetically related canid populations to the test canid genome by comparing the alleles in the test canid genome to a database comprising profiles of the two or more genetically related canid populations. The two or more genetically related canid populations may comprise Belgian Sheep Dog and Belgian Tervuren; Collie and Shetland Sheep Dog; Whippet and Greyhound; Siberian Husky and Alaskan Malamute; Mastiff and Bullmastiff; Greater Swiss Mountain Dog and Bernese Mountain Dog; West Highland White Terrier and Cairn Terrier; or Lhasa Apso, Shih Tzu, and Pekinese.
  • Using an assignment algorithm on genotype information for 95 microsatellite markers from 94 canids, including 90 canids representing 18 breeds and 4 wolves, the methods of the invention have been used to assign each individual canid to its breed with 99% accuracy, as described in EXAMPLE 2. A clustering algorithm used on the same genotype information predicted 20 canid populations and assigned each canid to one population with 99% accuracy, as described in EXAMPLE 3.
  • Using an assignment algorithm on genotype information for 68 microsatellite markers from 341 canids representing 72 breeds, the methods of the invention have been used to assign 96% of the canids to the correct breed, as described in EXAMPLE 2. Using an assignment algorithm on genotype information for 96 microsatellite markers from 414 canids representing 85 breeds, the methods of the invention have been used to assign 99% of the canids to the correct breed, as described in EXAMPLE 4. Similar results were obtained using a clustering algorithm. Using an assignment algorithm on genotype information for 100 SNP markers from 189 canids representing 67 breeds, the methods of the invention have been used to assign 80% of canids to the correct breed with a probability of 99% of greater, as described in EXAMPLE 6.
  • The methods of the invention are also useful for determining the contributions of canid populations to mixed-breed canids. Admixed individuals represent approximately 50% of the canine population. Models that detect an individual's admixed state can be considered to group into two classes: models that require a combinatoric set of unique alleles for each of the possible mixtures of ancestral populations (Nason & Ellstrand (1993) J. Hered. 84:1-12; Epifanio & Philipp (1997) J. Hered. 88:62-65, and Bayesian methods where ancestral populations are not required to contain a combination describing unique alleles, but instead assign individuals to admixed states probabilistically based on differences in allele frequencies between populations (Corander et al. (2003) Genetics 163(1):367-74; Anderson & Thompson (2002) Genetics 160:1217-29, Pritchard et al. (2000) Genetics 155:945-59, Rannala & Mountain (1997) Proc. Natl. Acad. Sci. U.S.A. 94:9197-9201. The latter set of models are more informative for most populations and data sets as they allow for a Bayesian posterior probabilistic assignment vector for each population/generation combination, thereby allowing for uncertainty analysis to be incorporated into the assignment vector; but existing models for the exact, recent admixture assignments of individuals from multiple ancestral populations are limited in their scope as they have been developed thus far only for two generation prediction and allow for only a few ancestral populations. For example, the methods of Anderson & Thompson (2002) are developed for a two generation, two population model with unlinked microsatellite data. A naïve Bayesian classification model that incorporates linked and unlinked microsatellite loci information, higher-dimensioned ancestral populations, and higher-ordered generation pedigrees for the probabilistic assignment of individuals to mixtures of ancestral subpopulations is described in EXAMPLE 7. This model simultaneously addresses the generation, subpopulation, and linkage limitations of previous models, and 2- and 3-generational models have been implemented for exact admixture detection and assignment, as described in EXAMPLE 7.
  • Using a clustering algorithm on in silico mixes of genotype information for 95 markers from 85 canids, consisting of 81 canids representing 18 breeds and 4 wolves, the methods of the invention have been used to identify in silico mixing at the parent level with 100% accuracy, as described in EXAMPLE 5. The methods of the invention were also highly accurate at detecting in silico mixing at the grandparent level, and fairly accurate at detecting in silico mixing at the great-grandparent level, as shown in EXAMPLE 5. Thus, the methods of the invention may be used to discriminate mixes at the parent and grandparent level from pure-bred dogs (as well as ½ wolf and ¼ wolf mixes from dogs) and identify breed contributions in the genome of a mixed-breed dog.
  • Using a Bayesian classification model on in silico mixes of genotype information for 96 markers from 429 canids representing 88 breeds, the methods of the invention have been used to correctly assign more than 98% of F1 mixes and more than 94% of F2 mixes, as described in EXAMPLE 7. Using this model on genotype information for 72 markers from 160 known mixed-breed canids, the methods of the invention have been used to correctly assign more than 96% of F1 mixes and more than 91% of F2 mixes, as described in EXAMPLE 7.
  • The methods of the invention may further comprise the step of providing a document displaying the contributions of one or more canid populations to the genome of the test canid genome. The term “document” refers to a chart, certificate, card, or any other kind of documentation. The document may display the contributions of one or more canid populations to the test canid genome in a numeric format or in a graphic format. For example, the document may include photographs or other depictions, drawings, or representations of the one or more canid populations. The document may also provide confidence values for the determined contributions (such as 80%, 85%, 90% 95%, or 99% confidence). In some embodiments, the document provides a certification of the contributions of one or more canid populations to the genome of the test canid genome.
  • In some embodiments, the document additionally provides information regarding the one or more canid populations that contributed to the genome of the test canid or the test canid. The information regarding canid populations that contributed to the genome of the test canid may include information related to the characteristics and origin of the canid population or any other kind of information that would be useful to the owner of the test canid. In some embodiments, the information includes health-related information. Many canid populations have predispositions to particular diseases or conditions. For example, Afghan hounds are predisposed to glaucoma, hepatitis, and hypothyroidism; Basenji are predisposed to coliform enteritis and pyruvate kinase deficiency; Beagles are predisposed to bladder cancer and deafness; Bernese Mountain dogs are predisposed to cerebellar degeneration; Border Terriers are predisposed to oligodendroglioma; and Labrador Retrievers are predisposed to food allergies (see, e.g., Dr. Bob's All Creatures Site on the internet, Predisposition of Dog Breeds to Disease and Congenital Conditions; Patterson et al. (1988) J. Am. Vet. Med. Assoc. 193:1131). Of the genetic diseases discovered in dogs, 46% are believed to occur predominantly or exclusively in one or a few breeds (Patterson et al. (1988) J. Am. Vet. Med. Assoc. 193:1131.) Therefore, information regarding the contributions of one or more canid populations to the genome of the test canid genome is particularly valuable to mixed-breed canid owners or caretakers (both professional and non-professional) for the purpose of proactively considering health risks for individual tested animals. For example, a mixed breed dog that is found to be a mixture of Newfoundland and Bernese Mountain Dog should be actively monitored for genetic diseases that occur with rare frequency in the general population of dogs, but occur with significant frequency in these specific breeds; thus, a mixed-breed individual of this type would benefit from screens for malignant histiocytosis (disease heritability of 0.298 in Bernese Mountain dogs, Padgett et al. (1995) J. Small Anim. Pract. 36(3):93-8) in addition to Type I cystinuria genetic screens (nonsense mutation isolated in Newfoundlands at exon 2 of SLC3A1 gene, Henthorn et al. (2000) Hum. Genet. 107(4):295-303).
  • Health-related information may also include potential treatments, special diets or products, diagnostic information, and insurance information. An exemplary document displaying the contributions of one or more canid populations to the genome of a test canid is shown in FIG. 1 .
  • In some embodiments, the invention provides methods for defining one or more canid populations, comprising: (a) for each of a set of canid genomes, obtaining the identity of one or both alleles for each of a set of markers; and (b) defining one or more canid populations by determining the likelihood that one or more members of the set of canid genomes define distinct canid populations characterized by a set of allele frequencies for each marker. Exemplary methods of the invention for defining one or more canid populations are described in EXAMPLES 3 and 4.
  • In another aspect, the invention provides substrates comprising nucleic acid sequences for determining the identity of one or both alleles in a canid genome for each of a set of markers. The substrates may be in any form suitable for determining the identity of alleles of markers. For example, the substrate may be in the form of a microarray or a collection of beads.
  • In a further aspect, the invention provides a computer-readable medium comprising a data structure stored thereon for use in distinguishing canid populations, the data structure comprising: a marker field, which is capable of storing the name of a marker (for example, an SNP marker) or the name of an allele of a marker; and a genotype information field, which is capable of storing genotype information for the marker (for example, the identity of one or both alleles of the marker in a canid genome or an estimate of the frequency of an allele of the marker in a canid population), wherein a record comprises an instantiation of the marker field and an instantiation of the genotype information field and a set of records represents a canid population profile.
  • A “computer-readable medium” refers to any available medium that can be accessed by computer and includes both volatile and nonvolatile media, removable and non-removable media. By way of example, and not limitation, computer-readable media may comprise computer storage media and communication media. Computer storage media includes both volatile and nonvolatile, removable, and non-removable media implemented in any method or technology for storage of information, such as computer readable instructions, data structures, program modules, or other data. Computer storage media include, but are not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disks (DVD) or other optical disk storage, magnetic cassettes, magnetic tapes, magnetic disk storage or other magnetic storage devices, or any other computer storage media. Communication media typically embody computer-readable instructions, data structures, program modules or other data in a modulated data signal, such as a carrier wave or other transport mechanism that includes any information delivery media. The term “modulated data signal” means a signal that has one or more of its characteristics set or changed in such a manner as to encode information in the signal. By way of example, and not limitation, communication media include wired media, such as a wired network or direct-wired connection, and wireless media, such as acoustic, RF infrared, and other wireless media. A combination of any of the above should also be included within the scope of computer-readable media.
  • A “data structure” refers to a conceptual arrangement of data and is typically characterized by rows and columns, with data occupying or potentially occupying each cell formed by a row-column intersection. The data structure in the computer-readable medium of the invention comprises a marker field and a genotype information field, as described above. The instantiation of the marker field and the genotype information field provides a record, and a set of records provides a canid population profile. Thus, the data structure may be used to create a database of canid population profiles.
  • In some embodiments, the computer readable medium comprises a substrate having stored thereon: (a) a data structure for use in distinguishing canid populations, the data structure comprising: (i) a marker field, which is capable of storing the name of a marker or of an allele of a marker; and (ii) a genotype information field, which is capable of storing genotype information for the marker, wherein a record comprises an instantiation of the marker field and an instantiation of the frequency field and a set of records represents a canid population profile; and (b) computer-executable instructions for implementing a method for determining the contributions of canid populations to a canid genome, comprising: (i) obtaining the identity of one or both alleles in a test canid genome for each of a set of markers; and (ii) determining the contributions of canid populations to the test canid genome by comparing the alleles in the test canid genome to a database comprising canid population profiles, wherein each canid population profile comprises genotype information for the set of markers in the canid population.
  • The following examples merely illustrate the best mode now contemplated for practicing the invention, but should not be construed to limit the invention.
  • Example 1
  • This example describes a representative method of the invention for obtaining the identity of one or both alleles for a set of markers and selecting markers suitable for determining the contribution of canid populations to the genome of a canid.
  • A. Methods
  • 1. Sample Collection and DNA Extraction
  • Canid DNA samples from 513 American Kennel Club-registered dogs representing 103 breeds and 8 gray wolves from eight countries (China, Oman, Italy, Iran, U.S.A. (Alaska), Canada (Quebec), Sweden, Mexico) were obtained by collecting buccal (cheek) swabs and/or blood samples from volunteers at dog shows and dog club specialty events, as well as by mail-in donations. American Kennel Club registration number and detailed pedigree information was requested for all dogs, as participation was limited to unrelated dogs that did not share grandparents. Pedigree information was also collected for 84% of sampled individuals. In many cases, five-generation pedigrees were obtained, and while dogs sometimes appear redundantly at the great-grandparent level or higher, inspection of the complete lineage indicates a high degree of unrelatedness among dogs of the same breed. For those individuals where a pedigree was not available, unrelatedness was verified by breed club representatives. Each individual canid was given a canid identification number. Abbreviations used for breeds and other canid populations are shown in Table 5. In addition, DNA samples from 160 mixed-breed canids comprising admixture components from 20 AKC breeds were obtained by collecting buccal swabs.
  • Buccal swabs were collected in a manner similar to that suggested by the American Kennel Club (AKC) website using cytology brushes (Medical Packaging Corp., Camarillo, CA). DNA was extracted from buccal swabs using QiaAmp® blood kits following manufacturers' protocol (Qiagen, Valencia, CA). DNA extraction from blood was done as described previously (Comstock et al. (2002) Mol. Ecol. 11:2489-98).
  • 2. Analysis of Microsatellite Markers
  • One hundred dinucleotide microsatellite markers were chosen from the 1596 microsatellites currently localized on the 3300 marker map of the dog (Guyon et al. (2003) Proc. Natl. Acad. Sci U.S.A. 100(9):5296-5301) (Table 1). Markers were selected based on informativeness, calculated as a PIC value, and distribution across all 38 autosomes. Selected markers had an average PIC value of 0.65% (range 36%-86%) and an average spacing of 29.5 Mb (range 21.5-50.9 Mb). Dinucleotide, rather than tetranucleotide microsatellites, were chosen to reduce the number of spurious mutations observed that could hamper breed identification.
  • DNA samples were arrayed on five 96-well plates. A positive control was included on each plate to ensure consistent allele binning PCR was performed in 10 microliter reactions containing 1 ng of genomic DNA and final concentrations of the following reagents: 16 mM ammonium sulfate, 67 mM Tris-HCl pH 8.8, 2.0 mM MgCl2, 0.1 mM dNTPs, 300 nM forward primers (SEQ ID NOs:1-100), reverse primers (SEQ ID NOs:101-200), and dye-labeled M13 Primers (PE Applied Biosystems, Foster City, CA USA). Forward primers were redesigned to include a 19 base M13 forward (−29) sequence, 5′-CACGACGTTGTAAAACGAC-3′ (SEQ ID NO:201), on the 5 prime end. Samples were labeled by the addition of 0.25 pmol of an M13 primer (SEQ ID NO:201) tagged with either 6FAM™, VIC™, NED™ or PET™ (ABI, Foster City, CA) dyes to each reaction. PCR incubation was carried out according to standard protocols (see, e.g., Lowe et al. (2003) Genomics 82:86-95). Annealing temperatures used are provided in Table 1. Four samples labeled with different dyes were multiplexed following completion of PCR by combining 3 microliters of each reaction mix into a single 96 well plate. Samples were denatured in 2 volumes Hi-Di™ formamide with 16 pmol of GeneScan™ 500LIZ™ size standard (ABI, Foster City, CA) according to manufacturers' protocols. All samples were loaded on an ABI 3730 DNA Analyzer™ (PE Applied Biosystems) capillary electrophoresis instrument for allele separation. Genotypes were called using GeneMapper™ v3.0 software (ABI, Foster City, CA). All calls were checked manually, and each subsequent run was scanned for the appearance of new alleles outside existing bins. Four markers failed to amplify consistently and were discarded.
  • 3. SNP Discovery and Genotyping
  • Fifty canine bacterial artificial chromosomes (BACs) were chosen at random from the canine radiation hybrid map (Guyon et al. (2003) Proc. Natl. Acad. Sci U.S.A. 100(9):5296-5301). The Primer3 program (available on line) was used to design primers from each BAC end sequence. The resulting amplicons averaged 334 base pairs. Primers were used to amplify 19867 base pairs of non-continuous genomic sequence in 189 dogs representing 67 domestic dog breeds, coyote, and the gray wolf. The resulting PCR products were sequenced using standard methods on an ABI 3700 capillary sequencer with standard ABI dye terminator chemistry (ABI, Foster City, CA), and resequenced. All sequence reads were aligned and viewed using Phred, Phrap and Consed (Ewing & Green (1998) Genome Res. 8:186-94; Ewing et al. (1998) Genome Res. 8: 175-85). The computer program Polyphred was used to identify regions of polymorphism, both SNP and insertion/deletion, within and between sequence reads (Nickerson et al. (1997) Nucl. Acids Res. 25:2745-51). All allele calls were confirmed manually and confirmed through visual inspection of the traces.
  • 4. Statistical Analysis
  • An analysis of molecular variance (AMOVA) was performed with GDA (Lewis & Zaykin (2001) Genetic Data Analysis: Computer Program for the Analysis of Allelic Data, Version 1.0 (d16c), available on line at the University of Connecticut website) under assumption of Hardy-Weinberg equilibrium. Similar results were obtained for the fraction of genetic variation among breeds when inbreeding was allowed for in the analysis.
  • Expected heterozygosity for each breed was calculated from allele frequencies using Tajima's unbiased estimator (Tajima (1989) Genetics 123:585-95).
  • B. Results
  • 1. Informativeness of Dinucleotide Microsatellites
  • The identities of alleles (length of the amplified region) of 68-100 microsatellite markers in 422 canids, including 414 dogs representing 85 breeds, and 8 wolves, are set forth in Table 3 (filed herewith on a compact disc). 148 alleles were found to be unique to a specific canid population: 1 each to ACKR, AUST, BORD, BOX, BULD, DACH, GOLD, GSHP, GSMD, IBIZ, KEES, NELK, PEKE, POM, ROTT, SFXT, TERV, and WHIP, 2 each to BEAG, CAIR, HUSK, IRSE, MAST, OES, SCHP, SCWT, SPOO, and SSHP, 3 each to AMAL, BMD, KOMO, NEWF, STBD, and WSSP, 4 each to KUVZ, PNTR, and PRES, 5 each to BSJI and SHAR, 6 to AKIT, and 64 to WOLF.
  • Six different datasets were used for subsequent analyses, as further described in EXAMPLES 2-5 and 7. The first dataset included genotype information for microsatellite markers (microsatellite markers 1-14, 16, 18-21, 23-36, 39-100, see Table 1) in 94 canids, including 90 canids representing 18 breeds and 4 wolves (dataset 1, Table 6). The second dataset included genotype information for 68 microsatellite markers (microsatellite markers 2-8, 11, 12, 14-16, 18-21, 23, 24, 26-32, 34-36, 38, 41, 42, 44-46, 50, 51, 53, 54, 56, 60-64, 67, 68, 70-74, 78, 79, 81-83, 85, 87-91, 93-98, see Table 1) in 341 canids representing 72 breeds (dataset 2, Table 7). The third dataset included genotype information for 96 microsatellite markers (microsatellite markers 1-9, 11-38, 40-42, 44-75, 77-100, see Table 1) in 414 canids representing 85 breeds (dataset 3, Table 8). The fourth dataset included genotype information for microsatellite markers (microsatellite markers 1-9, 11-38, 40-42, 44-75, 77-100, see Table 1) in 85 canids, including 81 dogs representing 18 breeds, and 4 wolves (dataset 4, Table 9). The fifth dataset included genotype information for 96 microsatellite markers (microsatellite markers 1-9, 11-38, 40-42, 44-75, 77-100, see Table 1) in 429 canids representing 88 breeds. The sixth dataset included genotype information for 72 of the microsatellite markers in Table 1 in 160 mixed-breed canids, as set forth in Table 3 (filed herewith on a compact disc).
  • The proportion of polymorphic markers, the mean number of alleles per maker, the mean number of alleles per polymorphic maker, the expected heterozygosity (based on Hardy-Weinberg Equilibrium assumptions), the observed heterozygosity, and the estimated inbreeding coefficients across 95 microsatellite markers in dataset 1 are shown in Table 10. The expected heterozygosity of 85 canid populations averaged over 96 microsatellites (dataset 3) using Tajima's unbiased estimator is shown in Table 11.
  • The existence of breed barriers would predict that dogs from the same breed should be more similar genetically than dogs from different breeds. To test this prediction, the proportion of genetic variation between individual dogs that could be attributed to breed membership was estimated. Analysis of molecular variance in the microsatellite data for 96 microsatellites in 414 dogs representing 85 breeds (dataset 3, Table 8) showed that variation between breeds accounts for more than 27% of total genetic variation.
  • 2. Informativeness of SNP Markers
  • Using 189 canids representing 67 domestic breeds, coyote and wolf, 100 polymorphic sites in approximately 20 Kb of non-continuous canine genomic sequence were identified, as shown in Table 2. These include 92 single base substitutions and 11 insertion or deletion mutations ranging from one to eight nucleotides in length. The identities of alleles for 100 SNP markers in 189 canids, including 186 dogs representing 67 breeds, two wolves, and a coyote are set forth in Table 4 (filed herewith on a compact disc). Minor allele frequencies in 75 SNPs from 120 dogs representing 60 breeds ranged from 0.4% to 48%, as shown in Table 2. Fourteen of these SNPs were breed-specific: 372c5t-82 (English Shepherd), 372e13t-57 (Cocker Spaniel), 372m6t-88 (English Shepherd), 372m23t-76 (Alaskan Malamute), 373a15t-112 (Chesapeake Bay Retriever), 373e1t-50 (Spinoni Italiano), 373e1t-130 (Scottish Deerhound), 373g19t-246 (Borzoi), 373i8s-224 (Chesapeake Bay Retriever), 373k8s-181 (Tibetan Terrier), 372c5s-168 (Akita), 372C15S-196 (Labrador Retriever), 372e15s-71 (Field Spaniel), 373a21t-93 (Italian Greyhound).
  • When all dogs were considered as a single population, the observed heterozygosity (Tajima & Nei (1984) Mol. Biol. Evol. 1:269-85) was 8×10−4, essentially the same as that seen in the human population (Sachidanandam et al. (2001) Nature 409:928-33; Venter et al. (2001) Science 291:3104-51). However, when the breeds are separated, there is a 4-fold range in heterozygosity between the least outbred (Scottish Deerhound, 2.5×10−4) to most outbred (English Shepherd, 1.0×10−3). The genetic distance between breeds calculated from the SNP data for 75 SNPs in 120 dogs representing 60 breeds was FST=0.36.
  • The expected heterozygosity of 60 canid populations based on allele frequencies at 75 SNP loci (dataset 3) using Tajima's unbiased estimator is shown in Table 12. Each breed is represented by 2 dogs.
  • Example 2
  • This example describes a representative method of the invention for estimating the contributions of canid populations to a canid genome using an assignment test calculator on genotype information for 95 microsatellite markers from 94 canids, and on genotype information for 68 microsatellite markers from 341 canids.
  • A. Methods
  • 1. Datasets
  • Dataset 1 included genotype information for 95 microsatellite markers from 94 canids, including 90 dogs representing 18 breeds, and 4 wolves (AHRT, AKIT, BEAG, BMD, BOX, BULD, BULM, CHIH, DACH, GOLD, IBIZ, MAST, NEWF, PEKE, POM, PRES, PUG, ROTT, WOLF, see Table 5 for abbreviations of canid populations). The 95 microsatellite markers were microsatellite markers 1-14, 16, 18-21, 23-36, 39-100 (Table 1). The dataset contained genotype information from 5 canids for each breed and 4 wolves (Table 6). The genotype information for the canids in dataset 1 is set forth in Table 3 (filed herewith on a compact disc).
  • Dataset 2 included genotype information for 68 markers from 341 canids representing 72 breeds (ACKR, AFGH, AHRT, AIRT, AKIT, AMAL, AMWS, AUSS, AUST, BASS, BEAG, BEDT, BELS, BLDH, BMD, BORD, BORZ, BOX, BSJI, BULD, BULM, CAIR, CHBR, CHIH, CKCS, CLSP, COLL, DACH, DANE, DNDT, DOBP, ECKR, FCR, GOLD, GREY, GSD, GSHP, GSMD, HUSK, IBIZ, IRSE, IRTR, IWOF, KEES, KOMO, KUVZ, LAB, MAST, MBLT, MNTY, NELK, NEWF, OES, PEKE, PNTR, POM, PRES, PTWD, PUG, RHOD, ROTT, SCHP, SCWT, SFXT, SHAR, SPOO, SSHP, STBD, TERV, WHIP, WHWT, WSSP, see Table 5 for abbreviations of canid populations). The 68 microsatellite markers were microsatellite markers 2-8, 11, 12, 14-16, 18-21, 23, 24, 26-32, 34-36, 38, 41, 42, 44-46, 50, 51, 53, 54, 56, 60-64, 67, 68, 70-74, 78, 79, 81-83, 85, 87-91, 93-98 (Table 1). The dataset contained genotype information from 5 canids for each breed, except for SFXT (2 canids), ACKR, AFGH, DNDT, OES (3 canids each), AIRT, BASS, BEDT, IRTR, MNTY, SCHP, SCWT, and TERV (4 canids each) (Table 7). The genotype information for the canids in dataset 2 is set forth in Table 3 (filed herewith on a compact disc).
  • 2. Doh Analysis
  • The assignment test calculator Doh (available at the University of Alberta website) was used for an analysis of the two datasets of genotype information. All individual canids were designated with their known population except for the canid to be tested, which was then assigned by the program to the canid population with the highest probability of generating the test canid's genotype. The program repeats this procedure with each canid as the test canid.
  • B. Results
  • 1. Doh Analyses Using Dataset 1
  • Using Doh on the genotype information in dataset 1, including genotype information for 95 microsatellite markers in 94 canids (90 dogs representing 18 breeds, and 4 wolves), 99% of the canids were assigned to the correct canid population. 100% canids were correctly assigned for the following breeds: AHRT, AKIT, BEAG, BMD, BOX, BULD, CHIH, DACH, GOLD, IBIZ, MAST, NEWF, PEKE, POM, PUG, ROTT, WOLF The only canid that was misassigned was one dog (out of 5 dogs) of the Presa Canario breed. The misassigned Presa Canario dog was assigned to Chihuahua.
  • It was found that the discrimination power of the allelic patterns depended on the number of independent microsatellite loci, the allelic diversity at each locus, and the number of individuals sampled from each breed. To evaluate the effect of the number of alleles of a marker and the number of markers on informativeness of that marker, a Doh assignment analysis for the first 19 breeds was performed with 5, 10, 15, and 20 markers, binning markers with 1-3 distinct alleles found in the dataset, 4-6 distinct alleles, 7-10 distinct alleles, and more than 10 distinct alleles. For the bins that did not contain markers, the maximum number of markers was used. For markers with more than 10 distinct alleles, 86% of canids were correctly assigned to their breed using five markers, and 95% of canids were correctly assigned using 10, 15, or 20 markers. For markers with 7-10 distinct alleles, 84% of canids were correctly assigned to their breed using 5 markers and 91% of canids were correctly assigned using 10 markers, and 94% of canids were correctly assigned using 15, or 20 markers. For markers with 4-6 distinct alleles, 62% of canids were correctly assigned to their breed using 5 markers, and 71% of canids were correctly assigned using 10, 15, or 20 markers. For markers with 1-3 distinct alleles, 46% of canids were correctly assigned to their breed using 5 markers, and 62% of canids were correctly assigned using 10, 15, or 20 markers.
  • The minimum number of microsatellite markers found in a 2-class (0-1) directed search of the allele frequency patterns within the 95 markers required to successfully assign 100% of the individuals to the correct canid populations (incorrect assignment is to any other breed) was 2 for PEKE, 3 for BOX, POM, and WOLF, 4 for AKIT, MAST, and PUG, 5 for NEWF and ROTT, 6 for BMD, 8 for BEAG, 11 for I131Z, 12 for GOLD, 17 for DACH, 19 for BULD, 26 for BULM, 44 for PRES, 49 for CHIH, and 52 for AHRT. There is a positive correlation between the minimum number of microsatellite markers required for 100% (0-1) discrimination, and the mean number of alleles across the 95 microsatellite markers for the 94 canids tested in 19 canid populations (see Table 10).
  • The minimum number of microsatellite markers found in a multiclass (0, 1, 2, . . . 18) directed search of the allele frequency patterns within the 95 markers required to successfully assign at least 90% of all 94 tested individuals across the 19 canid populations, with the chosen canid population having 100% accuracy, was 8 for PEKE, BOX, POM, WOLF, AKIT, MAST, PUG, NEWF, ROTT, and BMD, 11 for BEAG, 14 for IBIZ, 14 for GOLD, 23 for DACH, 24 for BULD, 28 for BULM, and 95 for PRES, CHIH, and AHRT.
  • As expected, the discrimination power reflects the level of inbreeding observed in each breed. For example, certain breeds have allelic variation 3-fold less than the average breed allelic variation and those breeds have both higher discrimination power and the characteristic population dynamics of long population bottlenecks and small effective population sizes
  • 2. Doh Analysis Using Dataset 2
  • Using Doh on the genotype information in dataset 2, including genotype information for 68 markers from 341 canids representing 72 breeds, 96% of the dogs tested were assigned to the correct breed, as shown in Table 13. If both Belgian breeds (Belgian Sheepdog and Belgian Tervuren) were counted as one breed, 98% of the dogs tested were assigned to the correct breed.
  • Example 3
  • This example describes a representative method of the invention for estimating the contributions of canid populations to a canid genome using cluster analysis on genotype information for 95 microsatellite markers from 94 canids.
  • A. Methods
  • 1. Dataset
  • Dataset 1 included genotype information for 95 microsatellite markers from 94 canids, including 90 dogs representing 18 breeds, and 4 wolves, as described in EXAMPLE 2.
  • 2. Cluster Analysis
  • Cluster analysis was performed using the multilocus genotype clustering program structure (Pritchard et al. (2000) Genetics 155:945-59; Falush et al. (2003) Science 299:1582-5), which employs a Bayesian model-based clustering algorithm to identify genetically distinct subpopulations based on patterns of allele frequencies. Multiple runs were completed for each value of K (number of genetic clusters) with burn-in lengths of 10,000 steps and 100,000 iterations of the Gibbs sampler. The correlated allele frequency model was used with asymmetric admixture allowed. All values of K from 2 to 80 were tested and the clustering solutions that produced the highest likelihood were retained for further verification. To choose the overall best clustering solution for the data set, an all-pairs Wilcoxon two-sample test was performed for the 5 highest likelihood values of K.
  • 3. Nested Set Clustering
  • Starting with the complete data set, all individuals were hierarchically divided into sub-clusters where each (K+1)th sub-cluster was created by splitting one of the previous K clusters based on the highest observed likelihood value across 10 runs. Employing a hierarchical method for deriving clusters of individuals may infer a reasonable methodology for ascertaining population phylogeny when genetic variability between sub-populations is reduced due to a modified amount of admixture.
  • B. Results
  • A maximum likelihood calculation using structure predicted 20 populations in dataset 1 (95 markers in 19 canid populations) and assigned each individual to one group with 99% accuracy, as shown in Table 14. The one individual that was not assigned to its breed group was a single Presa Canario, which was placed between the Bulldog and the Bullmastiff groups. The Presa Canario is a recreated breed that has been developed through admixture of various mastiff types. The misassigned dog, in particular, can trace its heritage to both a bulldog and a Bullmastiff within the last 12 generations.
  • The clustering assignment was not able to distinguish between the Bullmastiffs and the Mastiffs at this level of analysis, but this was solved by nested analysis, as shown in Tables 15A-D. In the nested analysis, the same clustering algorithms were applied in a stepwise fashion. First, the entire set was divided into two populations. Based on maximum likelihood, one of these two populations was then divided into two to provide a total of three populations. This process was repeated until all populations were resolved. The divisions from five to nine groups clearly show the relationships between the mastiff type breeds. This relationship and the hierarchy predicted conforms perfectly to that expected from breed accounts.
  • Example 4
  • This example describes a representative method of the invention for estimating the contributions of canid populations to a canid genome using cluster analysis on genotype information for 96 microsatellite markers in 85 canid populations.
  • A. Methods
  • 1. Dataset
  • Dataset 3 included genotype information for 96 markers from 414 canids representing 85 breeds (ACKR, AFGH, AHRT, AIRT, AKIT, AMAL, AMWS, AUSS, AUST, BASS, BEAG, BEDT, BELS, BICH, BLDH, BMD, BORD, BORZ, BOX, BSJI, BULD, BULM, CAIR, CHBR, CHIH, CHOW, CKCS, CLSP, COLL, DACH, DANE, DOBP, ECKR, FBLD, FCR, GOLD, GREY, GSD, GSHP, GSMD, GSNZ, HUSK, IBIZ, IRSE, IRTR, ITGR, IWOF, KEES, KERY, KOMO, KUVZ, LAB, LHSA, MAST, MBLT, MNTY, MSNZ, NELK, NEWF, OES, PEKE, PHAR, PNTR, POM, PRES, PTWD, PUG, RHOD, ROTT, SALU, SAMO, SCHP, SCWT, SHAR, SHIB, SHIH, SPOO, SSHP, SSNZ, STBD, TIBT, TERV, WHIP, WHWT, WSSP, see Table 5 for abbreviations of canid populations). The 96 microsatellite markers were microsatellite markers 1-9, 11-38, 40-42, 44-75, 77-100 (Table 1). The dataset contained genotype information for 5 canids for all breeds, except for AIRT, BASS, BEDT, BICH, FBLD, IRTR, MNTY, PHAR, SCHP, SCWT, TERV (4 canids each) (Table 8). The genotype information for the canids in this dataset is set forth in Table 3 (filed herewith on a compact disc).
  • 2. Statistical Analyses
  • Structure was run for 100,000 iterations of the Gibbs sampler after a burn-in of 20,000 iterations. The correlated allele frequency model was used with asymmetric admixture allowed. The similarity coefficient across runs of structure was computed as described (Rosenberg et al. (2002) Science 298:2381-5). When the program was run on a partial data set of 68 breeds, it was noted that at values of K above 40 the program created clusters to which no individuals were assigned, and the clusters were unstable from run to run. This is most likely because the algorithm, which was initially designed to separate 2-3 populations, is unable to handle such large numbers of populations simultaneously. Because structure has previously been shown to reliably separate 20 populations (Rosenberg et al. (2001) Genetics 159:699-713), the data were divided set into 8 subsets of 10 to 11 breeds each, and all possible pairs of these subsets were analyzed. Historically related or morphologically similar breeds were retained in the same subset.
  • Structure was then applied to the entire data set at K=2 to K=10, with fifteen runs at each K. As K is increased, structure first separates the most divergent groups into clusters, followed by separation of more closely related groups (Rosenberg et al. (2002) Science 298:2381). In the analysis, the likelihood increased with increasing values of K, reflecting additional structure found at each K, but multiple different clustering solutions were found for K>4, and therefore K=2 to 4 were used to describe the global breed structure, with phylogenetic analysis and cluster analysis of subgroups used to define constellations of closely related breeds. Structure runs at K=2-5 were repeated under the no admixture model with similar results. In a separate analysis, eight wolves were added to the structure run at K=2. The wolves were sampled from eight countries: China, Oman, Iran, Italy, Sweden, Mexico, Canada (Ontario), and the United States (Alaska). All wolves clustered together with the first cluster of dog breeds shown in Table 16.
  • Each breed was assigned to one of the four groups based on breed average majority and structure was run on each group at K=2-4. No additional consistent patterns were observed within the individual groups apart from the reported breed pairs and trios. Outlier analysis was carried out using the software package fdist2. Eleven markers were identified as potential “outliers” with Fst values above the 95th percentile achieved by simulation under the infinite allele model with 85 populations assumed and an average of 10 haploid genotypes per population (Beaumont & Nichols (Dec. 22, 1996) Proceedings: Biological Sciences 263:1619). Assignment and structure analysis performed with these markers removed did not result in significant changes.
  • For the phylogenetic tree analysis, individual dogs and wolves were assigned to one of 86 populations based on breed or species. Distances between the populations were computed using the program Microsat (E. Minch, A. Ruiz-Linares, D. Goldstein, M. Feldman, L. L. Cavalli-Sforza (1995, 1996)) with the chord distance measure. 500 bootstrap replicates were generated. Neighbor-joining trees were constructed for each replicate using the program Neighbor, and the program Consense was used to create a majority-rule consensus tree. Both of these programs are part of the Phylip package (Felsenstein (1989) Cladistics 5:164) available at the University of Washington website. The wolf population was designated as the outgroup in order to root the tree. Wolves from eight different countries were combined into one population for simplicity on the tree shown in FIG. 2 . When taken as individuals, all wolves split off from a single branch, which falls in the same place as the root. The splitting order in the phylogenetic analysis was not correlated with heterozygosity (Table 11), and the twelve breeds that split off first closely mirrored the first cluster identified by structure. These observations argue that the analysis identified a distinct subgroup of genetically related breeds, rather than splitting off idiosyncratic breeds that are unusually inbred or that recently mixed with wild canids.
  • The assignment test was carried out with the Doh assignment test calculator available from J. Brzustowski (available at the University of Alberta website). All dogs were designated with their known breed except for the one dog to be tested, which was then assigned by the program to the breed with the highest probability of generating the test dog's genotype. The program repeats this procedure with each dog as the test dog. The Belgian Sheepdog and Belgian Tervuren breeds were combined into one designation for this analysis; when they are treated as separate breeds the individual dogs are assigned to one or the other essentially at random.
  • B. Results
  • When structure was applied to overlapping subsets of 20-22 breeds at a time, it was observed that most breeds formed distinct clusters consisting solely of all the dogs from that breed, as shown in Table 17. Dogs in only four breeds failed to consistently cluster with others of the same breed: Perro de Presa Canario, German Shorthaired Pointer, Australian Shepherd, and Chihuahua. In addition, six pairs of breeds clustered together in the majority of runs: Belgian Sheepdog and Belgian Tervuren, Collie and Shetland Sheepdog, Whippet and Greyhound, Siberian Husky and Alaskan Malamute, Mastiff and Bullmastiff, and Greater Swiss Mountain Dog and Bernese Mountain Dog. These pairings are expected based on known breed history.
  • To test whether these closely related breed pairs were nonetheless genetically distinct, structure was applied to each of these clusters. In all but one case the clusters separated into two populations corresponding to the individual breeds, as shown in Table 18. The single exception was the cluster containing Belgian Sheepdogs and Belgian Tervurens. The European and Japanese Kennel Clubs classify them as coat color and length varieties of a single breed (Yamazaki & Yamazaki (1995) Legacy of the Dog: The Ultimate Illustrated Guide to Over 200 Breeds, Chronicle Books, San Francisco, CA; Wilcox & Walkowicz (1995) Atlas of Dog Breeds of the World, T.F.H. Publications, Neptune City, NJ), and while the American Kennel Club recognizes these as distinct breeds, the breed barrier is apparently too recent or insufficiently strict to have resulted in genetic differentiation. This example confirms that the algorithm only separates groups that have true genetic differences (Falush et al. (2003) Science 299:1582-5; Pritchard & Rosenberg (1999) Am. J. Hum. Genet. 65:200-8).
  • To test whether a dog could be assigned to its breed based on genotype data alone, the direct assignment method (Paetkau et al. (1995) Mol. Ecol. 4:347-54) with a leave-one-out analysis was used. 99% of individual dogs were correctly assigned to the correct breed. Only four dogs out of 414 were assigned incorrectly: one Beagle (assigned to Perro de Presa Canario), one Chihuahua (assigned to Cairn Terrier), and two German Shorthaired Pointers (assigned to Kuvasz and Standard Poodle, respectively). All four errors involved breeds that did not form single-breed clusters in the structure analysis.
  • Having demonstrated that modern dog breeds form distinct genetic units, it was attempted to define broader historical relationships among the breeds. First, standard neighbor-joining methods were used to build a majority-rule consensus tree of breeds (FIG. 2 ), with distances calculated using the chord distance measure (Cavalli-Sforza & Edwards (1967) Evolution 32:550), which does not assume a particular mutation model and is thought to perform well for closely related taxa (Goldstein et al. (1995) Genetics 139:463). The tree was rooted using wolf samples. The deepest split in the tree separated four Asian spitz-type breeds, and within this branch the Shar-Pei split first, followed by the Shiba Inu, with the Akita and Chow Chow grouping together. The second split separated the Basenji, an ancient African breed. The third split separated two Arctic spitz-type breeds, the Alaskan Malamute and Siberian Husky, and the fourth split separated two Middle Eastern sight hounds, the Afghan and Saluki, from the remaining breeds.
  • The first four splits exceeded the “majority rule” criterion, appearing in more than half of the bootstrap replicates. In contrast, the remaining breeds showed few consistent phylogenetic relationships, except for close groupings of five breed pairs that also clustered together in the structure analysis, one new pairing of the closely related West Highland White Terrier and Cairn Terrier, and the significant grouping of three Asian companion breeds of similar appearance, the Lhasa Apso, Shih Tzu, and Pekingese. A close relationship among these three breeds was also observed in the structure analysis, with at least two of the three clustering together in a majority of runs. The flat topology of the tree likely reflects a largely common founder stock and occurrence of extensive gene flow between phenotypically dissimilar dogs before the advent of breed clubs and breed barrier rules. In addition, it probably reflects the recreation of some historically older breeds that died out during the famines, depressions and wars of the 19th and 20th centuries, using stock from phenotypically similar or historically related dogs.
  • While the phylogenetic analysis showed separation of several breeds with ancient origins from a large group of breeds with presumed modern European origins, additional subgroups may be present within the latter group that are not detected by this approach for at least two reasons (Rosenberg et al. (2001) Genetics 159:699). First, the true evolutionary history of dog breeds is not well-represented by the bifurcating tree model assumed by the method, but rather involved mixing of existing breeds to create new breeds (a process that continues today). Second, methods based on genetic distance matrices lose information by collapsing all genotype data for pairs of breeds into a single number.
  • The clustering algorithm implemented in structure was explicitly designed to overcome these limitations (Pritchard et al. (2000) Am. J. Hum. Genet. 67:170-81; Falush et al. (2003) Genetics 164:1567; Rosenberg et al. (2001) Genetics 159:69-713) and has been applied to infer the genetic structure of several species (Rosenberg et al. (2002) Science 298:2181-5; Falush et al. (2003) Science 299:1582-5; Rosenberg et al. (2001) Genetics 159:699-713). Structure was run on the entire data set using increasing values of K (the number of subpopulations the program attempts to find) to identify ancestral source populations. In this analysis, a modern breed could closely mirror a single ancestral population or represent a mixture of two or more ancestral types.
  • At K=2, one cluster was anchored by the first seven breeds to split in the phylogenetic analysis, while the other cluster contained the large number of breeds with a flat phylogenetic topology (Table 19A). Five runs of the program produced nearly identical results, with a similarity coefficient (Rosenberg et al. (2002) Science 298:2381) of 0.99 across runs. Seven other breeds share a sizeable fraction of their ancestry with the first cluster. These fourteen breeds all date to antiquity and trace their ancestry to Asia or Africa. When a diverse set of wolves from eight different countries was included in the analysis, they fell entirely within this cluster (Table 20). The branch leading to the wolf outgroup also fell within this group of breeds in the phylogenetic analysis (FIG. 2 ).
  • At K=3, additional structure was detected that was not readily apparent from the phylogenetic tree (Table 19B). The new third cluster consisted primarily of breeds related in heritage and appearance to the Mastiff and is anchored by the Mastiff, Bulldog and Boxer, along with their close relatives the Bullmastiff, French Bulldog, Miniature Bull Terrier and Perro de Presa Canario. Also included in the cluster are the Rottweiler, Newfoundland and Bernese Mountain Dog, large breeds that are reported to have gained their size from ancient Mastiff-type ancestors. Less expected is the inclusion of the German Shepherd Dog. The exact origins of this breed are unknown, but the results suggest that the years spent as a military and police dog in the presence of working dog types, such as the Boxer, are responsible for shaping the genetic background of this popular breed. Three other breeds showed partial and inconsistent membership in this cluster across structure runs (Table 16), which lowered the similarity coefficient to 0.84.
  • At K=4, a fourth cluster was observed, which included several breeds used as herding dogs: Belgian Sheepdog, Belgian Tervuren, Collie and Shetland Sheepdog (Table 19C). The Irish Wolfhound, Greyhound, Borzoi and Saint Bernard were also frequently assigned to this cluster. While historical records do not suggest that these dogs were ever used to herd livestock, the results suggest that these breeds are either progenitors to, or descendants of, herding types. The breeds in the remaining cluster are primarily of relatively recent European origins, and are mainly different types of hunting dogs: scent hounds, terriers, spaniels, pointers and retrievers. Clustering at K=4 showed a similarity coefficient of 0.61, reflecting similar cluster membership assignments for most breeds but variable assignments for other breeds across runs (Table 16). At K=5 the similarity coefficient dropped to 0.26 and no additional consistent subpopulations were inferred, suggesting lack of additional high-level substructure in the sampled purebred dog population.
  • The results paint the following picture of the relationships among domestic dog breeds. Different breeds are genetically distinct, and individuals can be readily assigned to breeds based on their genotypes. This level of divergence is surprising given the short time since the origin of most breeds from mixed ancestral stocks and supports strong reproductive isolation within each breed as a result of the breed barrier rule. The results support at least four distinct breed groupings representing separate “adaptive radiations.” A subset of breeds with ancient Asian and African origins splits off from the rest of the breeds and shows shared patterns of allele frequencies. At first glance, the inclusion of breeds from Central Africa (Basenji), the Middle East (Saluki and Afghan), as well as Tibet (Tibetan Terrier, Lhasa Apso), China (Chow Chow, Pekingese, Sharpei, Shi Tzu), Japan (Akita, Shiba Inu), and the Arctic (Alaskan Malamute, Siberian Husky, Samoyed) in a single genetic cluster is surprising. However, it is hypothesized that early pariah dogs originated in Asia and migrated with nomadic human groups both south to Africa and north to the Arctic, with subsequent migrations occurring throughout Asia (Savolainen et al. (2002) Science 298:1610; Leonard et al. (2002) Science 298:1613; Sablin & Khlopachev (2002) Current Anthropology 43:795). This cluster includes Nordic breeds that phenotypically resemble the wolf, such as the Alaskan Malamute and Siberian Husky, and shows the closest genetic relationship to the wolf, which is the direct ancestor of domestic dogs. Thus, dogs from these breeds may be the best living representatives of the ancestral dog gene pool. It is notable that several breeds commonly believed to be of ancient origin are not included in this group, for example the Pharaoh Hound and Ibizan Hound. These are often thought to be the oldest of all dog breeds, descending directly from the ancient Egyptian dogs drawn on tomb walls more than 5000 years ago. The results indicate, however, that these two breeds have been recreated in more recent times from combinations of other breeds. Thus, while their appearance matches the ancient Egyptian sight hounds, their genomes do not. Similar conclusions apply to the Norwegian Elkhound, which clusters with modern European breeds rather than with the other Arctic dogs, despite reports of direct descent from Scandinavian origins over 5000 years ago (American Kennel Club (1998) The Complete Dog Book, eds. Crowley & Adelman, Howell Book House, New York, NY; Wilcox & Walkowicz (1995) Atlas of Dog Breeds of the World, T.F.H. Publications, Neptune City, NJ).
  • The large majority of breeds appear to represent a more recent radiation from shared European stock. While the individual breeds are genetically differentiated, they appear to have diverged at essentially the same time. This radiation probably reflects the proliferation of distinct breeds from less codified phenotypic varieties following the introduction of the breed concept and the creation of breed clubs in Europe in the 1800s. A more sensitive cluster analysis is able to discern additional genetic structure of three subpopulations within this group. One contains Mastiff-like breeds and appears to reflect shared morphology derived from a common ancestor. Another includes Shetland Sheep Dog, the two Belgian Sheepdogs, and Collie, and may reflect shared ancestral herding behavior. The remaining population is dominated by a proliferation of breeds dedicated to various aspects of the hunt. For these breeds, historical and breed club records suggest highly intertwined bloodlines, consistent with the results obtained.
  • Dog breeds have traditionally been grouped on the basis of their roles in human activities, physical phenotypes, and historical records. The results described above provide an independent classification based on patterns of genetic variation. This classification supports a subset of traditional groupings and also reveals previously unrecognized connections among breeds. An accurate understanding of the genetic relationships among breeds lays the foundation for studies aimed at uncovering the complex genetic basis of breed differences in morphology, behavior, and disease susceptibility.
  • Example 5
  • This example describes an in silico method for estimating the contribution of parent, grandparent and great-grandparent canids from different canid populations to the genomes of mixed progeny canids using microsatellite markers.
  • A. Methods
  • 1. Dataset
  • Dataset 4 included genotype information for 95 markers from 85 canids, consisting of 81 dogs from 18 different dog breeds and 4 wolves (AHRT, AKIT, BEAG, BMD, BOX, BULD, BULM, CHIH, DACH, GOLD, IBIZ, MAST, NEWF, PEKE, POM, PRES, PUG, ROTT, WOLF, see Table 5 for abbreviations of canid populations). The 95 microsatellite markers were microsatellite markers 1-14, 16, 18-21, 23-36, 39-100 (Table 1). This dataset was chosen on the basis of the fact that greater than 90% of each of the 85 canids' genome was assigned to the correct breed. The four wolves were designated as one canid population. 12 breeds were represented by 5 dogs each, 3 breeds by 4 dogs, and 3 breeds by 3 dogs, as shown in Table 9. The genotypes for each of the microsatellite markers used in each canid are set forth in Table 3 (filed herewith on a compact disc).
  • 2. Cluster Analyses
  • In silico canid mixes were created by randomly drawing one of the two alleles from each parent at each locus and designating them as the mix's alleles at that locus. An F1 mix was produced by an in silico mixing of alleles of two of the original 81 canids. An N2 mix was then produced by in silico mixing the F1 with one of its two parents, and an N3 mix was produced by in silico mixing the N2 with that same parent.
  • Three types of mixes were formed, test mixes, control mixes, and grandparent mixes. In the test mixes, the two parents were selected from two different breeds, chosen at random. 100 F1, N2, and N3 mixes were formed. Note that an F1 mix has two parents from different breeds, an N2 mix has three of four grandparents from one breed and one from another, and an N3 mix has seven of eight great-grandparents from one breed and one from another.
  • In the control mixes, the two parents were chosen from the same breed and 100 F1, N2, and N3 mixes were formed by the same procedure. Note that these all correspond to pure-bred dogs from the chosen breed.
  • Several grandparent mixes were also formed by choosing the four grandparents from 4 different breeds.
  • All the 300 test mixes were run together in a run of structure with the 85 chosen canids. The same analysis was performed for the control mixes, and for the 4 grandparent mixes. The program was run with the following parameter settings: #define NUMINDS 395; #define NUMLOCI 95; #define LABEL 1; #define POPDATA 1; #define POPFLAG 1; #define PHENOTYPE 0; #define MARKERNAMES 0; #define MAPDISTANCES 0; #define ONEROWPERIND 1; #define PHASEINFO 0; #define PHASED 0; #define EXTRACOLS 0; #define MISSING 0; #define PLOIDY 2; #define MAXPOPS 19; #define BURNIN 5000; #define NUMREPS 5000; #define USEPOPINFO 1; #define GENSBACK 0; #define MIGRPRIOR 0.0; #define NOADMIX 0; #define LINKAGE 0; #define INFERALPHA 1; #define ALPHA 1.0; #define POPALPHAS 0; #define UNIFPRIORALPHA 1; #define ALPHAMAX 10.0; #define ALPHAPROPSD 0.025; #define FREQSCORR 1; #define ONEFST 0; #define FPRIORMEAN 0.01; #define FPRIORSD 0.05; #define INFERLAMBDA 0; #define LAMBDA 1.; #define COMPUTEPROB 1; #define PFROMPOPFLAGONLY 0; #define ANCESTDIST 1; #define NUMBOXES 1000; #define ANCESTPINT 0.95; #define STARTATPOPINFO 1; #define METROFREQ 10; #define UPDATEFREQ 1; #define PRINTQHAT 1.
  • Each of the 85 canids was designated as belonging to its appropriate breed, and the mixes were not assigned to any breed.
  • B. Results
  • For the control mixes, each mix was always assigned by the program to the correct breed, and the fraction of the genome assigned to that breed exceeded 95% in all 300 cases (the minimum was 95.75%), 98% in 297 cases, and 99% in 266 cases. Therefore, assignment of <95% of genome to a single breed provided unambiguous detection of mixing for the test mixes, and assignment of <98% provides strong evidence of mixing at the 0.99 confidence level.
  • For the F1 test mixes, all 100 mixes were correctly assigned genome contributions from the two parent breeds, with contributions of each breed ranging from 28% to 70%. In 82 of 100 cases each of the two parent breeds was assigned a contribution of >40% and <60%. This shows that mixes between two breeds can be reliably identified 100% of the time at the parent level.
  • For the N2 test mixes, 99 of 100 cases had <98% of the genome assigned to one breed, and 97 of 100 cases had <95% of the genome assigned to one breed, showing highly accurate ability to detect mixing at the grandparent level. In all but one case where mixing was detected, both breeds contributing to the mix were accurately identified (in one case the breed contributing one of the 4 grandparents was not detected as contributing significantly). In 80-85% of the cases, the N2 mixes could be reliably discriminated from F1 mixes (that is, it could be determined that the mixing occurred at the level of grandparents and not parents).
  • For the N3 test mixes, 85 of 100 cases had <98% of the genome assigned to one breed, and 77 of 100 cases had <95% of the genome assigned to one breed, showing fairly good ability to detect mixing at the great-grandparent level. In all cases where mixing was detected, both breeds contributing to the mix were accurately identified. In all cases, the N3 mixes could be reliably discriminated from F1 mixes (that is, it could be determined that the mixing occurred at the level of great-grandparents and not parents), but there was less ability to distinguish between mixes at the grandparent and great-grandparent levels.
  • Finally, for mixes with four different grandparents, all four grandparent breeds were reliably identified, with contributions of each breed to the genome of the mix estimated in the 20-30% range.
  • These results clearly demonstrate the ability of the method to discriminate mixes at the parent and grandparent level from pure-bred dogs (as well as ½ wolf and ¼ wolf mixes from dogs), with some ability to discriminate mixes at the great-grandparent level. The method also accurately identifies breed contributions in the genome of a mixed-breed dog. Larger databases containing more dogs from each breed, as well as additional markers and optimized sets of markers chosen according to criteria described elsewhere in this application, permits more accurate discrimination of mixing at the level of great-grandparents and, by straightforward extension, mixing that occurred in more distant ancestors.
  • Example 6
  • This example describes a representative method of the invention for estimating the contribution of canid populations to the genome of test canids using SNP markers.
  • A. Methods
  • 1. Dataset
  • A dataset of single nucleotide polymorphisms (SNPs) in a variety of dog breeds was used to calculate the frequency of each allele in each breed. The database contained genotype information for 100 SNPs from 189 canids representing 67 breeds, with two to eleven purebred dogs per breed, as described in EXAMPLE 1. The identities of alleles in the dogs are set forth in Table 4 (filed herewith on a compact disc).
  • 2. Doh Analysis
  • Using a leave-one-out procedure each dog was temporarily removed from the database and assigned to a breed based on comparison of the dog's genotypes to allele frequencies of each breed. Bayes' Theorem was used for the assignment: the probability that a dog comes from a given breed is the conditional probability that the observed genotype would occur in a dog of that breed divided by the sum of conditional probabilities that the observed genotype would occur for every breed in the database (essentially as described in Cornuet et al. (1999) Genetics 153:1989-2000). Software was developed to implement this algorithm. Breeds with only two individuals were included in the database but no attempt was made to classify their members because temporarily removing one of the two members did not leave enough information to calculate reliable allele frequencies.
  • B. Results
  • The output of this analysis was, for each dog, a list of the probabilities that the dog had come from each breed in the database, as shown in Table 21. Eighty percent of dogs were assigned to the correct breed with a probability of 99% or greater. For breeds in which genotypes were obtained for five or more individuals, 88% of the dogs were assigned to the correct breed with 99 percent probability. Fourteen dogs (sixteen percent of the total tested) were not assigned to the correct breed with better than 65% probability. Of these, thirteen were assigned incorrectly with a probability of fifty percent or better, nearly three-quarters with a probability of greater than ninety percent. The remaining dog was assigned 20-45% probabilities of coming from several breeds, one of which was correct.
  • These results demonstrate the feasibility of breed assignment based on SNP markers. Performance may be improved by generating SNP genotype profiles for a larger number of dogs (5 or more from each breed), using a larger set of SNPs, and selecting SNPs to be maximally informative. SNPs can be selected for inclusion in the panel both based on having a high heterozygosity across breeds (i.e., both alleles occur at high frequency) and based on large differences in frequency between breeds.
  • Example 7
  • This example describes a naïve Bayesian classification model for estimating the contribution of parent and grandparent canids from different canid populations to the genomes of mixed progeny canids using microsatellite markers.
  • A. Methods
  • 1. Dataset
  • Dataset 5 included genotype information for 96 markers from 429 canids representing 88 breeds (ACKR, AFGH, AHRT, AIRT, AKIT, AMAL, AMWS, ASBT, AUSS, AUST, BASS, BEAG, BEDT, BELS, BICH, BLDH, BMD, BORD, BORZ, BOX, BRIA, BSJI, BULD, BULM, CAIR, CHBR, CHIH, CHOW, CKCS, CLSP, COLL, DACH, DANE, DOBP, ECKR, FBLD, FCR, GOLD, GREY, GSD, GSHP, GSMD, GSNZ, HUSK, IBIZ, IRSE, IRTR, ITGR, IWOF, KEES, KERY, KOMO, KUVZ, LAB, LHSA, MAST, MBLT, MNTY, MSNZ, NELK, NEWF, OES, PEKE, PHAR, PNTR, POM, PRES, PTWD, PUG, RHOD, ROTT, SALU, SAMO, SCHP, SCWT, SHAR, SHIB, SHIH, SPOO, SSHP, SSNZ, STBD, TIBT, TERV, TPOO, WHIP, WHWT, WSSP, see Table 5 for abbreviations of canid populations). The 96 microsatellite markers were microsatellite markers 1-9, 11-38, 40-42, 44-75, 77-100 (Table 1). The genotype information for the canids in this dataset is set forth in Table 3 (filed herewith on a compact disc).
  • Dataset 6 included genotype information for 72 of the markers in Table 1 from 160 mixed-breed canids with known admixture composition. The genotype information for the mixed-breed canids in this dataset is set forth in Table 3 (filed herewith on a compact disc).
  • 2. Analyses
  • A naïve Bayesian classification model was developed that incorporates linked and unlinked microsatellite loci information, higher-dimensioned ancestral populations, and higher-ordered generation pedigrees for the probabilistic assignment of individuals to mixtures of ancestral subpopulations. Two- and three-generational models were implemented for exact admixture detection and assignment, simultaneously addressing the generation, subpopulation, and linkage limitations of previous models.
  • The 2-generational model closely follows the model outlined in Anderson & Thompson (2002) Genetics 160:1217-29, with extensions for greater than two classes of “pure” subpopulations. For the L unlinked loci, we have N subpopulations (deemed breeds), and jl alleles at the lth locus. For each individual at the L loci, we have a 20 genotype: (gl (0), gl (1)). Aggregating subpopulation allele information provides information about the frequency of any given allele, denoted as flj (i). Thus, for individual, non-admixed subpopulation assignments we have:
  • P ( g "\[LeftBracketingBar]" breed i ) = l = 1 L ? and P ( breed i "\[LeftBracketingBar]" g ) = P ( g "\[LeftBracketingBar]" breed i ) P ( breed i ) ? P ( g "\[LeftBracketingBar]" breed i ) P ( breed i ) ? ? indicates text missing or illegible when filed
  • For a parental mixture assignment, we now have:
  • P ( g "\[LeftBracketingBar]" b 1 paternal , b 2 maternal ) = ? ? indicates text missing or illegible when filed
  • where superscripts of (0) denote paternal relations and (1) denote maternal relations (with obvious interchangeability options).
  • The 3-generation model allows the extension of the model to consider 4subpopulation, 2-generation representation across the N subpopulations:
  • P ( g "\[LeftBracketingBar]" ( b 1 × b 2 ) × ( b 3 × b 4 ) ) = ? ? indicates text missing or illegible when filed
  • Exhaustive searches for the mixtures with the highest posterior probability are possible for 2- and 3-generation models.
  • For the in silico individuals, model validation was performed via a leave-one-out cross validation, where sampled alleles used in creating the in silico mixed-breed individual are removed from the ancestral population and allele frequencies are updated prior to maximum likelihood mixture proportion assignment.
  • B. Results
  • Analysis on in-silico mixed-breed individuals across all 96 dinucleotide markers show that the model at 2- and 3-generations performs exceedingly well with 98.4% of F1 mixes and 94.3% of F2 mixes correctly assigned, with no obvious patterns for breed-specific deficits. Analysis on the 160 known mixed-breed individuals genotyped at 72 of the 96 dinucleotide markers show that the model at 2- and 3-generations performs nearly as accurately with 96.2% of F1 mixes and 91.8% of F2 mixes correctly assigned.
  • While the preferred embodiment of the invention has been illustrated and described, it will be appreciated that various changes can be made therein without departing from the spirit and scope of the invention.
  • TABLE 1
    Microsatellite Markers
    Marker Forward Reverse Ann. Temp.
    Name Primer Primer Reference (° C.) PIC
    1 REN285G14 SEQ ID NO: 1 SEQ ID NO: 101 la 55 NA
    2 C01.673 SEQ ID NO: 2 SEQ ID NO: 102 1 58 0.36
    3 REN112I02 SEQ ID NO: 3 SEQ ID NO: 103 1 58 0.76
    4 REN172C02 SEQ ID NO: 4 SEQ ID NO: 104 1 55 0.48
    5 FH2793 SEQ ID NO: 5 SEQ ID NO: 105 2b 58 0.76
    6 REN143K19 SEQ ID NO: 6 SEQ ID NO: 106 1 55 0.5
    7 FH2890 SEQ ID NO: 7 SEQ ID NO: 107 2 55 0.59
    8 C02.466 SEQ ID NO: 8 SEQ ID NO: 108 1 58 0.55
    9 C02.894 SEQ ID NO: 9 SEQ ID NO: 109 1 58 0.72
    10 C02.342 SEQ ID NO: 10 SEQ ID NO: 110 1 0.77
    11 FH2895 SEQ ID NO: 11 SEQ ID NO: 111 2 58 0.7
    12 REN157C08 SEQ ID NO: 12 SEQ ID NO: 112 1 55 0.72
    13 C03.445 SEQ ID NO: 13 SEQ ID NO: 113 1 58 0.6
    14 FH2732 SEQ ID NO: 14 SEQ ID NO: 114 2 58 0.84
    15 FH2776 SEQ ID NO: 15 SEQ ID NO: 115 2 58 0.49
    16 REN160J02 SEQ ID NO: 16 SEQ ID NO: 116 1 58 0.82
    17 REN262N08 SEQ ID NO: 17 SEQ ID NO: 117 1 55 0.72
    18 REN92G21 SEQ ID NO: 18 SEQ ID NO: 118 1 58 0.66
    19 REN285I23 SEQ ID NO: 19 SEQ ID NO: 119 1 55 0.58
    20 C05.414 SEQ ID NO: 20 SEQ ID NO: 120 1 58 0.47
    21 FH2752 SEQ ID NO: 21 SEQ ID NO: 121 2 58 0.38
    22 REN210I14 SEQ ID NO: 22 SEQ ID NO: 122 1 55 0.66
    23 REN37H09 SEQ ID NO: 23 SEQ ID NO: 123 3c 58 0.67
    24 REN97M11 SEQ ID NO: 24 SEQ ID NO: 124 1 55 NA
    25 REN286L19 SEQ ID NO: 25 SEQ ID NO: 125 1 58 0.66
    26 FH2860 SEQ ID NO: 26 SEQ ID NO: 126 2 55 0.62
    27 REN204K13 SEQ ID NO: 27 SEQ ID NO: 127 1 55 0.48
    28 C08.373 SEQ ID NO: 28 SEQ ID NO: 128 1 58 0.68
    29 C08.618 SEQ ID NO: 29 SEQ ID NO: 129 1 55 0.82
    30 C09.173 SEQ ID NO: 30 SEQ ID NO: 130 1 58 0.78
    31 C09.474 SEQ ID NO: 31 SEQ ID NO: 131 1 55 0.78
    32 FH2885 SEQ ID NO: 32 SEQ ID NO: 132 2 55 0.74
    33 C10.781 SEQ ID NO: 33 SEQ ID NO: 133 1 55 0.62
    34 REN73F08 SEQ ID NO: 34 SEQ ID NO: 134 1 55 0.54
    35 REN154G10 SEQ ID NO: 35 SEQ ID NO: 135 1 55 0.71
    36 REN164B05 SEQ ID NO: 36 SEQ ID NO: 136 1 55 0.5
    37 FH2874 SEQ ID NO: 37 SEQ ID NO: 137 2 55 NA
    38 C11.873 SEQ ID NO: 38 SEQ ID NO: 138 1 58 0.81
    39 REN258L11 SEQ ID NO: 39 SEQ ID NO: 139 1 0.72
    40 REN213F01 SEQ ID NO: 40 SEQ ID NO: 140 1 55 0.82
    41 REN208M20 SEQ ID NO: 41 SEQ ID NO: 141 1 58 0.64
    42 REN94K11 SEQ ID NO: 42 SEQ ID NO: 142 1 55 0.56
    43 REN120P21 SEQ ID NO: 43 SEQ ID NO: 143 1 0.5
    44 REN286P03 SEQ ID NO: 44 SEQ ID NO: 144 1 58 0.78
    45 C13.758 SEQ ID NO: 45 SEQ ID NO: 145 1 55 0.75
    46 C14.866 SEQ ID NO: 46 SEQ ID NO: 146 1 55 0.74
    47 FH3072 SEQ ID NO: 47 SEQ ID NO: 147 2 55 0.63
    48 FH3802 SEQ ID NO: 48 SEQ ID NO: 148 2 55 0.44
    49 REN06C11 SEQ ID NO: 49 SEQ ID NO: 149 3 58 0.79
    50 REN144M10 SEQ ID NO: 50 SEQ ID NO: 150 1 58 0.66
    51 REN85N14 SEQ ID NO: 51 SEQ ID NO: 151 1 58 0.78
    52 FH3096 SEQ ID NO: 52 SEQ ID NO: 152 2 55 0.79
    53 C17.402 SEQ ID NO: 53 SEQ ID NO: 153 1 58 0.75
    54 REN50B03 SEQ ID NO: 54 SEQ ID NO: 154 3 58 0.74
    55 REN112G10 SEQ ID NO: 55 SEQ ID NO: 155 1 55 0.7
    56 REN186N13 SEQ ID NO: 56 SEQ ID NO: 156 1 58 0.66
    57 FH2795 SEQ ID NO: 57 SEQ ID NO: 157 2 58 0.71
    58 C18.460 SEQ ID NO: 58 SEQ ID NO: 158 1 58 0.53
    59 FH2783 SEQ ID NO: 59 SEQ ID NO: 159 2 55 NA
    60 REN91I14 SEQ ID NO: 60 SEQ ID NO: 160 1 58 0.72
    61 REN274F18 SEQ ID NO: 61 SEQ ID NO: 161 1 58 0.66
    62 FH2887 SEQ ID NO: 62 SEQ ID NO: 162 2 55 0.77
    63 FH3109 SEQ ID NO: 63 SEQ ID NO: 163 2 58 0.62
    64 REN293N22 SEQ ID NO: 64 SEQ ID NO: 164 1 58 0.48
    65 FH2914 SEQ ID NO: 65 SEQ ID NO: 165 2 55 0.61
    66 FH3069 SEQ ID NO: 66 SEQ ID NO: 166 2 55 0.53
    67 REN49F22 SEQ ID NO: 67 SEQ ID NO: 167 3 55 0.66
    68 REN107H05 SEQ ID NO: 68 SEQ ID NO: 168 1 55 0.86
    69 REN78I16 SEQ ID NO: 69 SEQ ID NO: 169 1 55 0.63
    70 FH3078 SEQ ID NO: 70 SEQ ID NO: 170 2 55 0.67
    71 C23.277 SEQ ID NO: 71 SEQ ID NO: 171 1 55 0.54
    72 REN181K04 SEQ ID NO: 72 SEQ ID NO: 172 1 58 0.64
    73 REN106I06 SEQ ID NO: 73 SEQ ID NO: 173 1 55 0.58
    74 FH3083 SEQ ID NO: 74 SEQ ID NO: 174 2 55 0.61
    75 REN54E19 SEQ ID NO: 75 SEQ ID NO: 175 1 55 0.54
    76 C25.213 SEQ ID NO: 76 SEQ ID NO: 176 1 0.78
    77 REN87O21 SEQ ID NO: 77 SEQ ID NO: 177 1 55 0.62
    78 C26.733 SEQ ID NO: 78 SEQ ID NO: 178 1 55 0.61
    79 C27.442 SEQ ID NO: 79 SEQ ID NO: 179 1 55 0.74
    80 C27.436 SEQ ID NO: 80 SEQ ID NO: 180 1 55 0.51
    81 REN72K15 SEQ ID NO: 81 SEQ ID NO: 181 1 55 0.66
    82 FH2759 SEQ ID NO: 82 SEQ ID NO: 182 2 55 0.71
    83 FH2785 SEQ ID NO: 83 SEQ ID NO: 183 2 55 0.46
    84 REN239K24 SEQ ID NO: 84 SEQ ID NO: 184 1 55 0.78
    85 FH3082 SEQ ID NO: 85 SEQ ID NO: 185 2 55 0.54
    86 REN51C16 SEQ ID NO: 86 SEQ ID NO: 186 4d 55 0.8
    87 FH3053 SEQ ID NO: 87 SEQ ID NO: 187 2 55 0.74
    88 REN43H24 SEQ ID NO: 88 SEQ ID NO: 188 3 55 0.66
    89 FH2712 SEQ ID NO: 89 SEQ ID NO: 189 2 55 0.67
    90 FH2875 SEQ ID NO: 90 SEQ ID NO: 190 2 55 0.6
    91 FH2790 SEQ ID NO: 91 SEQ ID NO: 190 2 55 0.58
    92 REN291M20 SEQ ID NO: 92 SEQ ID NO: 192 1 58 0.76
    93 REN160M18 SEQ ID NO: 93 SEQ ID NO: 193 1 58 0.76
    94 FH3060 SEQ ID NO: 94 SEQ ID NO: 194 2 55 0.4
    95 REN314H10 SEQ ID NO: 95 SEQ ID NO: 195 1 55 0.54
    96 REN01G01 SEQ ID NO: 96 SEQ ID NO: 196 3 55 0.54
    97 REN112C08 SEQ ID NO: 97 SEQ ID NO: 197 1 55 0.42
    98 REN106I07 SEQ ID NO: 98 SEQ ID NO: 198 1 55 0.78
    99 FH2708 SEQ ID NO: 99 SEQ ID NO: 199 2 55 0.63
    100 REN86G15 SEQ ID NO: 100 SEQ ID NO: 200 1 55 0.76
    aBreen et al. (2001) Genome Res. 11: 1784-95.
    bGuyon et al. (2003) Proc. Natl. Acad. Sci. U.S.A. 100(9): 5296-301.
    CJouquand et al. (2000) Animal Genetics 31: 266-72.
    dMellersh et al. (2000) Mamm. Genome 11: 120-30.
  • TABLE 2
    SNP Markers
    Major Minor Minor Allele
    BAC Forward Primer Reverse Primer SNP* Allele Allele Frequency** Heterozygosity**
    372-c5t (SEQ ID NO: 202) SEQ ID NO: 244 SEQ ID NO: 286 82 C T 0.004 0.009
    133 T C ND ND
    372-c15t (SEQ ID NO: 203) SEQ ID NO: 245 SEQ ID NO: 287 285 G A 0.013 0.025
    372-e2s (SEQ ID NO: 204) SEQ ID NO: 246 SEQ ID NO: 288 271 G T 0.029 0.057
    257 C T 0.071 0.132
    128 C G 0.046 0.087
    93 C G 0.021 0.041
    50 A ND ND
    372-e13t (SEQ ID NO: 205) SEQ ID NO: 247 SEQ ID NO: 289 57 T C 0.004 0.008
    372-e15t(SEQ ID NO: 206) SEQ ID NO: 248 SEQ ID NO: 290 312 A ND ND
    301 C T ND ND
    258 C T 0.009 0.018
    156 T ND ND
    372-e16s (SEQ ID NO: 207) SEQ ID NO: 249 SEQ ID NO: 291 254 G A ND ND
    372-e18t (SEQ ID NO: 208) SEQ ID NO: 250 SEQ ID NO: 292 165 G C 0.254 0.379
    372-g17t (SEQ ID NO: 209) SEQ ID NO: 251 SEQ ID NO: 293 66 T A 0.134 0.232
    372-i23s (SEQ ID NO: 210) SEQ ID NO: 252 SEQ ID NO: 294 384 A G 0.312 0.429
    372-m6t (SEQ ID NO: 211) SEQ ID NO: 253 SEQ ID NO: 295 138 C A 0.275 0.399
    88 T C 0.004 0.009
    266 T G ND ND
    372-m7s (SEQ ID NO: 212) SEQ ID NO: 254 SEQ ID NO: 296 317 T A ND ND
    372-m9t (SEQ ID NO: 213) SEQ ID NO: 255 SEQ ID NO: 297 108 A T 0.368 0.465
    58 G C 0.362 0.462
    372-m18t (SEQ ID NO: 214) SEQ ID NO: 256 SEQ ID NO: 298 170 T ND ND
    129 G A 0.159 0.267
    372-m23t (SEQ ID NO: 215) SEQ ID NO: 257 SEQ ID NO: 299 76 C T 0.017 0.034
    108 G A 0.081 0.149
    229 G A 0.078 0.143
    238 T C 0.078 0.143
    263 A G 0.157 0.265
    372-o13s (SEQ ID NO: 216) SEQ ID NO: 258 SEQ ID NO: 300 212 T C 0.316 0.433
    373-a10s (SEQ ID NO: 217) SEQ ID NO: 259 SEQ ID NO: 301 274 T C 0.131 0.228
    373-a15t (SEQ ID NO: 218) SEQ ID NO: 260 SEQ ID NO: 302 112 G A 0.004 0.008
    373-a17t (SEQ ID NO: 219) SEQ ID NO: 261 SEQ ID NO: 303 73 G A ND ND
    136 A G 0.394 0.477
    373-a21s (SEQ ID NO: 220) SEQ ID NO: 262 SEQ ID NO: 304 89 C T 0.017 0.034
    373-c13s (SEQ ID NO: 221) SEQ ID NO: 263 SEQ ID NO: 305 93 C T 0.028 0.054
    373-c15t (SEQ ID NO: 222) SEQ ID NO: 264 SEQ ID NO: 306 242 C T 0.209 0.331
    202 C T 0.174 0.288
    131 AA ND ND
    373-e1t (SEQ ID NO: 223) SEQ ID NO: 265 SEQ ID NO: 307 50 T C 0.009 0.019
    102 Del. 8 bp ND ND
    130 G A 0.01 0.02
    373-e21t (SEQ ID NO: 224) SEQ ID NO: 266 SEQ ID NO: 308 282 A G 0.049 0.093
    116 C T 0.215 0.338
    373-g7t (SEQ ID NO: 225) SEQ ID NO: 267 SEQ ID NO: 309 243 C T 0.014 0.028
    242 G A ND ND
    84 T ND ND
    373-g19t (SEQ ID NO: 226) SEQ ID NO: 268 SEQ ID NO: 310 249 A ND ND
    251 A ND ND
    246 G A 0.004 0.008
    224 T C ND ND
    378 A C 0.082 0.15
    373-i8s (SEQ ID NO: 227) SEQ ID NO: 269 SEQ ID NO: 311 199 A C 0.073 0.136
    224 G A 0.004 0.009
    373-i16s (SEQ ID NO: 228) SEQ ID NO: 270 SEQ ID NO: 312 312 A G 0.078 0.144
    254 G A 0.24 0.365
    250 C T 0.079 0.146
    249 C T 0.031 0.06
    373-k8s (SEQ ID NO: 229) SEQ ID NO: 271 SEQ ID NO: 313 181 C T 0.005 0.009
    224 Del. 2 bp ND ND
    373-k10t (SEQ ID NO: 230) SEQ ID NO: 272 SEQ ID NO: 314 261 A C 0.353 0.457
    264 T C 0.008 0.017
    372-c5s (SEQ ID NO: 231) SEQ ID NO: 273 SEQ ID NO: 315 112 A G 0.357 0.459
    168 A G 0.01 0.02
    372-c15s (SEQ ID NO: 232) SEQ ID NO: 274 SEQ ID NO: 316 121 T C 0.017 0.034
    196 G A 0.004 0.009
    372-e15s (SEQ ID NO: 233) SEQ ID NO: 275 SEQ ID NO: 317 67 A G 0.186 0.303
    71 A C 0.013 0.026
    165 G A 0.105 0.188
    221 C A 0.189 0.307
    372-i23t (SEQ ID NO: 234) SEQ ID NO: 276 SEQ ID NO: 318 97 A G 0.119 0.21
    224 T ND ND
    372-m6s (SEQ ID NO: 235) SEQ ID NO: 277 SEQ ID NO: 319 67 A G 0.323 0.437
    73 A C 0.042 0.081
    100 T C 0.042 0.081
    108 C T ND ND
    127 T A ND ND
    147 T G 0.349 0.454
    186 A G 0.008 0.017
    372-m7t (SEQ ID NO: 236) SEQ ID NO: 278 SEQ ID NO: 320 100 C A 0.101 0.181
    273 A G 0.051 0.097
    372-m18s (SEQ ID NO: 237) SEQ ID NO: 279 SEQ ID NO: 321 131 T C 0.339 0.448
    373-a14t (SEQ ID NO: 238) SEQ ID NO: 280 SEQ ID NO: 322 290 T C 0.224 0.347
    197 C T 0.225 0.349
    160 A T 0.441 0.493
    55 T ND ND
    373-a21t (SEQ ID NO: 239) SEQ ID NO: 281 SEQ ID NO: 323 93 A G 0.008 0.017
    373-e21s (SEQ ID NO: 240) SEQ ID NO: 282 SEQ ID NO: 324 136 C T 0.332 0.443
    175 C T 0.332 0.443
    191 G C 0.33 0.442
    373-g7s (SEQ ID NO: 241) SEQ ID NO: 283 SEQ ID NO: 325 263 C T 0.204 0.325
    266 T C 0.201 0.321
    373-i16t (SEQ ID NO: 242) SEQ ID NO: 284 SEQ ID NO: 326 47 G A 0.457 0.496
    133 C T ND ND
    173 G A ND ND
    210 G A ND ND
    302 C T 0.476 0.499
    319 C A 0.381 0.472
    373-k16t (SEQ ID NO: 243) SEQ ID NO: 285 SEQ ID NO: 327 54 A ND ND
    *Position from 5′ Forward Primer.
    **Based on 120 canids representing 60 breeds.
    ND = Not done.
  • TABLE 5
    Abbreviations for Canid Populations
    ACKR American Cocker Spaniel
    AFGH Afghan Hound
    AHRT American Hairless Terrier
    AIRT Airedale Terrier
    AKAB Akabash
    AKIT Akita
    AMAL Alaskan Malamute
    AMWS American Water Spaniel
    ASBT American Staffordshire Bull Terrier
    AUSS Australian Shepherd
    AUST Australian Terrier
    BASS Basset Hound
    BEAC Bearded Collie
    BEAG Beagle
    BEDT Bedlington Terrier
    BELS Belgian Sheepdog
    BICH Bichon Frise
    BLDH Bloodhound
    BMD Bernese Mountain Dog
    BORD Border Collie
    BORZ Borzoi
    BOST Boston Terrier
    BOX Boxer
    BOYK Boykin Spaniel
    BRIA Briard
    BSJI Basenji
    BULD Bulldog
    BULM Bullmastiff
    BULT Bull Terrier
    CAIR Cairn Terrier
    CHBR Chesapeak Bay Retriever
    CHIH Chihuahua
    CHOW Chow Chow
    CKCS Cavalier King Charles Spaniel
    CLSP Clumber Spaniel
    COLL Collie
    COY Coyote
    DACH Dachshund
    DALM Dalmatian
    DANE Great Dane
    DNDT Dandie Dinmont Terrier
    DOBP Doberman Pinscher
    ECKR English Cocker Spaniel
    ESHP English Shepherd
    ESPR English Springer Spaniel
    EFOX English Foxhound
    FCR Flat-Coated Retriever
    FBLD French Bulldog
    FSP Field Spaniel
    GOLD Golden Retriever
    GREY Greyhound
    GPIN German Pincher
    GSD German Shepherd Dog
    GSHP German Short-haired Pointer
    GSMD Greater Swiss Mountain Dog
    GSNZ Giant Schnauzer
    HUSK Siberian Husky
    IBIZ Ibizan Hound
    IRSE Irish Setter
    IRTR Irish Terrier
    IRWS Irish Water Spaniel
    IWOF Irish Wolfhound
    ITGR Italian Greyhound
    KEES Keeshond
    KERY Kerry Blue Terrier
    KOMO Komondor
    KUVZ Kuvasz
    LAB Labrador Retriever
    LHSA Lhasa Apso
    MAST Mastiff
    MBLT Miniature Bull Terrier
    MNTY Manchester Terrier-toy
    MSNZ Miniature Schnauzer
    NELK Norwegian Elkhound
    NEWF Newfoundland
    OES Old English Sheepdog
    PAPI Papillon
    PEKE Pekingese
    PBGV Petit Basset Griffon Vendeen
    PHAR Pharaoh Hound
    PNTR Pointer
    POM Pomeranian
    PRES Presa Canario
    PTWD Portuguese Water Dog
    PUG Pug
    RHOD Rhodesian Ridgeback
    ROTT Rottweiler
    SALU Saluki
    SAMO Samoyed
    SCHP Schiperke
    SCDH Scottish Deerhound
    SCWT Soft-coated Wheaten Terrier
    SFXT Smooth Fox Terrier
    SHAR Shar-Pei
    SHIB Shiba Ina
    SHIH Shih Tzu
    SPIN Spinoni Italiano
    SPIX Springer Mix
    SCOL Standard Collie
    SPOO Standard Poodle
    SSNZ Standard Schnauzer
    SSHP Shetland Sheepdog
    STBD Saint Bernard
    SUSP Sussex Spaniel
    TERV Belgian Tervuren
    TIBT Tibetan Terrier
    TPOO Toy Poodle
    WEIM Weimaraner
    WHIP Whippet
    WHWT West Highland White Terrier
    WOLF Wolf
    WSSP Welsh Springer Spaniel
    WST Welsh Terrier
  • TABLE 6
    94 Canids in Dataset 1
    Population* Canid Identification Number
    AHRT 1120 1121 1122 1123 1124
    AKIT 1130 1131 1132 1133 1134
    BEAG 994 995 1323 1324 1327
    BMD 941 943 968 970 971
    BOX 1176 1177 1178 1179 1304
    BULD 1193 1194 1195 1197 1198
    BULM 1105 1106 1107 1108 1109
    CHIH 1202 1203 1204 1205 1206
    DACH 1051 1052 1053 1054 1055
    GOLD 591 592 593 603 604
    IBIZ 1147 1148 1162 1172 1280
    MAST 991 1015 1016 1017 1066
    NEWF 271 274 275 277 278
    PEKE 1143 1145 1211 1212 1213
    POM 1190 1191 1210 1238 1239
    PRES 1082 1093 1096 1115 1127
    PUG 1077 1104 1183 1184 1192
    ROTT 1014 1028 1029 1033 1034
    WOLF 282135 492-8 930121 Iran-1
    *See Table 5 for abbreviations of canid populations.
  • TABLE 7
    341 Canids in Dataset 2
    Population* Canid Identification Number
    ACKR 1035 2261 2310
    AFGH 1812 1939 2264
    AHRT 1120 1121 1122 1123 1124
    AIRT 1603 1604 1788 1875
    AKIT 1130 1131 1132 1133 1134
    AMAL 1629 1779 1845 2132 2214
    AMWS 2168 2279 2327 987 988
    AUSS 1336 1337 1500 1521 1683
    AUST 1387 1531 1533 1564 1870 1871
    BASS 1341 1342 1506 1917
    BEAG 1323 1324 1327 994 995
    BEDT 1422 1423 1424 1426
    BELS 1351 2111 2153 2209 2210
    BLDH 1186 1223 1410 1942 1957
    BMD 941 943 968 1763 969
    BORD 1648 1828 1829 2002 2003
    BORZ 1378 1401 1808 2268 978
    BOX 1176 1177 1178 1179 1304
    BSJI 1338 1339 1645 1675 1717
    BULD 1193 1194 1195 1197 1198
    BULM 1105 1106 1107 1108 1109
    CAIR 1405 2096 2113 2125 2131
    CHBR 1546 1549 1813 2091 888
    CHIH 1202 1203 1204 1205 1206
    CKCS 1513 1639 1640 1642 2054
    CLSP 1008 1009 1802 2312 2314
    COLL 1692 1701 2284 373 379
    DACH 1051 1052 1053 1054 1055
    DANE 1574 1575 1580 1700 1748
    DNDT 2204 2219 2221
    DOBP 1031 1749 2162 2245
    ECKR 1376 1377 1400 1404 1511
    FCR 1188 2020 2042 2044 2259
    GOLD 591 592 593 603 604
    GREY 2477 2478 2479 2480 2481
    GSD 1666 1776 2011 2060 2086
    GSHP 1628 1708 1710 1833 1892
    GSMD 1547 1659 1660 1662 1663
    HUSK 1469 1883 2115 2117 2118
    IBIZ 1147 1148 1162 1172 1280
    IRSE 1540 1617 1896 2084 2085
    IRTR 2152 2189 2238 2242
    IWOF 1581 1761 1792 1906 1993
    KEES 1501 1589 1818 1819 2072
    KOMO 1484 1964 2321 2323 2334
    KUVZ 1482 1551 1672 1913 1994
    LAB 1310 1465 1468 1754 1830
    MAST 1015 1016 1017 1066 991
    MBLT 1915 2253 2254 2255 2256
    MNTY 1539 1732 2145 2149
    NELK 2216 2239 2240 2281 2295
    NEWF 271 274 275 277 278
    OES 1984 2171 2179
    PEKE 1143 1145 1211 1212 1213
    PNTR 1382 1383 1869 1938 1948
    POM 1190 1191 1210 1238 1239
    PRES 1082 1096 1115 1127 1095
    PTWD P142 P1 P238 P25 P67
    PUG 1077 1104 1183 1184 1192
    RHOD 1444 1454 1505 1592 1609
    ROTT 1014 1028 1029 1033 1034
    SCHP 1386 1471 1814 1852
    SCWT 1624 1770 2250 2301
    SFXT 1550 2167
    SHAR 1573 1593 1619 1998 1999
    SPOO 1530 1582 1876 1877 2337
    SSHP 1379 1523 1824 1921 2040
    STBD 1075 1714 1750 2403 2404
    TERV 1622 2194 2200 2222
    WHIP 1355 1395 1407 1409 1518
    WHWT 1388 1420 1992 2100 2128
    WSSP 1955 2139 2143 2195 2286
    *See Table 5 for abbreviations of canid populations.
  • TABLE 8
    414 Canids in Dataset 3
    Population* Canid Identification Number
    ACKR 1035 2261 2310 1956 2260
    AFGH 1812 1939 2264 1936 1937
    AHRT 1120 1121 1122 1123 1124
    AIRT 1603 1604 1788 1875
    AKIT 1130 1131 1132 1133 1134
    AMAL 1629 1779 1845 2132 2214
    AMWS 2168 2279 2327 987 988
    AUSS 1336 1337 1500 1521 1683
    AUST 1387 1531 1564 1870 1871
    BASS 1341 1342 1506 1917
    BEAG 1323 1324 1327 994 995
    BEDT 1422 1423 1424 1426
    BELS 1351 2111 2153 2209 2210
    BICH 1943 1954 933 974
    BLDH 1186 1223 1410 1942 1957
    BMD 941 943 968 1763 969
    BORD 1648 1828 1829 2002 2003
    BORZ 1378 1401 1808 2268 978
    BOX 1176 1177 1178 1179 1304
    BSJI 1338 1339 1645 1675 1717
    BULD 1193 1194 1195 1197 1198
    BULM 1105 1106 1107 1108 1109
    CAIR 1405 2096 2113 2125 2131
    CHBR 1546 1549 1813 2091 888
    CHIH 1202 1203 1204 1205 1206
    CHOW 1633 1835 1837 1838 1839
    CKCS 1513 1639 1640 1642 2054
    CLSP 1008 1009 1802 2312 2314
    COLL 1692 1701 2284 373 379
    DACH 1051 1052 1053 1054 1055
    DANE 1574 1575 1580 1700 1748
    DOBP 1031 1032 1749 2162 2245
    ECKR 1376 1377 1400 1404 1511
    FBLD 1507 1508 1509 2671
    FCR 1188 2020 2042 2044 2259
    GOLD 591 592 593 603 604
    GREY 2477 2478 2479 2480 2481
    GSD 1666 1776 2011 2060 2086
    GSHP 1628 1708 1710 1833 1892
    GSMD 1547 1659 1660 1662 1663
    GSNZ 1868 22739 27093 27106 33390
    HUSK 1469 1883 2115 2117 2118
    IBIZ 1147 1148 1162 1172 1280
    IRSE 1540 1617 1896 2084 2085
    IRTR 2152 2189 2238 2242
    ITGR 1568 1570 1862 1881 1882
    IWOF 1581 1761 1792 1906 1993
    KEES 1501 1589 1818 1819 2072
    KERY 13878 1483 1579 2014 24255
    KOMO 1484 1964 2321 2323 2334
    KUVZ 1482 1551 1672 1913 1994
    LAB 1310 1465 1468 1754 1830
    LHSA 1524 1525 1526 1528 2074
    MAST 1015 1016 1017 1066 991
    MBLT 1915 2253 2254 2255 2256
    MNTY 1539 1732 2145 2149
    MSNZ 1587 1756 1851 2034 2613
    NELK 2216 2239 2240 2281 2295
    NEWF 271 274 275 277 278
    OES 1984 2171 2179 1914 1626
    PEKE 1143 1145 1211 1212 1213
    PHAR 1292 1947 1962 1963
    PNTR 1382 1383 1869 1938 1948
    POM 1190 1191 1210 1238 1239
    PRES 1082 1096 1115 1127 1095
    PTWD P142 P1 P238 P25 P67
    PUG 1077 1104 1183 1184 1192
    RHOD 1444 1454 1505 1592 1609
    ROTT 1014 1028 1029 1033 1034
    SALU 1491 1535 1607 1873 2610
    SAMO 1375 1532 1560 169 239
    SCHP 1386 1471 1814 1852
    SCWT 1624 1770 2250 2301
    SHAR 1573 1593 1619 1998 1999
    SHIB 1769 1854 1856 1860 1981
    SHIH 1393 1783 2068 2859 2860
    SPOO 1530 1582 1876 1877 2337
    SSHP 1379 1523 1824 1921 2040
    SSNZ 13352 1360 1827 20457 22647
    STBD 1075 1714 1750 2403 2404
    TIBT 1466 1562 1707 26078 28086
    TERV 1622 2194 2200 2222
    WHIP 1355 1395 1407 1409 1518
    WHWT 1388 1420 1992 2100 2128
    WSSP 1955 2139 2143 2195 2286
    *See Table 5 for abbreviations of canid populations.
  • TABLE 9
    85 Canids in Dataset 5
    Population* Canid Identification Number
    AHRT 1120 1121 1124
    AKIT 1130 1131 1132 1133 1134
    BEAG 1323 1327 994 995
    BMD 941 943 968 970 971
    BOX 1176 1177 1178 1179 1304
    BULD 1193 1194 1195 1197 1198
    BULM 1105 1106 1107 1108 1109
    CHIN 1202 1203 1204
    DACH 1051 1052 1053 1054 1055
    GOLD 591 593 603 604
    IBIZ 1147 1148 1162 1172 1280
    MAST 1015 1016 1017 1066 991
    NEWF 271 274 275 277 278
    PEKE 1143 1145 1211 1212 1213
    POM 1190 1191 1210 1238
    PRES 1093 1096 1115
    PUG 1077 1104 1183 1184 1192
    ROTT 1014 1028 1029 1033 1034
    WOLF 282135 492-8 930121 Iran-1
    *See Table 5 for abbreviations of canid populations.
  • TABLE 10
    Microsatellite Marker Alleles and Heterozygosities in 19 Canid Populations
    Population* n P A Ap He Ho f
    AHRT 4.882353 0.835294 2.576471 2.887324 0.439286 0.432549 0.017577
    AKIT 4.8 0.917647 3.035294 3.217949 0.550509 0.522157 0.058242
    BEAG 4.941176 0.929412 2.952941 3.101266 0.560938 0.482941 0.153823
    BMD 3.938272 0.82716 2.296296 2.552239 0.396752 0.38642 0.095341
    BOX 4.905882 0.764706 2.141176 2.492308 0.348287 0.308235 0.13062
    BULD 4.8 0.870588 2.6 2.837838 0.47183 0.42902 0.104385
    BULM 4.952941 0.917647 2.752941 2.910256 0.518151 0.488235 0.064621
    CHIH 4.811765 0.976471 3.447059 3.506024 0.611858 0.556667 0.101951
    DACH 4.847059 0.882353 2.658824 2.853333 0.487712 0.482941 0.016864
    GOLD 4.905882 0.905882 2.905882 3.103896 0.529542 0.520784 0.018744
    IBIZ 4.682353 0.905882 2.847059 3.038961 0.517372 0.462745 0.118169
    MAST 4.576471 0.905882 2.541176 2.701299 0.488389 0.466667 0.051889
    NEWF 4.882353 0.941176 2.905882 3.025 0.516111 0.49 0.05822
    PEKE 4.917647 0.858824 2.552941 2.808219 0.453319 0.428824 0.062983
    POM 4.717647 0.929412 3.176471 3.341772 0.576965 0.482941 0.17924
    PRES 4.717647 0.964706 3.435294 3.52439 0.616111 0.558824 0.103943
    PUG 4.870588 0.776471 2.223529 2.575758 0.397302 0.315882 0.224817
    ROTT 4.882353 0.882353 2.670588 2.893333 0.475864 0.44902 0.063943
    WOLF 3.847059 0.964706 3.870588 3.97561 0.712773 0.492157 0.345081
    Mean 4.730497 0.892451 2.820548 3.018251 0.508899 0.460895 0.108623
    *See Table 5 for abbreviations of canid populations.
    a = Effective number of individuals sampled from the population (n is smaller than the number of individuals tested due to missing marker data);
    P = Proportion of polymorphic loci across all 95 markers for individuals in a population;
    A = mean number of alleles per locus;
    Ap = mean number of alleles per polymorphic locus;
    He = expected heterozygosity;
    Ho = observed heterozygosity;
    f = estimate of inbreeding coefficient for the population.
  • TABLE 11
    Heterozygosity of 85 Dog Breeds
    Population Heterozygosity
    Bedlington Terrier 0.312842
    Miniature Bull Terrier 0.321619
    Boxer 0.343151
    Clumber Spaniel 0.363595
    Greater Swiss Mountain Dog 0.364943
    Airedale Terrier 0.372793
    Soft Coated Wheaten Terrier 0.37376
    Collie 0.383453
    Doberman Pinscher 0.383763
    Irish Terrier 0.390427
    Bloodhound 0.391559
    German Shepherd Dog 0.397957
    Pug Dog 0.398442
    Bernese Mountain Dog 0.399599
    Flat-coated Retriever 0.402832
    Miniature Schnauzer 0.414528
    Irish Wolfhound 0.418039
    Pharaoh Hound 0.420188
    Cavalier King Charles Spaniel 0.427633
    Shetland Sheepdog 0.43244
    Manchester Terrier Toy 0.432937
    French Bulldog 0.439855
    Basset Hound 0.441171
    American Cocker Spaniel 0.443841
    Schipperke 0.445437
    Irish Setter 0.446656
    Basenji 0.447739
    Bulldog 0.449549
    Standard Schnauzer 0.450041
    Whippet 0.450959
    American Hairless Terrier 0.454113
    Mastiff 0.455126
    Rottweiler 0.45651
    Pekingese 0.459983
    English Cocker Spaniel 0.46565
    Saint Bernard 0.465724
    Italian Greyhound 0.468797
    Afghan Hound 0.468924
    Pointer 0.469444
    Shih Tzu 0.472193
    Welsh Springer Spaniel 0.473917
    Kerry Blue Terrier 0.477836
    Dachshund 0.483817
    Borzoi 0.487909
    Great Dane 0.488697
    Alaskan Malamute 0.489877
    Newfoundland 0.490617
    West Highland White Terrier 0.493936
    Belgian Sheepdog 0.495114
    Australian Terrier 0.499343
    Ibizan Hound 0.503981
    Keeshond 0.505126
    Bullmastiff 0.509243
    Akita 0.510396
    Greyhound 0.513409
    Chesapeake Bay Retriever 0.514166
    Golden Retriever 0.517779
    Tibetan Terrier 0.519535
    Chow Chow 0.52043
    Rhodesian Ridgeback 0.520493
    Siberian Husky 0.527344
    Bichon Frise 0.528271
    Standard Poodle 0.529948
    Old English Sheepdog 0.530192
    Norwegian Elkhound 0.532854
    German Shorthaired Pointer 0.538761
    American Water Spaniel 0.540183
    Lhasa Apso 0.541245
    Samoyed 0.542932
    Pomeranian 0.546007
    Beagle 0.549119
    Border Collie 0.549583
    Belgian Tervuren 0.551091
    Kuvasz 0.553538
    Shiba Inu 0.560543
    Labrador Retriever 0.56059
    Giant Schnauzer 0.56131
    Saluki 0.563037
    Portugurese Water Dog 0.568882
    Komondor 0.57321
    Cairn Terrier 0.575823
    Chinese Shar-Pei 0.584412
    Perro de Presa Canario 0.589397
    Chihuahua 0.592353
    Australian Shepherd 0.609668
  • TABLE 12
    Expected Heterozygosity of 60 Breeds Based on Allele
    Frequencies at 75 SNP Loci
    Heterozygosity
    Breed (× 10−4)
    Scottish Deerhound 2.0683
    Field Spaniel 2.3165
    Flat-coated Retriever 2.6474
    Bernese Mountain Dog 2.8129
    Standard Schnauzer 2.8129
    Boxer 3.0611
    Collie 3.0611
    Bearded Collie 3.1438
    Miniature Bull Terrier 3.2266
    Perro de Presa Canario 3.392
    Bull Terrier 3.8057
    Mastiff 3.8057
    Petite Basset Griffon Vendeen 3.8884
    Bedlington Terrier 3.9712
    Saluki 4.1366
    Standard Poodle 4.1366
    Cavalier King Charles Spaniel 4.2194
    Sussex Spaniel 4.2194
    American Water Spaniel 4.5503
    Ibizan Hound 4.7158
    Beagle 4.7985
    Boston Terrier 4.7985
    German Pinscher 4.8812
    Basset Hound 4.964
    Bichon Frise 4.964
    Rottweiler 4.964
    Bullmastiff 5.1294
    English Springer Spaniel 5.1294
    Greater Swiss Mountain Dog 5.3776
    Pug Dog 5.3776
    Boykin Spaniel 5.5431
    Italian Greyhound 5.5431
    Newfoundland 5.5431
    American Hairless Terrier 5.7086
    Borzoi 5.7913
    German Shepherd Dog 5.7913
    Saint Bernard 5.7913
    Dachshund 5.874
    Akita 5.9568
    Cocker Spaniel 6.0395
    French Bulldog 6.0395
    Greyhound 6.0395
    Irish Water Spaniel 6.0395
    Shetland Sheepdog 6.205
    Papillon 6.2877
    Foxhound (English) 6.3704
    Tibetan Terrier 6.4532
    Welsh Springer Spaniel 6.4532
    German Shorthaired Pointer 6.6186
    Welsh Terrier 6.6186
    Dalmatian 6.7014
    Irish Setter 6.7014
    Alaskan Malamute 6.8668
    Golden Retriever 7.0323
    Portugese Water Dog 7.115
    Weimaraner 7.6942
    Labrador Retriever 8.4388
    Spinoni Italiano 8.9352
    Chesapeak Bay Retriever 9.1006
    English Shepherd 9.2661
  • TABLE 13
    Assignments of 346 Canids to 72 Breeds Using Doh
    Breed* Correct Incorrect
    ACKR 3 0
    AFGH 3 0
    AHRT 5 0
    AIRT 4 0
    AKIT 5 0
    AMAL 5 0
    AMWS 5 0
    AUSS 5 0
    AUST 5 0
    BASS 4 0
    BEAG 4 1a
    BEDT 4 0
    BELS 3 2b
    BLDH 5 0
    BMD 5 0
    BORD 5 0
    BORZ 5 0
    BOX 5 0
    BSJI 5 0
    BULD 5 0
    BULM 5 0
    CAIR 5 0
    CHBR 5 0
    CHIH 4 1c
    CKCS 5 0
    CLSP 5 0
    COLL 5 0
    DACH 5 0
    DANE 5 0
    DNDT 3 0
    DOBP 5 0
    ECKR 5 0
    FCR 5 0
    GOLD 5 0
    GREY 5 0
    GSD 5 0
    GSHP 3 2d
    GSMD 5 0
    HUSK 5 0
    IBIZ 5 0
    IRSE 5 0
    IRTR 4 0
    IWOF 5 0
    KEES 5 0
    KOMO 5 0
    KUVZ 5 0
    LAB 5 0
    MAST 5 0
    MBLT 5 0
    MNTY 4 0
    NELK 5 0
    NEWF 5 0
    OES 3 0
    PEKE 5 0
    PNTR 5 0
    POM 5 0
    PRES 5 0
    PTWD 5 0
    PUG 5 0
    RHOD 5 0
    ROTT 5 0
    SCHP 4 0
    SCWT 4 0
    SFXT 2 0
    SHAR 5 0
    SPOO 5 0
    SSHP 5 0
    STBD 5 0
    TERV 1 3e
    WHIP 5 0
    WHWT 5 0
    WSSP 5 0
    *See Table 5 for abbreviations of canid populations.
    a1 dog was misassigned to Presa Canario.
    b2 dogs were misassigned to Belgian Tervuren.
    c1 dog was misassigned to Cairn Terrier.
    d1 dog was misassigned to Kuvasz and 1 dog was misassigned to Standard Poodle.
    e3 dogs were misassigned to Belgian Sheepdog.
  • TABLE 14
    Canid Canid Missing Groups
    Populationa ID No. Data 1 2 3 4 5 6 7 8 9 10
    AHRT 1124 −2 0.001 0.001 0.001 0.001 0.002 0.001 0.003 0.001 0.002 0.001
    AHRT 1120 −1 0.001 0.002 0.002 0.001 0.001 0.001 0.005 0.001 0.001 0.002
    AHRT 1121 −4 0.002 0.002 0.003 0.001 0.004 0.001 0.006 0.001 0.001 0.002
    AHRT 1123 −2 0.004 0.009 0.038 0.002 0.004 0.005 0.004 0.005 0.003 0.018
    AHRT 1122 0 0.008 0.002 0.001 0.008 0.002 0.003 0.002 0.003 0.002 0.002
    AKIT 1132 −3 0.001 0.001 0.001 0.975 0.001 0.002 0.001 0.001 0.001 0.001
    AKIT 1131 0 0.002 0.003 0.001 0.962 0.002 0.003 0.002 0.006 0.002 0.001
    AKIT 1130 −4 0.003 0.001 0.003 0.961 0.001 0.002 0.001 0.001 0.003 0.001
    AKIT 1134 −4 0.002 0.001 0.001 0.953 0.002 0.003 0.001 0.014 0.002 0.002
    AKIT 1133 −5 0.002 0.001 0.001 0.949 0.001 0.003 0.001 0.001 0.002 0.002
    BEAG 995 −1 0.001 0.002 0.003 0.001 0.002 0.001 0.002 0.006 0.001 0.96
    BEAG 994 −2 0.001 0.001 0.002 0.001 0.001 0.001 0.014 0.003 0.001 0.939
    BEAG 1323 −1 0.005 0.003 0.007 0.003 0.004 0.002 0.004 0.002 0.004 0.909
    BEAG 1327 0 0.007 0.002 0.005 0.002 0.002 0.002 0.002 0.001 0.003 0.892
    BEAG 1324 0 0.015 0.014 0.002 0.002 0.065 0.016 0.057 0.004 0.015 0.42
    BMD 968 −17 0.002 0.002 0.003 0.001 0.001 0.001 0.002 0.001 0.001 0.001
    BMD 970 −31 0.002 0.002 0.001 0.003 0.004 0.002 0.003 0.002 0.002 0.002
    BMD 941 −11 0.005 0.002 0.002 0.001 0.006 0.002 0.006 0.004 0.002 0.006
    BMD 943 −10 0.006 0.007 0.003 0.002 0.003 0.002 0.002 0.003 0.001 0.01
    BMD 971 −51 0.017 0.004 0.004 0.002 0.002 0.002 0.002 0.002 0.004 0.002
    BOX 1304 −1 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
    BOX 1179 −3 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
    BOX 1178 −1 0.001 0.001 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.001
    BOX 1176 −1 0.002 0.001 0.002 0.001 0.004 0.001 0.002 0.001 0.002 0.002
    BOX 1177 0 0.002 0.007 0.008 0.001 0.002 0.003 0.01 0.002 0.004 0.004
    BULD 1195 −9 0.002 0.001 0.001 0.001 0.001 0.001 0.002 0.001 0.002 0.001
    BULD 1193 −1 0.004 0.003 0.002 0.001 0.001 0.002 0.001 0.001 0.004 0.002
    BULD 1197 −3 0.002 0.003 0.002 0.002 0.002 0.002 0.01 0.002 0.001 0.002
    BULD 1194 −2 0.004 0.007 0.004 0.002 0.001 0.003 0.006 0.002 0.004 0.003
    BULD 1198 0 0.003 0.003 0.001 0.001 0.001 0.001 0.004 0.001 0.004 0.002
    PRES 1082 −3 0.008 0.01 0.003 0.002 0.002 0.033 0.002 0.001 0.015 0.025
    BULM 1107 −1 0.005 0.004 0.001 0.003 0.003 0.002 0.002 0.006 0.002 0.002
    BULM 1109 0 0.002 0.004 0.003 0.004 0.006 0.002 0.003 0.002 0.01 0.002
    BULM 1108 0 0.006 0.011 0.006 0.006 0.002 0.006 0.004 0.003 0.013 0.002
    BULM 1105 0 0.028 0.006 0.016 0.001 0.004 0.002 0.001 0.001 0.008 0.004
    BULM 1106 −3 0.008 0.002 0.04 0.004 0.003 0.005 0.002 0.003 0.031 0.024
    MAST 991 −14 0.002 0.001 0.001 0.004 0.002 0.001 0.001 0.001 0.002 0.003
    MAST 1066 −2 0.003 0.002 0.002 0.002 0.001 0.002 0.004 0.003 0.003 0.003
    MAST 1016 −1 0.003 0.003 0.003 0.001 0.005 0.002 0.002 0.002 0.002 0.001
    MAST 1015 0 0.002 0.005 0.008 0.001 0.001 0.002 0.003 0.001 0.002 0.004
    MAST 1017 −22 0.002 0.002 0.004 0.001 0.002 0.002 0.001 0.001 0.059 0.001
    CHIH 1203 −3 0.002 0.002 0.002 0.002 0.005 0.002 0.003 0.002 0.003 0.002
    CHIH 1202 −10 0.006 0.007 0.004 0.001 0.005 0.002 0.005 0.003 0.006 0.012
    CHIH 1204 0 0.023 0.037 0.003 0.001 0.004 0.003 0.004 0.004 0.004 0.008
    CHIH 1205 −3 0.002 0.028 0.008 0.002 0.004 0.09 0.014 0.065 0.116 0.104
    CHIH 1206 −1 0.059 0.125 0.015 0.004 0.012 0.029 0.003 0.025 0.006 0.024
    DACH 1052 −2 0.002 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
    DACH 1055 −1 0.003 0.001 0.002 0.002 0.001 0.001 0.002 0.001 0.004 0.002
    DACH 1054 0 0.002 0.002 0.002 0.002 0.001 0.002 0.002 0.001 0.005 0.002
    DACH 1051 −5 0.001 0.002 0.003 0.001 0.006 0.002 0.003 0.004 0.003 0.002
    DACH 1053 −1 0.004 0.01 0.01 0.001 0.016 0.004 0.003 0.004 0.004 0.012
    GOLD 603 0 0.003 0.001 0.967 0.001 0.001 0.001 0.001 0.001 0.001 0.002
    GOLD 591 −4 0.009 0.004 0.925 0.002 0.007 0.003 0.004 0.002 0.005 0.005
    GOLD 593 0 0.022 0.005 0.885 0.001 0.005 0.003 0.018 0.001 0.006 0.004
    GOLD 604 0 0.004 0.003 0.875 0.001 0.009 0.002 0.005 0.001 0.002 0.002
    GOLD 592 −4 0.006 0.006 0.733 0.006 0.009 0.016 0.003 0.002 0.04 0.098
    IBIZ 1148 −20 0.001 0.004 0.004 0.001 0.002 0.003 0.002 0.002 0.025 0.002
    IBIZ 1172 0 0.021 0.002 0.002 0.002 0.003 0.002 0.002 0.002 0.004 0.002
    IBIZ 1162 0 0.003 0.005 0.013 0.002 0.003 0.003 0.002 0.003 0.002 0.002
    IBIZ 1280 −1 0.008 0.005 0.004 0.001 0.006 0.002 0.006 0.003 0.004 0.004
    IBIZ 1147 −8 0.002 0.001 0.001 0.001 0.003 0.001 0.003 0.003 0.003 0.086
    NEWF 275 −3 0.963 0.001 0.002 0.001 0.002 0.001 0.005 0.001 0.002 0.002
    NEWF 274 −1 0.953 0.002 0.006 0.001 0.001 0.001 0.002 0.001 0.003 0.003
    NEWF 277 0 0.855 0.003 0.002 0.001 0.001 0.002 0.008 0.003 0.002 0.003
    NEWF 271 −3 0.848 0.005 0.023 0.002 0.005 0.003 0.027 0.001 0.007 0.002
    NEWF 278 −1 0.744 0.007 0.009 0.003 0.002 0.016 0.005 0.004 0.113 0.008
    PEKE 1143 0 0.001 0.001 0.001 0.001 0.002 0.001 0.001 0.985 0.001 0.001
    PEKE 1145 −1 0.001 0.004 0.002 0.001 0.003 0.002 0.001 0.964 0.001 0.002
    PEKE 1211 0 0.001 0.001 0.001 0.004 0.001 0.002 0.003 0.955 0.001 0.002
    PEKE 1213 −4 0.001 0.003 0.001 0.001 0.026 0.002 0.003 0.946 0.001 0.001
    PEKE 1212 0 0.003 0.005 0.017 0.001 0.001 0.002 0.001 0.932 0.002 0.003
    POM 1238 0 0.001 0.964 0.003 0.001 0.004 0.001 0.002 0.003 0.001 0.002
    POM 1190 0 0.004 0.794 0.087 0.002 0.003 0.003 0.004 0.005 0.004 0.004
    POM 1191 −2 0.051 0.785 0.003 0.002 0.001 0.002 0.005 0.001 0.003 0.003
    POM 1210 −7 0.036 0.77 0.013 0.002 0.054 0.004 0.009 0.002 0.012 0.012
    POM 1239 −14 0.002 0.598 0.005 0.007 0.006 0.069 0.003 0.014 0.009 0.009
    PRES 1093 −14 0.02 0.004 0.002 0.004 0.002 0.005 0.002 0.001 0.865 0.002
    PRES 1115 −1 0.008 0.002 0.022 0.001 0.001 0.005 0.003 0.001 0.838 0.002
    PRES 1127 −7 0.004 0.008 0.007 0.004 0.002 0.025 0.008 0.002 0.68 0.005
    PRES 1096 0 0.007 0.003 0.002 0.001 0.002 0.004 0.003 0.002 0.653 0.004
    PUG 1184 −1 0.001 0.001 0.001 0.001 0.988 0.001 0.001 0.001 0.001 0.001
    PUG 1077 −4 0.001 0.002 0.002 0.001 0.973 0.001 0.001 0.003 0.001 0.001
    PUG 1104 −1 0.001 0.002 0.004 0.001 0.962 0.001 0.001 0.007 0.001 0.002
    PUG 1183 −1 0.003 0.001 0.003 0.004 0.96 0.001 0.002 0.002 0.001 0.002
    PUG 1192 −3 0.002 0.002 0.001 0.001 0.96 0.001 0.002 0.001 0.003 0.002
    ROTT 1034 0 0.002 0.002 0.003 0.001 0.001 0.001 0.952 0.002 0.002 0.003
    ROTT 1033 −1 0.004 0.002 0.002 0.001 0.001 0.002 0.951 0.001 0.003 0.002
    ROTT 1028 −3 0.002 0.002 0.003 0.001 0.002 0.001 0.95 0.001 0.002 0.016
    ROTT 1029 −1 0.015 0.002 0.006 0.002 0.001 0.001 0.917 0.001 0.001 0.005
    ROTT 1236 0 0.004 0.022 0.002 0.001 0.002 0.003 0.901 0.002 0.007 0.007
    ROTT 1014 −2 0.048 0.002 0.004 0.002 0.004 0.002 0.898 0.002 0.002 0.006
    WOLF 282135 −1 0.001 0.001 0.001 0.001 0.001 0.002 0.002 0.002 0.001 0.001
    WOLF 930121 −3 0.001 0.002 0.001 0.008 0.001 0.002 0.001 0.003 0.001 0.001
    WOLF 492 −1 0.001 0.002 0.001 0.002 0.002 0.559 0.001 0.002 0.005 0.001
    WOLF Iran −7 0.001 0.001 0.002 0.002 0.002 0.741 0.001 0.003 0.002 0.002
    Canid Canid Missing Groups
    Populationa ID No. Data 11 12 13 14 15 16 17 18 19 20
    AHRT 1124 −2 0.002 0.001 0.001 0.002 0.001 0.001 0.001 0.001 0.001 0.972
    AHRT 1120 −1 0.002 0.001 0.001 0.004 0.002 0.001 0.001 0.002 0.002 0.966
    AHRT 1121 −4 0.002 0.001 0.003 0.001 0.002 0.001 0.001 0.001 0.002 0.963
    AHRT 1123 −2 0.007 0.003 0.019 0.004 0.012 0.015 0.003 0.002 0.004 0.84
    AHRT 1122 0 0.048 0.002 0.009 0.016 0.003 0.002 0.002 0.002 0.059 0.825
    AKIT 1132 −3 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.001 0.002
    AKIT 1131 0 0.002 0.002 0.001 0.001 0.001 0.001 0.002 0.001 0.002 0.003
    AKIT 1130 −4 0.003 0.002 0.002 0.002 0.003 0.001 0.005 0.002 0.002 0.001
    AKIT 1134 −4 0.002 0.001 0.003 0.001 0.001 0.001 0.003 0.001 0.001 0.004
    AKIT 1133 −5 0.001 0.025 0.001 0.001 0.002 0.001 0.001 0.001 0.002 0.001
    BEAG 995 −1 0.002 0.001 0.002 0.002 0.001 0.001 0.001 0.001 0.002 0.005
    BEAG 994 −2 0.002 0.001 0.001 0.022 0.001 0.001 0.001 0.002 0.001 0.002
    BEAG 1323 −1 0.007 0.001 0.005 0.003 0.006 0.008 0.002 0.006 0.007 0.013
    BEAG 1327 0 0.004 0.002 0.002 0.005 0.002 0.048 0.002 0.008 0.006 0.002
    BEAG 1324 0 0.01 0.005 0.003 0.002 0.002 0.001 0.086 0.005 0.002 0.274
    BMD 968 −17 0.001 0.001 0.001 0.002 0.002 0.001 0.001 0.002 0.972 0.001
    BMD 970 −31 0.003 0.005 0.002 0.003 0.002 0.001 0.002 0.002 0.956 0.002
    BMD 941 −11 0.003 0.002 0.002 0.001 0.002 0.009 0.002 0.004 0.937 0.001
    BMD 943 −10 0.004 0.001 0.005 0.007 0.002 0.002 0.001 0.002 0.934 0.003
    BMD 971 −51 0.003 0.003 0.003 0.003 0.002 0.003 0.002 0.003 0.933 0.006
    BOX 1304 −1 0.001 0.001 0.001 0.001 0.001 0.983 0.001 0.001 0.001 0.001
    BOX 1179 −3 0.001 0.001 0.001 0.001 0.001 0.982 0.001 0.001 0.001 0.001
    BOX 1178 −1 0.001 0.001 0.001 0.001 0.002 0.978 0.001 0.002 0.001 0.001
    BOX 1176 −1 0.001 0.001 0.002 0.001 0.001 0.972 0.001 0.001 0.001 0.002
    BOX 1177 0 0.012 0.001 0.003 0.037 0.004 0.889 0.001 0.003 0.003 0.004
    BULD 1195 −9 0.001 0.001 0.002 0.001 0.004 0.003 0.001 0.974 0.001 0.001
    BULD 1193 −1 0.002 0.002 0.002 0.002 0.006 0.002 0.001 0.96 0.001 0.001
    BULD 1197 −3 0.002 0.004 0.005 0.001 0.002 0.003 0.004 0.948 0.002 0.002
    BULD 1194 −2 0.002 0.001 0.002 0.01 0.006 0.004 0.002 0.935 0.001 0.002
    BULD 1198 0 0.005 0.001 0.003 0.002 0.005 0.004 0.001 0.912 0.043 0.002
    PRES 1082 −3 0.151 0.206 0.002 0.023 0.293 0.008 0.003 0.199 0.004 0.009
    BULM 1107 −1 0.005 0.001 0.005 0.001 0.95 0.002 0.001 0.002 0.002 0.001
    BULM 1109 0 0.002 0.001 0.004 0.001 0.932 0.013 0.002 0.005 0.001 0.002
    BULM 1108 0 0.003 0.001 0.005 0.002 0.894 0.002 0.01 0.009 0.007 0.009
    BULM 1105 0 0.011 0.002 0.002 0.008 0.87 0.012 0.002 0.012 0.004 0.004
    BULM 1106 −3 0.002 0.003 0.004 0.002 0.823 0.004 0.017 0.017 0.003 0.004
    MAST 991 −14 0.002 0.001 0.002 0.006 0.963 0.001 0.001 0.001 0.002 0.002
    MAST 1066 −2 0.003 0.001 0.002 0.003 0.948 0.003 0.001 0.007 0.003 0.005
    MAST 1016 −1 0.004 0.002 0.003 0.003 0.93 0.001 0.002 0.025 0.006 0.001
    MAST 1015 0 0.002 0.001 0.002 0.019 0.929 0.002 0.001 0.003 0.006 0.004
    MAST 1017 −22 0.002 0.001 0.025 0.001 0.885 0.001 0.001 0.002 0.003 0.003
    CHIH 1203 −3 0.932 0.003 0.009 0.003 0.002 0.003 0.003 0.003 0.014 0.003
    CHIH 1202 −10 0.916 0.001 0.003 0.005 0.005 0.003 0.002 0.004 0.001 0.007
    CHIH 1204 0 0.868 0.002 0.004 0.002 0.003 0.002 0.002 0.003 0.018 0.005
    CHIH 1205 −3 0.455 0.008 0.032 0.004 0.012 0.003 0.023 0.022 0.001 0.006
    CHIH 1206 −1 0.436 0.003 0.016 0.008 0.033 0.152 0.006 0.006 0.006 0.031
    DACH 1052 −2 0.001 0.001 0.001 0.976 0.003 0.001 0.001 0.002 0.001 0.001
    DACH 1055 −1 0.003 0.001 0.002 0.958 0.002 0.005 0.002 0.002 0.004 0.002
    DACH 1054 0 0.002 0.002 0.002 0.951 0.002 0.014 0.001 0.003 0.002 0.002
    DACH 1051 −5 0.003 0.001 0.004 0.949 0.004 0.002 0.002 0.002 0.002 0.005
    DACH 1053 −1 0.011 0.002 0.005 0.892 0.002 0.004 0.002 0.01 0.002 0.003
    GOLD 603 0 0.001 0.001 0.002 0.001 0.002 0.002 0.001 0.002 0.006 0.001
    GOLD 591 −4 0.002 0.001 0.003 0.004 0.011 0.004 0.004 0.004 0.001 0.003
    GOLD 593 0 0.002 0.001 0.003 0.027 0.002 0.004 0.001 0.003 0.003 0.005
    GOLD 604 0 0.002 0.001 0.002 0.003 0.003 0.072 0.001 0.004 0.002 0.004
    GOLD 592 −4 0.002 0.003 0.003 0.021 0.012 0.004 0.006 0.002 0.003 0.022
    IBIZ 1148 −20 0.002 0.002 0.929 0.001 0.004 0.001 0.009 0.002 0.001 0.003
    IBIZ 1172 0 0.004 0.001 0.917 0.016 0.003 0.002 0.001 0.003 0.009 0.004
    IBIZ 1162 0 0.03 0.001 0.913 0.001 0.004 0.003 0.001 0.003 0.002 0.003
    IBIZ 1280 −1 0.002 0.001 0.888 0.002 0.006 0.036 0.004 0.005 0.007 0.003
    IBIZ 1147 −8 0.007 0.001 0.871 0.001 0.003 0.002 0.001 0.005 0.002 0.002
    NEWF 275 −3 0.002 0.001 0.002 0.002 0.002 0.004 0.001 0.002 0.004 0.001
    NEWF 274 −1 0.002 0.001 0.007 0.001 0.003 0.003 0.001 0.003 0.001 0.003
    NEWF 277 0 0.002 0.002 0.001 0.002 0.076 0.028 0.001 0.002 0.002 0.003
    NEWF 271 −3 0.034 0.002 0.004 0.003 0.002 0.003 0.001 0.016 0.008 0.003
    NEWF 278 −1 0.011 0.002 0.011 0.018 0.029 0.003 0.004 0.004 0.006 0.001
    PEKE 1143 0 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
    PEKE 1145 −1 0.003 0.002 0.002 0.002 0.001 0.001 0.002 0.001 0.001 0.003
    PEKE 1211 0 0.007 0.004 0.002 0.002 0.002 0.004 0.001 0.002 0.002 0.003
    PEKE 1213 −4 0.001 0.001 0.002 0.001 0.001 0.001 0.001 0.001 0.002 0.003
    PEKE 1212 0 0.003 0.001 0.003 0.002 0.005 0.011 0.002 0.002 0.002 0.001
    POM 1238 0 0.002 0.001 0.001 0.002 0.002 0.001 0.002 0.001 0.002 0.001
    POM 1190 0 0.018 0.003 0.003 0.001 0.003 0.004 0.003 0.005 0.034 0.015
    POM 1191 −2 0.006 0.001 0.002 0.004 0.097 0.006 0.002 0.022 0.002 0.001
    POM 1210 −7 0.003 0.01 0.006 0.007 0.002 0.012 0.004 0.035 0.005 0.002
    POM 1239 −14 0.004 0.002 0.232 0.007 0.004 0.003 0.004 0.007 0.005 0.01
    PRES 1093 −14 0.004 0.008 0.01 0.002 0.028 0.022 0.003 0.01 0.002 0.004
    PRES 1115 −1 0.003 0.002 0.002 0.003 0.01 0.066 0.009 0.01 0.001 0.01
    PRES 1127 −7 0.008 0.002 0.067 0.016 0.008 0.012 0.006 0.123 0.003 0.01
    PRES 1096 0 0.003 0.002 0.004 0.105 0.019 0.019 0.006 0.145 0.008 0.007
    PUG 1184 −1 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
    PUG 1077 −4 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.004
    PUG 1104 −1 0.001 0.001 0.002 0.001 0.003 0.002 0.001 0.001 0.002 0.002
    PUG 1183 −1 0.001 0.001 0.008 0.001 0.002 0.001 0.001 0.001 0.002 0.002
    PUG 1192 −3 0.002 0.001 0.003 0.001 0.001 0.006 0.002 0.003 0.003 0.002
    ROTT 1034 0 0.003 0.001 0.003 0.004 0.001 0.006 0.001 0.003 0.005 0.002
    ROTT 1033 −1 0.002 0.001 0.002 0.003 0.003 0.003 0.002 0.007 0.001 0.008
    ROTT 1028 −3 0.001 0.001 0.001 0.007 0.001 0.005 0.001 0.001 0.001 0.001
    ROTT 1029 −1 0.002 0.001 0.001 0.004 0.002 0.001 0.001 0.001 0.034 0.002
    ROTT 1236 0 0.003 0.003 0.004 0.01 0.002 0.006 0.003 0.016 0.001 0.001
    ROTT 1014 −2 0.004 0.002 0.004 0.001 0.004 0.001 0.002 0.003 0.006 0.003
    WOLF 282135 −1 0.001 0.979 0.001 0.001 0.001 0.001 0.002 0.001 0.001 0.001
    WOLF 930121 −3 0.001 0.032 0.001 0.001 0.001 0.001 0.938 0.001 0.001 0.001
    WOLF 492 −1 0.001 0.044 0.001 0.001 0.001 0.001 0.371 0.001 0.001 0.001
    WOLF Iran −7 0.002 0.022 0.002 0.004 0.003 0.001 0.203 0.001 0.001 0.002
    aSee Table 5 for abbreviations of canid populations.
    KBB: pbe
  • TABLE 15A
    Canid ID Missing Groups
    Canid Populationa No. Data 1 2 3 4 5 6
    WOLF 4928 −1 0 0.999 0 0.001 0 0
    WOLF 282135 −1 0 0.998 0 0.002 0 0
    WOLF 930121 −3 0 0.997 0 0.003 0 0
    WOLF Iran1 −7 0 0.999 0 0.001 0 0
    AKIT 1130 −4 0 0.005 0 0.995 0 0
    AKIT 1131 0 0 0.013 0 0.987 0 0
    AKIT 1132 −3 0 0.004 0 0.996 0 0
    AKIT 1133 −5 0 0.005 0 0.995 0 0
    AKIT 1134 −4 0 0.007 0 0.993 0 0
    PEKE 1143 0 0 0 0.999 0.001 0 0
    PEKE 1145 −1 0 0 0.992048 0.007952 0 0
    PEKE 1211 0 0 0 0.947818 0.052182 0 0
    PEKE 1212 0 0 0 0.961501 0.038499 0 0
    PEKE 1213 −4 0 0 0.997994 0.002006 0 0
    PUG 1077 −4 0 0 0 0.002 0.998 0
    PUG 1104 −1 0 0 0 0.006 0.994 0
    PUG 1183 −1 0 0 0 0.002 0.998 0
    PUG 1184 −1 0 0 0 0.001 0.999 0
    PUG 1192 −3 0 0 0 0.001 0.999 0
    GOLD 591 −4 0.021339 0 0 0.030068 0 0.948594
    GOLD 592 −4 0.004314 0 0 0.137187 0 0.858499
    GOLD 593 0 0.005935 0 0 0.01088 0 0.983185
    GOLD 603 0 0.008929 0 0 0.007937 0 0.983135
    GOLD 604 0 0.037624 0 0 0.009901 0 0.952475
    AHRT 1120 −1 0.006289 0 0 0.213836 0 0.779874
    AHRT 1121 −4 0.003885 0 0 0.222999 0 0.773116
    AHRT 1122 0 0.003079 0 0 0.230177 0 0.766744
    AHRT 1123 −2 0.016419 0 0 0.218139 0 0.765442
    AHRT 1124 −2 0.004594 0 0 0.234303 0 0.761103
    CHIH 1202 −10 0.008326 0 0 0.074931 0 0.916744
    CHIH 1203 −3 0.005578 0 0 0.203187 0 0.791235
    CHIH 1204 0 0.004184 0 0 0.16318 0 0.832636
    CHIH 1205 −3 0.021598 0 0 0.280058 0 0.698344
    CHIH 1206 −1 0.097854 0 0 0.141631 0 0.760515
    POM 1190 0 0.038938 0 0 0.115044 0 0.846018
    POM 1191 −2 0.480901 0 0 0.020568 0 0.498531
    POM 1210 −7 0.020236 0 0 0.15683 0 0.822934
    POM 1238 0 0.006961 0 0 0.226605 0 0.766435
    POM 1239 −14 0.006266 0 0 0.373434 0 0.620301
    DACH 1051 −5 0.008145 0 0 0.095023 0 0.896833
    DACH 1052 −2 0.013889 0 0 0.007937 0 0.978175
    DACH 1053 −1 0.009747 0 0 0.025341 0 0.964912
    DACH 1054 0 0.006917 0 0 0.011858 0 0.981225
    DACH 1055 −1 0.010848 0 0 0.013807 0 0.975345
    BEAG 994 −2 0.004869 0 0 0.02629 0 0.968841
    BEAG 995 −1 0.002681 0 0 0.106345 0 0.890974
    BEAG 1323 −1 0.009747 0 0 0.025341 0 0.964912
    BEAG 1324 0 0.002839 0 0 0.290277 0 0.706884
    BEAG 1327 0 0.01256 0 0 0.033816 0 0.953623
    IBIZ 1147 −8 0.011867 0 0 0.208861 0 0.779272
    IBIZ 1148 −20 0.01225 0 0 0.355255 0 0.632495
    IBIZ 1162 0 0.019639 0 0 0.214454 0 0.765907
    IBIZ 1172 0 0.00639 0 0 0.201278 0 0.792332
    IBIZ 1280 −1 0.023682 0 0 0.236058 0 0.74026
    BMD 941 −11 0.009709 0 0 0.029126 0 0.961165
    BMD 943 −10 0.006686 0 0 0.04489 0 0.948424
    BMD 968 −17 0.005831 0 0 0.028183 0 0.965986
    BMD 970 −31 0.011354 0 0 0.18897 0 0.799676
    BMD 971 −51 0.020568 0 0 0.020568 0 0.958864
    NEWF 271 −3 0.010913 0 0 0.007937 0 0.981151
    NEWF 274 −1 0.019881 0 0 0.005964 0 0.974155
    NEWF 275 −3 0.010934 0 0 0.005964 0 0.983101
    NEWF 277 0 0.05859 0 0 0.006951 0 0.934459
    NEWF 278 −1 0.034213 0 0 0.022483 0 0.943304
    ROTT 1014 −2 0.0059 0 0 0.016716 0 0.977384
    ROTT 1028 −3 0.005946 0 0 0.00892 0 0.985134
    ROTT 1029 −1 0.004955 0 0 0.00892 0 0.986125
    ROTT 1033 −1 0.009728 0 0 0.027237 0 0.963035
    ROTT 1034 0 0.021782 0 0 0.009901 0 0.968317
    PRES 1082 −3 0.419635 0 0 0.13119 0 0.449175
    PRES 1093 −14 0.430979 0 0 0.197432 0 0.371589
    PRES 1096 0 0.705253 0 0 0.027237 0 0.26751
    PRES 1115 −1 0.572519 0 0 0.045802 0 0.381679
    PRES 1127 −7 0.418004 0 0 0.108734 0 0.473262
    BOX 1176 −1 0.98806 0 0 0.004975 0 0.006965
    BOX 1177 0 0.964108 0 0 0.002991 0 0.032901
    BOX 1178 −1 0.993028 0 0 0.003984 0 0.002988
    BOX 1179 −3 0.993028 0 0 0.003984 0 0.002988
    BOX 1304 −1 0.989066 0 0 0.005964 0 0.00497
    BULD 1193 −1 0.971202 0 0 0.006951 0 0.021847
    BULD 1194 −2 0.989044 0 0 0.003984 0 0.006972
    BULD 1195 −9 0.99005 0 0 0.004975 0 0.004975
    BULD 1197 −3 0.879648 0 0 0.021526 0 0.098826
    BULD 1198 0 0.983051 0 0 0.002991 0 0.013958
    MAST 991 −14 0.97931 0 0 0.014778 0 0.005911
    MAST 1015 0 0.983085 0 0 0.004975 0 0.01194
    MAST 1016 −1 0.981188 0 0 0.009901 0 0.008911
    MAST 1017 −22 0.94294 0 0 0.032882 0 0.024178
    MAST 1066 −2 0.983168 0 0 0.009901 0 0.006931
    BULM 1105 0 0.985075 0 0 0.004975 0 0.00995
    BULM 1106 −3 0.971429 0 0 0.014778 0 0.013793
    BULM 1107 −1 0.973529 0 0 0.019608 0 0.006863
    BULM 1108 0 0.970559 0 0 0.018646 0 0.010795
    BULM 1109 0 0.974535 0 0 0.020568 0 0.004897
  • TABLE 15B
    Canid Missing Groups
    Canid Populationa ID No. Data 1 2 3 4 5 6
    WOLF 4928 −1 0 0.999 0 0.001 0 0
    WOLF 282135 −1 0 0.998 0 0.002 0 0
    WOLF 930121 −3 0 0.997 0 0.003 0 0
    WOLF Iran1 −7 0 0.999 0 0.001 0 0
    AKIT 1130 −4 0 0.005 0 0.995 0 0
    AKIT 1131 0 0 0.013 0 0.987 0 0
    AKIT 1132 −3 0 0.004 0 0.996 0 0
    AKIT 1133 −5 0 0.005 0 0.995 0 0
    AKIT 1134 −4 0 0.007 0 0.993 0 0
    PEKE 1143 0 0 0 0.999 0.001 0 0
    PEKE 1145 −1 0 0 0.992048 0.007952 0 0
    PEKE 1211 0 0 0 0.947818 0.052182 0 0
    PEKE 1212 0 0 0 0.961501 0.038499 0 0
    PEKE 1213 −4 0 0 0.997994 0.002006 0 0
    PUG 1077 −4 0 0 0 0.002 0.998 0
    PUG 1104 −1 0 0 0 0.006 0.994 0
    PUG 1183 −1 0 0 0 0.002 0.998 0
    PUG 1184 −1 0 0 0 0.001 0.999 0
    PUG 1192 −3 0 0 0 0.001 0.999 0
    GOLD 591 −4 0.021339 0 0 0.030068 0 0.948594
    GOLD 592 −4 0.004314 0 0 0.137187 0 0.858499
    GOLD 593 0 0.005935 0 0 0.01088 0 0.983185
    GOLD 603 0 0.008929 0 0 0.007937 0 0.983135
    GOLD 604 0 0.037624 0 0 0.009901 0 0.952475
    AHRT 1120 −1 0.006289 0 0 0.213836 0 0.779874
    AHRT 1121 −4 0.003885 0 0 0.222999 0 0.773116
    AHRT 1122 0 0.003079 0 0 0.230177 0 0.766744
    AHRT 1123 −2 0.016419 0 0 0.218139 0 0.765442
    AHRT 1124 −2 0.004594 0 0 0.234303 0 0.761103
    CHIH 1202 −10 0.008326 0 0 0.074931 0 0.916744
    CHIH 1203 −3 0.005578 0 0 0.203187 0 0.791235
    CHIH 1204 0 0.004184 0 0 0.16318 0 0.832636
    CHIH 1205 −3 0.021598 0 0 0.280058 0 0.698344
    CHIH 1206 −1 0.097854 0 0 0.141631 0 0.760515
    POM 1190 0 0.038938 0 0 0.115044 0 0.846018
    POM 1191 −2 0.480901 0 0 0.020568 0 0.498531
    POM 1210 −7 0.020236 0 0 0.15683 0 0.822934
    POM 1238 0 0.006961 0 0 0.226605 0 0.766435
    POM 1239 −14 0.006266 0 0 0.373434 0 0.620301
    DACH 1051 −5 0.008145 0 0 0.095023 0 0.896833
    DACH 1052 −2 0.013889 0 0 0.007937 0 0.978175
    DACH 1053 −1 0.009747 0 0 0.025341 0 0.964912
    DACH 1054 0 0.006917 0 0 0.011858 0 0.981225
    DACH 1055 −1 0.010848 0 0 0.013807 0 0.975345
    BEAG 994 −2 0.004869 0 0 0.02629 0 0.968841
    BEAG 995 −1 0.002681 0 0 0.106345 0 0.890974
    BEAG 1323 −1 0.009747 0 0 0.025341 0 0.964912
    BEAG 1324 0 0.002839 0 0 0.290277 0 0.706884
    BEAG 1327 0 0.01256 0 0 0.033816 0 0.953623
    IBIZ 1147 −8 0.011867 0 0 0.208861 0 0.779272
    IBIZ 1148 −20 0.01225 0 0 0.355255 0 0.632495
    IBIZ 1162 0 0.019639 0 0 0.214454 0 0.765907
    IBIZ 1172 0 0.00639 0 0 0.201278 0 0.792332
    IBIZ 1280 −1 0.023682 0 0 0.236058 0 0.74026
    BMD 941 −11 0.009709 0 0 0.029126 0 0.961165
    BMD 943 −10 0.006686 0 0 0.04489 0 0.948424
    BMD 968 −17 0.005831 0 0 0.028183 0 0.965986
    BMD 970 −31 0.011354 0 0 0.18897 0 0.799676
    BMD 971 −51 0.020568 0 0 0.020568 0 0.958864
    NEWF 271 −3 0.010913 0 0 0.007937 0 0.981151
    NEWF 274 −1 0.019881 0 0 0.005964 0 0.974155
    NEWF 275 −3 0.010934 0 0 0.005964 0 0.983101
    NEWF 277 0 0.05859 0 0 0.006951 0 0.934459
    NEWF 278 −1 0.034213 0 0 0.022483 0 0.943304
    ROTT 1014 −2 0.0059 0 0 0.016716 0 0.977384
    ROTT 1028 −3 0.005946 0 0 0.00892 0 0.985134
    ROTT 1029 −1 0.004955 0 0 0.00892 0 0.986125
    ROTT 1033 −1 0.009728 0 0 0.027237 0 0.963035
    ROTT 1034 0 0.021782 0 0 0.009901 0 0.968317
    PRES 1082 −3 0.419635 0 0 0.13119 0 0.449175
    PRES 1093 −14 0.430979 0 0 0.197432 0 0.371589
    PRES 1096 0 0.705253 0 0 0.027237 0 0.26751
    PRES 1115 −1 0.572519 0 0 0.045802 0 0.381679
    PRES 1127 −7 0.418004 0 0 0.108734 0 0.473262
    BOX 1176 −1 0.002964 0 0 0.004941 0 0.006917
    BOX 1177 0 0.046332 0 0 0.002896 0 0.031853
    BOX 1178 −1 0.002979 0 0 0.003972 0 0.002979
    BOX 1179 −3 0.000993 0 0 0.003972 0 0.002979
    BOX 1304 −1 0.001978 0 0 0.005935 0 0.004946
    BULD 1193 −1 0.968902 0 0 0.006803 0 0.02138
    BULD 1194 −2 0.986152 0 0 0.003956 0 0.006924
    BULD 1195 −9 0.988119 0 0 0.00495 0 0.00495
    BULD 1197 −3 0.887801 0 0 0.01959 0 0.089938
    BULD 1198 0 0.979351 0 0 0.00295 0 0.013766
    MAST 991 −14 0.978452 0 0 0.014691 0 0.005877
    MAST 1015 0 0.981318 0 0 0.004916 0 0.011799
    MAST 1016 −1 0.980373 0 0 0.009814 0 0.008832
    MAST 1017 −22 0.943343 0 0 0.032106 0 0.023607
    MAST 1066 −2 0.981318 0 0 0.009833 0 0.006883
    BULM 1105 0 0.981281 0 0 0.004926 0 0.009852
    BULM 1106 −3 0.969874 0 0 0.014577 0 0.013605
    BULM 1107 −1 0.971762 0 0 0.019474 0 0.006816
    BULM 1108 0 0.969903 0 0 0.018447 0 0.01068
    BULM 1109 0 0.971735 0 0 0.020468 0 0.004873
  • TABLE 15C
    Canid Missing Groups
    Canid Populationa ID No. Data 1 2 3 4 5 6
    WOLF 4928 −1 0 0.999 0 0.001 0 0
    WOLF 282135 −1 0 0.998 0 0.002 0 0
    WOLF 930121 −3 0 0.997 0 0.003 0 0
    WOLF Iran1 −7 0 0.999 0 0.001 0 0
    AKIT 1130 −4 0 0.005 0 0.995 0 0
    AKIT 1131 0 0 0.013 0 0.987 0 0
    AKIT 1132 −3 0 0.004 0 0.996 0 0
    AKIT 1133 −5 0 0.005 0 0.995 0 0
    AKIT 1134 −4 0 0.007 0 0.993 0 0
    PEKE 1143 0 0 0 0.999 0.001 0 0
    PEKE 1145 −1 0 0 0.992048 0.007952 0 0
    PEKE 1211 0 0 0 0.947818 0.052182 0 0
    PEKE 1212 0 0 0 0.961501 0.038499 0 0
    PEKE 1213 −4 0 0 0.997994 0.002006 0 0
    PUG 1077 −4 0 0 0 0.002 0.998 0
    PUG 1104 −1 0 0 0 0.006 0.994 0
    PUG 1183 −1 0 0 0 0.002 0.998 0
    PUG 1184 −1 0 0 0 0.001 0.999 0
    PUG 1192 −3 0 0 0 0.001 0.999 0
    GOLD 591 −4 0.021339 0 0 0.030068 0 0.948594
    GOLD 592 −4 0.004314 0 0 0.137187 0 0.858499
    GOLD 593 0 0.005935 0 0 0.01088 0 0.983185
    GOLD 603 0 0.008929 0 0 0.007937 0 0.983135
    GOLD 604 0 0.037624 0 0 0.009901 0 0.952475
    AHRT 1120 −1 0.006289 0 0 0.213836 0 0.779874
    AHRT 1121 −4 0.003885 0 0 0.222999 0 0.773116
    AHRT 1122 0 0.003079 0 0 0.230177 0 0.766744
    AHRT 1123 −2 0.016419 0 0 0.218139 0 0.765442
    AHRT 1124 −2 0.004594 0 0 0.234303 0 0.761103
    CHIH 1202 −10 0.008326 0 0 0.074931 0 0.916744
    CHIH 1203 −3 0.005578 0 0 0.203187 0 0.791235
    CHIH 1204 0 0.004184 0 0 0.16318 0 0.832636
    CHIH 1205 −3 0.021598 0 0 0.280058 0 0.698344
    CHIH 1206 −1 0.097854 0 0 0.141631 0 0.760515
    POM 1190 0 0.038938 0 0 0.115044 0 0.846018
    POM 1191 −2 0.480901 0 0 0.020568 0 0.498531
    POM 1210 −7 0.020236 0 0 0.15683 0 0.822934
    POM 1238 0 0.006961 0 0 0.226605 0 0.766435
    POM 1239 −14 0.006266 0 0 0.373434 0 0.620301
    DACH 1051 −5 0.008145 0 0 0.095023 0 0.896833
    DACH 1052 −2 0.013889 0 0 0.007937 0 0.978175
    DACH 1053 −1 0.009747 0 0 0.025341 0 0.964912
    DACH 1054 0 0.006917 0 0 0.011858 0 0.981225
    DACH 1055 −1 0.010848 0 0 0.013807 0 0.975345
    BEAG 994 −2 0.004869 0 0 0.02629 0 0.968841
    BEAG 995 −1 0.002681 0 0 0.106345 0 0.890974
    BEAG 1323 −1 0.009747 0 0 0.025341 0 0.964912
    BEAG 1324 0 0.002839 0 0 0.290277 0 0.706884
    BEAG 1327 0 0.01256 0 0 0.033816 0 0.953623
    IBIZ 1147 −8 0.011867 0 0 0.208861 0 0.779272
    IBIZ 1148 −20 0.01225 0 0 0.355255 0 0.632495
    IBIZ 1162 0 0.019639 0 0 0.214454 0 0.765907
    IBIZ 1172 0 0.00639 0 0 0.201278 0 0.792332
    IBIZ 1280 −1 0.023682 0 0 0.236058 0 0.74026
    BMD 941 −11 0.009709 0 0 0.029126 0 0.961165
    BMD 943 −10 0.006686 0 0 0.04489 0 0.948424
    BMD 968 −17 0.005831 0 0 0.028183 0 0.965986
    BMD 970 −31 0.011354 0 0 0.18897 0 0.799676
    BMD 971 −51 0.020568 0 0 0.020568 0 0.958864
    NEWF 271 −3 0.010913 0 0 0.007937 0 0.981151
    NEWF 274 −1 0.019881 0 0 0.005964 0 0.974155
    NEWF 275 −3 0.010934 0 0 0.005964 0 0.983101
    NEWF 277 0 0.05859 0 0 0.006951 0 0.934459
    NEWF 278 −1 0.034213 0 0 0.022483 0 0.943304
    ROTT 1014 −2 0.0059 0 0 0.016716 0 0.977384
    ROTT 1028 −3 0.005946 0 0 0.00892 0 0.985134
    ROTT 1029 −1 0.004955 0 0 0.00892 0 0.986125
    ROTT 1033 −1 0.009728 0 0 0.027237 0 0.963035
    ROTT 1034 0 0.021782 0 0 0.009901 0 0.968317
    PRES 1082 −3 0.419635 0 0 0.13119 0 0.449175
    PRES 1093 −14 0.430979 0 0 0.197432 0 0.371589
    PRES 1096 0 0.705253 0 0 0.027237 0 0.26751
    PRES 1115 −1 0.572519 0 0 0.045802 0 0.381679
    PRES 1127 −7 0.418004 0 0 0.108734 0 0.473262
    BOX 1176 −1 0.002964 0 0 0.004941 0 0.006917
    BOX 1177 0 0.046332 0 0 0.002896 0 0.031853
    BOX 1178 −1 0.002979 0 0 0.003972 0 0.002979
    BOX 1179 −3 0.000993 0 0 0.003972 0 0.002979
    BOX 1304 −1 0.001978 0 0 0.005935 0 0.004946
    BULD 1193 −1 0.001938 0 0 0.006783 0 0.021318
    BULD 1194 −2 0.004931 0 0 0.003945 0 0.006903
    BULD 1195 −9 0.000988 0 0 0.004941 0 0.004941
    BULD 1197 −3 0.003552 0 0 0.019538 0 0.089698
    BULD 1198 0 0.003918 0 0 0.002938 0 0.013712
    MAST 991 −14 0.976517 0 0 0.014677 0 0.005871
    MAST 1015 0 0.979392 0 0 0.004907 0 0.011776
    MAST 1016 −1 0.972549 0 0 0.009804 0 0.008824
    MAST 1017 −22 0.941509 0 0 0.032075 0 0.023585
    MAST 1066 −2 0.975466 0 0 0.009814 0 0.006869
    BULM 1105 0 0.976447 0 0 0.004907 0 0.009814
    BULM 1106 −3 0.964113 0 0 0.014549 0 0.013579
    BULM 1107 −1 0.969874 0 0 0.019436 0 0.006803
    BULM 1108 0 0.967022 0 0 0.018429 0 0.010669
    BULM 1109 0 0.968902 0 0 0.020408 0 0.004859
  • TABLE 15D
    Canid Canid Missing Groups
    Populationa ID No. Data 1 2 3 4 5 6 7 8 9
    WOLF 4928 −1 0 0.999 0 0.001 0 0 0 0 0
    WOLF 282135 −1 0 0.998 0 0.002 0 0 0 0 0
    WOLF 930121 −3 0 0.997 0 0.003 0 0 0 0 0
    WOLF Iran1 −7 0 0.999 0 0.001 0 0 0 0 0
    AKIT 1130 −4 0 0.005 0 0.995 0 0 0 0 0
    AKIT 1131 0 0 0.013 0 0.987 0 0 0 0 0
    AKIT 1132 −3 0 0.004 0 0.996 0 0 0 0 0
    AKIT 1133 −5 0 0.005 0 0.995 0 0 0 0 0
    AKIT 1134 −4 0 0.007 0 0.993 0 0 0 0 0
    PEKE 1143 0 0 0 0.999 0.001 0 0 0 0 0
    PEKE 1145 −1 0 0 0.992048 0.007952 0 0 0 0 0
    PEKE 1211 0 0 0 0.947818 0.052182 0 0 0 0 0
    PEKE 1212 0 0 0 0.961501 0.038499 0 0 0 0 0
    PEKE 1213 −4 0 0 0.997994 0.002006 0 0 0 0 0
    PUG 1077 −4 0 0 0 0.002 0.998 0 0 0 0
    PUG 1104 −1 0 0 0 0.006 0.994 0 0 0 0
    PUG 1183 −1 0 0 0 0.002 0.998 0 0 0 0
    PUG 1184 −1 0 0 0 0.001 0.999 0 0 0 0
    PUG 1192 −3 0 0 0 0.001 0.999 0 0 0 0
    GOLD 591 −4 0.021339 0 0 0.030068 0 0.948594 0 0 0
    GOLD 592 −4 0.004314 0 0 0.137187 0 0.858499 0 0 0
    GOLD 593 0 0.005935 0 0 0.01088 0 0.983185 0 0 0
    GOLD 603 0 0.008929 0 0 0.007937 0 0.983135 0 0 0
    GOLD 604 0 0.037624 0 0 0.009901 0 0.952475 0 0 0
    AHRT 1120 −1 0.006289 0 0 0.213836 0 0.779874 0 0 0
    AHRT 1121 −4 0.003885 0 0 0.222999 0 0.773116 0 0 0
    AHRT 1122 0 0.003079 0 0 0.230177 0 0.766744 0 0 0
    AHRT 1123 −2 0.016419 0 0 0.218139 0 0.765442 0 0 0
    AHRT 1124 −2 0.004594 0 0 0.234303 0 0.761103 0 0 0
    CHIH 1202 −10 0.008326 0 0 0.074931 0 0.916744 0 0 0
    CHIH 1203 −3 0.005578 0 0 0.203187 0 0.791235 0 0 0
    CHIH 1204 0 0.004184 0 0 0.16318 0 0.832636 0 0 0
    CHIH 1205 −3 0.021598 0 0 0.280058 0 0.698344 0 0 0
    CHIH 1206 −1 0.097854 0 0 0.141631 0 0.760515 0 0 0
    POM 1190 0 0.038938 0 0 0.115044 0 0.846018 0 0 0
    POM 1191 −2 0.480901 0 0 0.020568 0 0.498531 0 0 0
    POM 1210 −7 0.020236 0 0 0.15683 0 0.822934 0 0 0
    POM 1238 0 0.006961 0 0 0.226605 0 0.766435 0 0 0
    POM 1239 −14 0.006266 0 0 0.373434 0 0.620301 0 0 0
    DACH 1051 −5 0.008145 0 0 0.095023 0 0.896833 0 0 0
    DACH 1052 −2 0.013889 0 0 0.007937 0 0.978175 0 0 0
    DACH 1053 −1 0.009747 0 0 0.025341 0 0.964912 0 0 0
    DACH 1054 0 0.006917 0 0 0.011858 0 0.981225 0 0 0
    DACH 1055 −1 0.010848 0 0 0.013807 0 0.975345 0 0 0
    BEAG 994 −2 0.004869 0 0 0.02629 0 0.968841 0 0 0
    BEAG 995 −1 0.002681 0 0 0.106345 0 0.890974 0 0 0
    BEAG 1323 −1 0.009747 0 0 0.025341 0 0.964912 0 0 0
    BEAG 1324 0 0.002839 0 0 0.290277 0 0.706884 0 0 0
    BEAG 1327 0 0.01256 0 0 0.033816 0 0.953623 0 0 0
    IBIZ 1147 −8 0.011867 0 0 0.208861 0 0.779272 0 0 0
    IBIZ 1148 −20 0.01225 0 0 0.355255 0 0.632495 0 0 0
    IBIZ 1162 0 0.019639 0 0 0.214454 0 0.765907 0 0 0
    IBIZ 1172 0 0.00639 0 0 0.201278 0 0.792332 0 0 0
    IBIZ 1280 −1 0.023682 0 0 0.236058 0 0.74026 0 0 0
    BMD 941 −11 0.009709 0 0 0.029126 0 0.961165 0 0 0
    BMD 943 −10 0.006686 0 0 0.04489 0 0.948424 0 0 0
    BMD 968 −17 0.005831 0 0 0.028183 0 0.965986 0 0 0
    BMD 970 −31 0.011354 0 0 0.18897 0 0.799676 0 0 0
    BMD 971 −51 0.020568 0 0 0.020568 0 0.958864 0 0 0
    NEWF 271 −3 0.010913 0 0 0.007937 0 0.981151 0 0 0
    NEWF 274 −1 0.019881 0 0 0.005964 0 0.974155 0 0 0
    NEWF 275 −3 0.010934 0 0 0.005964 0 0.983101 0 0 0
    NEWF 277 0 0.05859 0 0 0.006951 0 0.934459 0 0 0
    NEWF 278 −1 0.034213 0 0 0.022483 0 0.943304 0 0 0
    ROTT 1014 −2 0.0059 0 0 0.016716 0 0.977384 0 0 0
    ROTT 1028 −3 0.005946 0 0 0.00892 0 0.985134 0 0 0
    ROTT 1029 −1 0.004955 0 0 0.00892 0 0.986125 0 0 0
    ROTT 1033 −1 0.009728 0 0 0.027237 0 0.963035 0 0 0
    ROTT 1034 0 0.021782 0 0 0.009901 0 0.968317 0 0 0
    PRES 1082 −3 0.419635 0 0 0.13119 0 0.449175 0 0 0
    PRES 1093 −14 0.430979 0 0 0.197432 0 0.371589 0 0 0
    PRES 1096 0 0.705253 0 0 0.027237 0 0.26751 0 0 0
    PRES 1115 −1 0.572519 0 0 0.045802 0 0.381679 0 0 0
    PRES 1127 −7 0.418004 0 0 0.108734 0 0.473262 0 0 0
    BOX 1176 −1 0.002964 0 0 0.004941 0 0.006917 0.985178 0 0
    BOX 1177 0 0.046332 0 0 0.002896 0 0.031853 0.918919 0 0
    BOX 1178 −1 0.002979 0 0 0.003972 0 0.002979 0.99007 0 0
    BOX 1179 −3 0.000993 0 0 0.003972 0 0.002979 0.992056 0 0
    BOX 1304 −1 0.001978 0 0 0.005935 0 0.004946 0.987141 0 0
    BULD 1193 −1 0.001938 0 0 0.006783 0 0.021318 0.002907 0.967054 0
    BULD 1194 −2 0.004931 0 0 0.003945 0 0.006903 0.002959 0.981262 0
    BULD 1195 −9 0.000988 0 0 0.004941 0 0.004941 0.001976 0.987154 0
    BULD 1197 −3 0.003552 0 0 0.019538 0 0.089698 0.002664 0.884547 0
    BULD 1198 0 0.003918 0 0 0.002938 0 0.013712 0.003918 0.975514 0
    MAST 991 −14 0.984143 0 0 0 0 0.005946 0.000991 0.001982 0.006938
    MAST 1015 0 0.979331 0 0 0 0 0.011811 0.001969 0.001969 0.004921
    MAST 1016 −1 0.978389 0 0 0 0 0.008841 0.000982 0.007859 0.003929
    MAST 1017 −22 0.966926 0 0 0 0 0.024319 0.000973 0.001946 0.005837
    MAST 1066 −2 0.982266 0 0 0 0 0.006897 0.00197 0.005911 0.002956
    BULM 1105 0 0.003925 0 0 0 0 0.009814 0.003925 0.004907 0.977429
    BULM 1106 −3 0.002935 0 0 0 0 0.013699 0.001957 0.005871 0.975538
    BULM 1107 −1 0.003956 0 0 0 0 0.006924 0.001978 0.001978 0.985163
    BULM 1108 0 0.009852 0 0 0 0 0.010837 0.000985 0.002956 0.975369
    BULM 1109 0 0.003956 0 0 0 0 0.004946 0.002967 0.002967 0.985163
    aSee Table 5 for abbreviations of canid populations.
    KBB: pbe
  • TABLE 16
    Average Membership Coefficient for Each Breed From the K = 4 Cluster Results
    Number of Inferred Clusters
    Breed Individuals 1 2 3 4
    Shiba Inu 5 0.974 0.007 0.010 0.009
    Chow Chow 5 0.983 0.006 0.005 0.006
    Akita 5 0.977 0.005 0.013 0.006
    Alaskan Malamute 5 0.884 0.029 0.023 0.064
    Basenji 5 0.925 0.030 0.012 0.033
    Chinese Shar-Pei 5 0.894 0.050 0.029 0.027
    Siberian Husky 5 0.828 0.021 0.071 0.080
    Afghan Hound 5 0.634 0.041 0.068 0.256
    Saluki 5 0.392 0.041 0.058 0.509
    Tibetan Terrier 5 0.368 0.120 0.141 0.371
    Lhasa Apso 5 0.402 0.030 0.444 0.125
    Samoyed 5 0.404 0.017 0.501 0.078
    Pekingese 5 0.210 0.026 0.603 0.161
    Shih Tzu 5 0.199 0.026 0.616 0.159
    Irish Wolfhound 5 0.011 0.165 0.650 0.173
    Saint Bernard 5 0.016 0.201 0.557 0.226
    Greyhound 5 0.017 0.091 0.740 0.152
    Belgian Sheepdog 5 0.013 0.009 0.962 0.016
    Belgian Tervuren 4 0.018 0.022 0.856 0.103
    Borzoi 5 0.041 0.024 0.720 0.215
    Collie 5 0.007 0.019 0.766 0.208
    Shetland Sheepdog 5 0.017 0.105 0.684 0.193
    Pug Dog 5 0.022 0.017 0.466 0.494
    Komondor 5 0.039 0.101 0.206 0.653
    Whippet 5 0.007 0.087 0.480 0.426
    Standard Poodle 5 0.032 0.144 0.370 0.454
    Bichon Frise 4 0.074 0.087 0.362 0.477
    Keeshond 5 0.016 0.043 0.479 0.462
    Manchester Terrier, Toy 4 0.024 0.161 0.303 0.513
    Norwegian Elkhound 5 0.104 0.090 0.329 0.477
    Kuvasz 5 0.077 0.043 0.378 0.502
    Great Dane 5 0.067 0.085 0.240 0.608
    Welsh Springer Spaniel 5 0.007 0.083 0.255 0.654
    Doberman Pinscher 5 0.015 0.103 0.194 0.688
    Standard Schnauzer 5 0.006 0.149 0.165 0.681
    Italian Greyhound 5 0.074 0.068 0.096 0.762
    Old English Sheepdog 5 0.024 0.086 0.122 0.768
    American Water Spaniel 5 0.023 0.127 0.131 0.719
    Miniature Schnauzer 5 0.009 0.136 0.129 0.726
    Australian Terrier 5 0.022 0.107 0.104 0.767
    English Cocker Spaniel 5 0.004 0.088 0.182 0.725
    Irish Setter 5 0.005 0.074 0.117 0.804
    West Highland White Terrier 5 0.019 0.079 0.058 0.844
    Pointer 5 0.019 0.067 0.105 0.809
    Basset Hound 4 0.020 0.086 0.077 0.818
    Cavalier King Charles 5 0.013 0.078 0.122 0.787
    Spaniel
    Giant Schnauzer 5 0.106 0.082 0.060 0.752
    Pharaoh Hound 4 0.102 0.081 0.025 0.792
    Golden Retriever 5 0.009 0.184 0.019 0.789
    Beagle 5 0.016 0.175 0.058 0.751
    Bloodhound 5 0.009 0.203 0.014 0.775
    Airedale Terrier 4 0.016 0.127 0.109 0.748
    American Cocker Spaniel 5 0.010 0.103 0.053 0.834
    American Hairless Rat 5 0.009 0.149 0.064 0.778
    Terrier
    Chesapeake Bay Retriever 5 0.019 0.173 0.032 0.776
    Cairn Terrier 5 0.015 0.123 0.073 0.790
    Portuguese Water Dog 5 0.007 0.134 0.139 0.720
    German Shorthaired Pointer 5 0.015 0.172 0.094 0.719
    Border Collie 5 0.037 0.116 0.101 0.746
    Bedlington Terrier 4 0.010 0.233 0.145 0.613
    Clumber Spaniel 5 0.005 0.355 0.066 0.573
    Ibizan Hound 5 0.015 0.149 0.120 0.716
    Rhodesian Ridgeback 5 0.010 0.215 0.150 0.625
    Dachshund 5 0.015 0.315 0.192 0.479
    Australian Shepherd 5 0.068 0.221 0.170 0.540
    Chihuahua 5 0.028 0.229 0.161 0.582
    Kerry Blue Terrier 5 0.008 0.257 0.147 0.588
    Schipperke 4 0.011 0.195 0.078 0.717
    Irish Terrier 4 0.009 0.277 0.070 0.644
    Flat-coated Retriever 5 0.005 0.207 0.084 0.704
    Soft Coated Wheaten Terrier 4 0.035 0.329 0.163 0.473
    Pomeranian 5 0.055 0.340 0.203 0.402
    Labrador Retriever 5 0.033 0.488 0.075 0.404
    Presa Canario 5 0.036 0.762 0.044 0.158
    Rottweiler 5 0.006 0.798 0.098 0.098
    Bullmastiff 5 0.008 0.873 0.032 0.087
    Newfoundland 5 0.020 0.923 0.018 0.040
    German Shepherd Dog 5 0.006 0.858 0.090 0.046
    French Bulldog 4 0.009 0.945 0.012 0.034
    Miniature Bull Terrier 5 0.013 0.921 0.020 0.047
    Bulldog 5 0.008 0.962 0.019 0.011
    Boxer 5 0.003 0.923 0.065 0.008
    Mastiff 5 0.010 0.934 0.032 0.024
    Bernese Mountain Dog 5 0.006 0.708 0.229 0.057
    Greater Swiss Mountain Dog 5 0.015 0.488 0.373 0.124
  • TABLE 17A
    Canid Canid Missing Populations*
    Populationa ID No. Data 1 2 3 4 5 6 7 8 9 10 11
    CHOW 1633 −10 0.006 0.001 0.001 0.002 0.001 0.023 0.003 0.002 0.001 0.001 0.001
    CHOW 1835 −9 0.001 0.001 0.001 0.001 0.002 0.001 0.001 0.001 0.001 0.001 0.001
    CHOW 1837 −18 0.001 0.001 0.001 0.001 0.003 0.001 0.001 0.001 0.001 0.001 0.001
    CHOW 1838 −19 0.001 0.001 0.005 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
    CHOW 1839 −1 0.002 0.001 0.001 0.001 0.003 0.013 0.016 0.001 0.001 0.001 0.001
    SHAR 1573 −5 0.001 0.001 0.001 0.002 0.002 0.964 0.001 0.001 0.001 0.001 0.001
    SHAR 1593 −11 0.011 0.001 0.001 0.002 0.003 0.935 0.002 0.001 0.002 0.001 0.008
    SHAR 1619 −6 0.001 0.001 0.001 0.001 0.001 0.982 0.001 0.001 0.001 0.001 0.001
    SHAR 1998 −2 0.016 0.025 0.001 0.002 0.043 0.72  0.003 0.002 0.005 0.01  0.006
    SHAR 1999 −4 0.031 0    0.002 0.004 0.098 0.713 0.062 0.003 0.002 0.003 0.001
    SHIB 1769 −22 0.001 0.001 0.001 0.001 0.003 0.001 0.002 0.001 0.001 0.001 0.001
    SHIB 1854 −11 0.002 0.001 0.001 0.001 0.008 0.002 0.001 0.001 0.001 0.001 0.001
    SHIB 1856 −6 0.003 0.001 0.001 0.003 0.001 0.035 0.002 0.002 0.004 0.002 0.001
    SHIB 1860 −7 0.002 0.001 0.001 0.001 0.01  0.008 0.001 0.001 0.002 0.001 0.001
    SHIB 1981 −1 0.004 0.001 0.002 0.001 0.026 0.01  0.001 0.002 0.001 0.002 0.005
    AKIT 1130 −5 0.002 0.001 0.001 0.001 0.969 0.001 0.002 0.001 0.001 0.001 0.007
    AKIT 1131 0 0.003 0.001 0.001 0.002 0.97  0.001 0.001 0.003 0.003 0.001 0.001
    AKIT 1132 −3 0.001 0    0.001 0.001 0.981 0.002 0.003 0.001 0.001 0.001 0   
    AKIT 1133 −5 0.002 0.001 0.001 0    0.974 0.003 0.001 0.001 0.001 0.001 0.001
    AKIT 1134 −3 0.001 0.001 0.004 0.001 0.976 0.002 0.001 0.001 0.002 0.001 0.001
    AMAL 1629 −3 0.003 0.002 0.001 0.015 0    0.002 0.952 0.001 0.001 0.002 0.002
    AMAL 1779 −3 0.002 0.005 0.003 0.004 0.001 0.002 0.938 0.001 0.002 0.003 0.012
    AMAL 1845 −3 0.003 0.003 0.003 0.001 0.003 0.002 0.964 0.001 0.001 0.002 0.004
    AMAL 2132 −6 0.005 0.004 0.002 0.001 0.003 0.001 0.925 0.01  0.002 0.008 0.013
    AMAL 2214 −1 0.003 0.002 0.01  0.004 0.004 0.001 0.943 0.004 0.001 0.002 0.001
    HUSK 1469 −12 0.002 0.001 0.001 0.001 0.001 0.001 0.96  0.001 0.008 0.002 0.001
    HUSK 1883 −2 0.002 0.001 0.011 0.001 0.001 0.001 0.956 0.003 0.003 0.001 0.001
    HUSK 2115 −6 0.003 0.001 0.001 0.006 0.001 0.002 0.947 0.004 0.002 0.003 0.004
    HUSK 2117 −1 0.019 0.041 0.002 0.001 0.002 0.002 0.778 0.007 0.003 0.003 0.002
    HUSK 2118 −3 0.013 0.001 0.004 0.031 0.001 0.003 0.838 0.025 0.001 0.003 0.004
    SAMO 1375 0 0.001 0.001 0.961 0.002 0.001 0.001 0.001 0.001 0.008 0.001 0.001
    SAMO 1532 −5 0.001 0.001 0.973 0.001 0.001 0.001 0.002 0.001 0.001 0.001 0.001
    SAMO 1560 −1 0.002 0.007 0.928 0.001 0.001 0.003 0.001 0.017 0.003 0.011 0.002
    SAMO 169 0 0.001 0.001 0.981 0.001 0.001 0.001 0.001 0.002 0.001 0.001 0.002
    SAMO 239 0 0.002 0.002 0.97  0.002 0.002 0.001 0.001 0.001 0.002 0.001 0.003
    AFGH 1812 −3 0.002 0.001 0.001 0.002 0.001 0.001 0.003 0.001 0.001 0.001 0.001
    AFGH 1939 −3 0.001 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
    AFGH 2264 −7 0.001 0.001 0.001 0.001 0    0.001 0.001 0.001 0.001 0.001 0.002
    AFGH 1936 −9 0.001 0.001 0.001 0.001 0    0.001 0.001 0.001 0.001 0.001 0.001
    AFGH 1937 −13 0.002 0.001 0.006 0.005 0.001 0.001 0.007 0.002 0.002 0.002 0.002
    SALU 1491 0 0.004 0.001 0.001 0.002 0.001 0.001 0.001 0.01  0.002 0.001 0.003
    SALU 1535 −5 0.002 0.002 0.002 0.001 0.001 0.001 0.019 0.001 0.002 0.002 0.003
    SALU 1607 −14 0.001 0.001 0.002 0.001 0.001 0.001 0.002 0.001 0.001 0.001 0.002
    SALU 1873 −2 0.001 0.001 0.001 0.002 0.001 0.006 0.002 0.002 0.001 0.007 0.005
    SALU 2610 −20 0.078 0.004 0.001 0.011 0.003 0.005 0.005 0.1  0.002 0.007 0.004
    BSJI 1338 −9 0.281 0.001 0.001 0.002 0.005 0.003 0.001 0.002 0.001 0.026 0.002
    BSJI 1339 −3 0.001 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0    0    0.001
    BSJI 1645 −12 0    0    0    0    0    0    0    0    0    0    0   
    BSJI 1675 0 0.001 0.001 0.001 0.001 0    0.001 0.001 0.001 0.001 0    0.001
    BSJI 1717 −2 0.002 0    0.001 0.001 0.001 0.001 0.001 0.001 0    0.001 0.001
    TIBT 1466 −8 0.006 0.003 0.005 0.003 0.005 0.002 0.003 0.014 0.002 0.009 0.007
    TIBT 1562 −9 0.001 0.001 0.001 0.001 0    0    0.001 0.001 0.001 0.001 0.001
    TIBT 1707 −12 0.001 0.01  0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.001
    TIBT 26078 −2 0.012 0.004 0.004 0.003 0.005 0.002 0.006 0.008 0.023 0.076 0.009
    TIBT 28086 0 0.001 0.001 0.001 0.001 0    0.001 0.001 0.004 0    0.001 0.001
    LHSA 1524 −1 0.002 0.002 0.002 0.086 0.001 0.001 0.002 0.001 0.081 0.005 0.002
    LHSA 1525 −41 0.003 0.002 0.004 0.043 0.001 0.002 0.002 0.002 0.245 0.003 0.002
    LHSA 1526 −18 0.006 0.001 0.005 0.085 0.001 0.002 0.001 0.002 0.007 0.003 0.004
    LHSA 1528 −2 0.003 0.002 0.004 0.051 0.001 0.001 0.004 0.238 0.166 0.004 0.001
    LHSA 2074 −3 0.004 0.002 0.001 0.079 0.001 0.001 0.004 0.004 0.009 0.001 0.001
    PEKE 1143 0 0    0.001 0    0.001 0    0    0.001 0    0.99  0.001 0   
    PEKE 1145 −2 0.001 0.002 0.001 0.004 0.001 0.001 0.001 0.001 0.974 0.001 0.001
    PEKE 1211 0 0.001 0.001 0.001 0.005 0.001 0.002 0.001 0.002 0.951 0.001 0.003
    PEKE 1212 −1 0.003 0.012 0.002 0.008 0.001 0.001 0.001 0.002 0.919 0.001 0.004
    PEKE 1213 −3 0.001 0.014 0.001 0.001 0.001 0.001 0.001 0.001 0.963 0.002 0.002
    SHIH 1393 0 0.001 0.001 0.001 0.166 0.001 0.002 0.001 0.001 0.106 0.001 0.001
    SHIH 1783 −11 0.001 0.002 0.001 0.186 0.001 0.001 0.001 0.006 0.018 0.001 0.001
    SHIH 2068 −3 0.001 0.001 0.001 0.188 0.001 0.001 0.001 0.001 0.021 0.001 0.001
    SHIH 2859 −44 0.001 0.001 0.001 0.198 0.002 0.002 0.001 0.001 0.002 0.001 0.002
    SHIH 2860 −12 0.002 0.002 0.001 0.151 0.007 0.001 0.001 0.002 0.124 0.001 0.001
    PUG 1077 −5 0.001 0.986 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
    PUG 1104 0 0.001 0.954 0.001 0.004 0.001 0.001 0.002 0.001 0.005 0.004 0.001
    PUG 1183 −2 0.001 0.986 0.001 0.001 0.002 0.001 0.001 0.001 0.001 0.001 0.001
    PUG 1184 −1 0    0.993 0    0    0    0    0    0    0    0    0   
    PUG 1192 −3 0.001 0.986 0.001 0.001 0.001 0    0.001 0.001 0    0.001 0.001
    BICH 1943 −17 0.002 0.002 0.007 0.003 0.007 0.002 0.002 0.917 0.002 0.007 0.003
    BICH 1954 −7 0.002 0.001 0.001 0.004 0    0.001 0.001 0.963 0.001 0.001 0.001
    BICH 933 −4 0.002 0.002 0.003 0.001 0.001 0.002 0.001 0.954 0.001 0.003 0.001
    BICH 974 −2 0.002 0.091 0.002 0.001 0.001 0.002 0.003 0.87  0.002 0.001 0.005
    SPOO 1530 −3 0.004 0.001 0.003 0.003 0.001 0.002 0.005 0.006 0.001 0.003 0.002
    SPOO 1582 −1 0.002 0.001 0.002 0.004 0.001 0.002 0.001 0.003 0.001 0.003 0.001
    SPOO 1876 −18 0.01  0.001 0.003 0.054 0.001 0.002 0.002 0.005 0.001 0.012 0.003
    SPOO 1877 −5 0.002 0.001 0.002 0.002 0.001 0.001 0.001 0.002 0.002 0.009 0.001
    SPOO 2337 −13 0.001 0.002 0.001 0.003 0.001 0.001 0.001 0.002 0.001 0.002 0.002
    KOMO 1484 −13 0.001 0.001 0.003 0.001 0.001 0.001 0.003 0.001 0.002 0.967 0.002
    KOMO 1964 −17 0.014 0.001 0.001 0.003 0.001 0.001 0.001 0.003 0.001 0.851 0.025
    KOMO 2321 −1 0.002 0.017 0.002 0.012 0.001 0.001 0.003 0.019 0.001 0.899 0.001
    KOMO 2323 −1 0.004 0.014 0.003 0.003 0.001 0.002 0.001 0.002 0.009 0.859 0.002
    KOMO 2334 −2 0.001 0.004 0.002 0.002 0.002 0.001 0.001 0.002 0.003 0.968 0.002
    KUVZ 1482 −3 0.002 0.009 0.013 0.047 0.001 0.001 0.006 0.009 0.001 0.002 0.001
    KUVZ 1551 0 0.004 0.001 0.002 0.002 0.001 0.003 0.002 0.015 0.001 0.001 0.013
    KUVZ 1672 −23 0.002 0.004 0.001 0.005 0.011 0.001 0.002 0.001 0.001 0.007 0.001
    KUVZ 1913 −2 0.004 0.001 0.006 0.007 0.001 0.003 0.002 0.007 0.004 0.01  0.012
    KUVZ 1994 −2 0.005 0.002 0.006 0.003 0.001 0.003 0.001 0.006 0.003 0.008 0.005
    KEES 1501 0 0.001 0.003 0.188 0.771 0.001 0.001 0.003 0.002 0.001 0.001 0.008
    KEES 1589 −2 0.002 0.008 0.155 0.77  0.001 0.002 0.001 0.002 0.002 0.004 0.017
    KEES 1818 −41 0.001 0.001 0.19  0.778 0.001 0.001 0.001 0.001 0.001 0.002 0.004
    KEES 1819 −1 0.002 0.002 0.174 0.767 0.002 0.001 0.001 0.02  0.001 0.002 0.002
    KEES 2072 −4 0.003 0.003 0.168 0.749 0.001 0.001 0.002 0.035 0.005 0.003 0.001
    NELK 2216 −4 0.039 0.003 0.018 0.017 0.001 0.002 0.005 0.004 0.003 0.008 0.846
    NELK 2239 −2 0.001 0.001 0.001 0.002 0    0.001 0.001 0.001 0.001 0.001 0.984
    NELK 2240 −2 0.002 0.001 0.005 0.008 0.001 0.001 0.002 0.002 0.007 0.003 0.948
    NELK 2281 −1 0.001 0.003 0.002 0.008 0.001 0.001 0.002 0.002 0.001 0.001 0.949
    NELK 2295 −15 0.001 0.002 0.002 0.002 0.002 0.001 0.002 0.002 0.001 0.001 0.957
    Canid Canid Missing Populations*
    Populationa ID No. Data 12 13 14 15 16 17 18 19 20 21
    CHOW 1633 −10 0.001 0.001 0.915 0.002 0.004 0.002 0.021 0.006 0.002 0.003
    CHOW 1835 −9 0.001 0.001 0.981 0.001 0.001 0.003 0.001 0.001 0.001 0.001
    CHOW 1837 −18 0.001 0    0.981 0.001 0.001 0.001 0.001 0    0.001 0.001
    CHOW 1838 −19 0    0.001 0.978 0.001 0.001 0    0.002 0.001 0.001 0.001
    CHOW 1839 −1 0.001 0.002 0.936 0.004 0.001 0.001 0.009 0.003 0.001 0.002
    SHAR 1573 −5 0.001 0.001 0.002 0.001 0.003 0.012 0.001 0.002 0.001 0.001
    SHAR 1593 −11 0.002 0.001 0.009 0.002 0.003 0.002 0.006 0.001 0.005 0.006
    SHAR 1619 −6 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.001
    SHAR 1998 −2 0.004 0.003 0.049 0.003 0.003 0.002 0.003 0.001 0.094 0.005
    SHAR 1999 −4 0.004 0.004 0.025 0.001 0.01  0.004 0.002 0.001 0.001 0.026
    SHIB 1769 −22 0.001 0.001 0.002 0.001 0.001 0.98  0.001 0    0.001 0.001
    SHIB 1854 −11 0.001 0.001 0.006 0.002 0.001 0.958 0.001 0.011 0.001 0.001
    SHIB 1856 −6 0.005 0.001 0.021 0.001 0.013 0.837 0.002 0.001 0.001 0.064
    SHIB 1860 −7 0.001 0.001 0.005 0.001 0.002 0.958 0.001 0.001 0.001 0.002
    SHIB 1981 −1 0.006 0.001 0.053 0.001 0.003 0.875 0.001 0.002 0.001 0.003
    AKIT 1130 −5 0.001 0    0.001 0.001 0.001 0.005 0.001 0.001 0.001 0.001
    AKIT 1131 0 0    0.001 0.005 0.001 0.001 0.002 0.001 0    0.001 0.001
    AKIT 1132 −3 0.001 0.001 0.002 0.001 0.001 0.001 0.001 0    0.001 0.001
    AKIT 1133 −5 0.001 0.001 0.003 0.001 0.001 0.003 0.002 0    0.002 0.001
    AKIT 1134 −3 0.001 0.001 0.002 0.001 0.001 0.002 0.001 0.001 0.001 0.001
    AMAL 1629 −3 0.003 0.001 0.003 0.001 0.002 0.002 0.002 0.001 0.001 0.002
    AMAL 1779 −3 0.001 0.002 0.001 0.002 0.004 0.001 0.001 0.001 0.004 0.008
    AMAL 1845 −3 0.001 0.004 0.001 0.001 0.001 0.001 0.002 0.001 0.001 0.001
    AMAL 2132 −6 0.001 0.003 0.001 0.001 0.001 0.002 0.002 0.001 0.011 0.004
    AMAL 2214 −1 0.007 0.001 0.001 0.001 0.002 0.004 0.001 0.001 0.003 0.002
    HUSK 1469 −12 0.001 0.001 0.013 0.001 0.001 0.001 0.001 0.001 0.001 0.002
    HUSK 1883 −2 0.001 0.001 0.003 0.002 0.001 0.001 0.002 0.001 0.005 0.002
    HUSK 2115 −6 0.004 0.002 0.001 0.005 0.003 0.001 0.001 0.001 0.002 0.007
    HUSK 2117 −1 0.001 0.002 0.009 0.002 0.004 0.002 0.003 0.001 0.11  0.006
    HUSK 2118 −3 0.003 0.002 0.003 0.001 0.016 0.002 0.004 0.014 0.027 0.005
    SAMO 1375 0 0.008 0.001 0.001 0.001 0.001 0.001 0.002 0.001 0.004 0.001
    SAMO 1532 −5 0.001 0.003 0.001 0.001 0.002 0.002 0.001 0.001 0.003 0.001
    SAMO 1560 −1 0.001 0.001 0.001 0.001 0.009 0.001 0.002 0.002 0.002 0.007
    SAMO 169 0 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
    SAMO 239 0 0.003 0    0.001 0.001 0.002 0.001 0.002 0.002 0.001 0.001
    AFGH 1812 −3 0.001 0.976 0.001 0.002 0.001 0.001 0.001 0.002 0.001 0.001
    AFGH 1939 −3 0.001 0.981 0    0.002 0.001 0.001 0.001 0.001 0.001 0.001
    AFGH 2264 −7 0.001 0.983 0    0.001 0.001 0    0.001 0.001 0.001 0.001
    AFGH 1936 −9 0    0.983 0.001 0.001 0.001 0    0.001 0.001 0.001 0.001
    AFGH 1937 −13 0.002 0.948 0.001 0.004 0.003 0    0.001 0    0.001 0.009
    SALU 1491 0 0.001 0.02  0.001 0.922 0.002 0.004 0.009 0.001 0.009 0.002
    SALU 1535 −5 0.001 0.02  0.002 0.931 0.001 0.001 0.002 0.002 0.001 0.002
    SALU 1607 −14 0.002 0.017 0.001 0.961 0.001 0.001 0.001 0.001 0.002 0.001
    SALU 1873 −2 0.004 0.019 0.001 0.939 0.002 0.001 0.001 0.001 0.001 0.002
    SALU 2610 −20 0.004 0.075 0.005 0.579 0.032 0.001 0.001 0.032 0.006 0.046
    BSJI 1338 −9 0.003 0.002 0.001 0.017 0.03  0.004 0.002 0.548 0.003 0.064
    BSJI 1339 −3 0.001 0.001 0.001 0    0.001 0    0.001 0.986 0.001 0.001
    BSJI 1645 −12 0    0    0    0    0    0    0    0.992 0    0   
    BSJI 1675 0 0    0    0    0.001 0.001 0.001 0.001 0.988 0    0.001
    BSJI 1717 −2 0.001 0.004 0.001 0.001 0    0.005 0.001 0.976 0.001 0.001
    TIBT 1466 −8 0.008 0.004 0.002 0.004 0.003 0.004 0.904 0.002 0.005 0.005
    TIBT 1562 −9 0.001 0    0.001 0    0.002 0.001 0.985 0.001 0.001 0.001
    TIBT 1707 −12 0.002 0.001 0.001 0.001 0.001 0    0.974 0    0.001 0.001
    TIBT 26078 −2 0.004 0.003 0.002 0.031 0.009 0.015 0.756 0.001 0.001 0.027
    TIBT 28086 0 0.002 0.001 0.001 0.001 0.001 0.001 0.967 0.001 0.012 0.001
    LHSA 1524 −1 0.001 0.001 0.001 0.001 0.269 0.003 0.001 0.001 0.003 0.537
    LHSA 1525 −41 0.001 0.003 0.002 0.002 0.138 0.002 0.001 0.003 0.004 0.535
    LHSA 1526 −18 0.005 0.004 0.001 0.002 0.22  0.001 0.001 0.001 0.002 0.647
    LHSA 1528 −2 0.009 0.001 0.006 0.01  0.157 0.001 0.009 0.002 0.003 0.325
    LHSA 2074 −3 0.002 0.001 0.001 0.005 0.203 0.002 0.003 0.002 0.001 0.672
    PEKE 1143 0 0    0    0.001 0    0.001 0    0    0    0    0.001
    PEKE 1145 −2 0.001 0.001 0.002 0.002 0.002 0.001 0.001 0.001 0.001 0.001
    PEKE 1211 0 0.002 0.001 0.001 0.001 0.023 0    0.001 0.001 0.001 0.002
    PEKE 1212 −1 0.001 0.002 0.001 0.006 0.026 0.001 0.001 0.004 0.002 0.003
    PEKE 1213 −3 0.001 0.001 0.001 0.001 0.002 0.001 0.001 0.001 0.001 0.003
    SHIH 1393 0 0.002 0    0.001 0.001 0.71  0.001 0.001 0    0.001 0.001
    SHIH 1783 −11 0.002 0.001 0.001 0.001 0.769 0.001 0.001 0.001 0.002 0.005
    SHIH 2068 −3 0.001 0.001 0.001 0.001 0.772 0.001 0.001 0    0.001 0.005
    SHIH 2859 −44 0.001 0.001 0.002 0.001 0.777 0.002 0.001 0.001 0.001 0.001
    SHIH 2860 −12 0.003 0.001 0.005 0.001 0.624 0.005 0.001 0.001 0.001 0.068
    PUG 1077 −5 0.001 0    0    0.001 0.001 0.001 0.001 0    0.001 0.001
    PUG 1104 0 0.001 0.001 0.001 0.001 0.014 0.001 0.003 0.001 0.001 0.002
    PUG 1183 −2 0.001 0    0.001 0.001 0.001 0    0.001 0.001 0.001 0.001
    PUG 1184 −1 0    0    0    0    0    0    0    0    0    0   
    PUG 1192 −3 0.001 0.001 0.001 0.001 0    0    0.001 0    0.001 0.001
    BICH 1943 −17 0.003 0.001 0.003 0.001 0.003 0.001 0.023 0.001 0.008 0.004
    BICH 1954 −7 0.003 0.002 0.001 0.005 0.004 0.003 0.003 0.001 0.002 0.001
    BICH 933 −4 0.004 0.004 0.001 0.003 0.003 0.001 0.006 0.001 0.002 0.005
    BICH 974 −2 0.002 0.001 0.001 0.001 0.004 0.001 0.001 0.002 0.005 0.002
    SPOO 1530 −3 0.942 0.001 0.002 0.004 0.002 0.002 0.011 0.001 0.003 0.003
    SPOO 1582 −1 0.954 0.001 0.001 0.001 0.003 0.001 0.001 0.004 0.005 0.006
    SPOO 1876 −18 0.818 0.003 0.001 0.004 0.047 0.001 0.002 0.003 0.022 0.006
    SPOO 1877 −5 0.964 0.002 0.001 0.004 0.001 0.002 0.001 0.001 0.001 0.002
    SPOO 2337 −13 0.961 0.004 0.001 0.001 0.002 0.001 0.007 0.001 0.002 0.001
    KOMO 1484 −13 0.002 0.001 0.001 0.002 0.001 0.001 0.004 0.001 0.003 0.002
    KOMO 1964 −17 0.007 0.011 0.002 0.047 0.002 0.002 0.003 0.003 0.014 0.007
    KOMO 2321 −1 0.003 0.002 0.001 0.001 0.005 0.001 0.008 0.001 0.021 0.002
    KOMO 2323 −1 0.083 0.004 0.001 0.001 0.004 0.001 0.002 0.001 0.001 0.003
    KOMO 2334 −2 0.001 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.003 0.001
    KUVZ 1482 −3 0.006 0.001 0.001 0.004 0.004 0    0.001 0.001 0.889 0.001
    KUVZ 1551 0 0.027 0.001 0.001 0.005 0.002 0.002 0.007 0.002 0.905 0.003
    KUVZ 1672 −23 0.007 0.002 0.001 0.001 0.002 0.001 0.001 0.001 0.942 0.003
    KUVZ 1913 −2 0.003 0.026 0.001 0.003 0.005 0.001 0.003 0.001 0.896 0.003
    KUVZ 1994 −2 0.014 0.002 0.002 0.002 0.003 0.001 0.003 0.006 0.916 0.006
    KEES 1501 0 0.003 0.002 0.001 0.002 0.004 0.001 0.002 0.004 0.002 0.001
    KEES 1589 −2 0.003 0.003 0.001 0.021 0.002 0.001 0.001 0.001 0.002 0.002
    KEES 1818 −41 0.006 0.001 0.001 0.002 0.001 0.001 0.002 0.001 0.001 0.001
    KEES 1819 −1 0.009 0.001 0.001 0.001 0.002 0.001 0.003 0.002 0.004 0.002
    KEES 2072 −4 0.008 0.002 0.001 0.002 0.002 0.001 0.001 0.002 0.006 0.004
    NELK 2216 −4 0.005 0.002 0.01  0.002 0.006 0.001 0.011 0.004 0.004 0.01 
    NELK 2239 −2 0.001 0    0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
    NELK 2240 −2 0.002 0.001 0.001 0.003 0.002 0.001 0.002 0.001 0.008 0.001
    NELK 2281 −1 0.001 0.005 0.001 0.008 0.001 0.001 0.01  0.001 0.001 0.001
    NELK 2295 −15 0.001 0.001 0.001 0.004 0.004 0.001 0.007 0.001 0.003 0.002
  • TABLE 17B
    Canid Canid Missing Populations*
    Populationa ID No. Data 44 45 46 47 48 49 50 51 52 53 54
    ECKR 1376 −1 0.002 0.001 0.01  0.002 0.003 0.001 0.863 0.007 0.001 0.001 0.002
    ECKR 1377 −2 0.001 0.056 0.012 0.003 0.003 0.002 0.859 0.001 0.007 0.001 0.004
    ECKR 1400 −2 0.001 0.001 0    0.001 0.001 0.001 0.983 0.002 0.001 0.001 0.001
    ECKR 1404 −7 0.001 0.001 0.002 0.001 0.001 0.001 0.977 0.001 0.001 0.001 0.001
    ECKR 1511 −6 0.002 0.004 0.003 0.001 0.001 0.001 0.959 0.001 0.001 0.002 0.004
    ACKR 1035 −2 0.002 0.001 0.001 0.739 0.003 0.186 0.009 0.001 0.003 0.002 0.001
    ACKR 2261 −2 0.003 0.001 0.001 0.961 0.001 0.001 0.006 0.003 0.001 0.001 0.001
    ACKR 2310 −1 0.004 0.001 0.001 0.949 0.019 0.003 0.002 0.004 0.001 0.001 0.001
    ACKR 1956 −18 0.001 0.001 0.001 0.981 0.001 0.001 0.002 0.001 0.001 0.001 0.001
    ACKR 2260 −2 0.001 0.001 0.001 0.983 0.001 0.001 0.002 0    0.001 0.001 0.001
    CKCS 1513 −6 0.001 0.004 0.001 0.001 0.002 0.002 0.002 0.965 0.001 0.001 0.002
    CKCS 1639 −2 0.001 0.003 0.001 0.001 0.001 0.001 0.001 0.98  0.001 0.001 0.001
    CKCS 1640 −15 0.001 0.001 0.034 0    0.001 0.001 0.001 0.941 0.002 0.001 0.006
    CKCS 1642 −4 0.005 0.001 0.001 0.003 0.001 0.001 0.002 0.975 0.001 0.001 0.001
    CKCS 2054 −5 0.001 0.001 0    0    0    0    0    0.991 0    0    0   
    DOBP 1031 −1 0.002 0.001 0.004 0.002 0.001 0.001 0.001 0.002 0.001 0.003 0.002
    DOBP 1032 −3 0.001 0.001 0.001 0.002 0.004 0.011 0.004 0.001 0.026 0.002 0.001
    DOBP 1749 −2 0.001 0.001 0.001 0.002 0.001 0.001 0    0    0.002 0.001 0.002
    DOBP 2162 −5 0.009 0.001 0.004 0.001 0.001 0.001 0.001 0.002 0.001 0.001 0.002
    DOBP 2245 −2 0.001 0    0    0.001 0.001 0.001 0.001 0.001 0.001 0.001 0   
    MNTY 1539 −1 0.924 0.003 0.001 0.013 0.001 0.007 0.002 0.003 0.002 0.003 0.008
    MNTY 1732 −15 0.978 0.001 0.001 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.001
    MNTY 2145 −19 0.983 0.001 0.002 0.002 0.001 0.001 0.002 0.001 0.001 0.001 0.001
    MNTY 2149 −47 0.945 0.002 0.002 0.003 0.001 0.001 0.014 0.001 0.002 0.001 0.002
    IRSE 1540 −5 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
    IRSE 1617 −4 0.001 0.001 0.001 0.001 0.001 0.001 0    0.001 0.001 0.002 0.001
    IRSE 1896 0 0.002 0.003 0.004 0.008 0.002 0.001 0.003 0.001 0.002 0.002 0.002
    IRSE 2084 −6 0.017 0.002 0.008 0.003 0.002 0.001 0.002 0.001 0.003 0.001 0.001
    IRSE 2085 −17 0.002 0.001 0.001 0.002 0.001 0.002 0.015 0.006 0.005 0.002 0.001
    PNTR 1382 0 0.001 0.002 0.001 0.001 0.002 0.008 0.001 0.001 0.004 0.002 0.001
    PNTR 1383 −2 0.002 0.003 0.002 0.001 0.001 0.002 0.001 0.003 0.001 0.001 0.002
    PNTR 1869 −2 0.001 0.003 0.003 0.005 0.006 0.002 0.001 0.001 0.001 0.001 0.008
    PNTR 1938 −6 0.001 0.001 0.001 0.003 0.001 0.002 0.001 0.001 0.004 0.001 0.002
    PNTR 1948 −31 0.004 0.001 0.005 0.002 0.001 0.002 0.003 0.027 0.002 0.001 0.001
    GSHP 1628 −5 0.025 0.002 0.009 0.002 0.005 0.808 0.002 0.002 0.003 0.003 0.011
    GSHP 1708 −22 0.001 0.001 0.002 0.002 0.002 0.929 0.001 0.001 0.002 0.001 0.002
    GSHP 1710 −28 0.001 0.001 0.002 0.002 0.002 0.959 0.002 0.001 0.002 0.001 0.002
    GSHP 1833 −26 0.335 0.013 0.008 0.155 0.003 0.146 0.003 0.002 0.013 0.002 0.001
    GSHP 1892 −4 0.012 0.001 0.003 0.004 0.104 0.398 0.002 0.004 0.016 0.002 0.001
    MSNZ 1587 −9 0.001 0.001 0.984 0.001 0.001 0.001 0.001 0.001 0.001 0    0.001
    MSNZ 1756 −6 0.001 0.001 0.982 0.001 0.001 0.001 0.001 0.001 0.001 0    0.001
    MSNZ 1851 −7 0.001 0.001 0.976 0.001 0.001 0.001 0.002 0.001 0.001 0.001 0.001
    MSNZ 2034 −1 0.001 0.001 0.919 0.001 0.002 0.003 0.001 0.001 0.005 0.002 0.001
    MSNZ 2613 −16 0.001 0.001 0.912 0.006 0.001 0.002 0.028 0.001 0.002 0.003 0.001
    SSNZ 13352 0 0.001 0.001 0.001 0.001 0.001 0.002 0.002 0.001 0.001 0.001 0.001
    SSNZ 1360 −3 0.008 0.003 0.075 0.004 0.001 0.002 0.005 0.009 0.01  0.001 0.003
    SSNZ 1827 −9 0.001 0    0.001 0.001 0.001 0.001 0    0.001 0.001 0.001 0.001
    SSNZ 20457 −1 0.001 0.001 0.001 0.002 0.001 0.002 0.001 0.001 0.001 0.002 0.001
    SSNZ 22647 −3 0.001 0.001 0.002 0.001 0.001 0.001 0.001 0.005 0.001 0.001 0.001
    GSNZ 1868 −6 0.009 0.003 0.002 0.01  0.14  0.006 0.002 0.006 0.597 0.01  0.003
    GSNZ 22739 0 0.001 0.001 0.006 0.002 0.042 0.002 0.001 0.003 0.928 0.001 0.001
    GSNZ 27093 0 0.003 0.005 0.002 0.001 0.002 0.002 0.003 0.003 0.948 0.002 0.006
    GSNZ 27106 −1 0.001 0.009 0.001 0.002 0.002 0.001 0.008 0.001 0.863 0.002 0.001
    GSNZ 33390 0 0.007 0.003 0.007 0.003 0.002 0.004 0.004 0.002 0.775 0.004 0.04 
    AHRT 1120 −1 0.001 0.002 0.001 0.001 0.002 0.001 0.001 0.001 0.001 0.001 0.001
    AHRT 1121 −3 0.001 0.001 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
    AHRT 1122 0 0.004 0.004 0.002 0.006 0.061 0.004 0.002 0.002 0.003 0.002 0.001
    AHRT 1123 −1 0.001 0.001 0.002 0.003 0.003 0.03  0.002 0.003 0.004 0.001 0.023
    AHRT 1124 −2 0.001 0    0.001 0.001 0.001 0.001 0.001 0    0.001 0.001 0.001
    AIRT 1603 −3 0.001 0    0.001 0.001 0.001 0.001 0.001 0    0.001 0    0.99 
    AIRT 1604 −7 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.001 0.001 0.975
    AIRT 1788 −2 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.981
    AIRT 1875 −1 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.982
    BASS 1341 0 0.001 0.003 0.001 0.001 0.981 0.001 0.001 0.001 0.001 0.001 0.001
    BASS 1342 −5 0.001 0.001 0.003 0.001 0.966 0.002 0.006 0.001 0.002 0.001 0.001
    BASS 1506 0 0.001 0.002 0.001 0.001 0.951 0.001 0.004 0.002 0.001 0.004 0.001
    BASS 1917 −4 0.001 0.003 0.001 0.001 0.971 0.007 0.002 0.001 0.002 0.001 0.001
    BEAG 1323 −2 0.001 0.059 0.011 0.019 0.002 0.002 0.002 0.001 0.002 0.002 0.001
    BEAG 1324 −1 0.003 0.001 0.004 0.002 0.005 0.04  0.001 0.012 0.004 0.003 0.001
    BEAG 1327 −2 0.003 0.017 0.002 0.002 0.003 0.006 0.002 0.001 0.003 0.002 0.002
    BEAG 994 −3 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
    BEAG 995 −2 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.002 0.001 0.002 0.001
    BLDH 1186 0 0.001 0.989 0    0.001 0.001 0.001 0.001 0    0    0    0   
    BLDH 1223 −2 0.01  0.945 0.001 0.002 0.001 0.002 0.003 0.006 0.001 0.001 0.001
    BLDH 1410 −8 0.001 0.978 0.001 0.001 0.001 0.002 0.001 0.001 0.001 0.001 0.001
    BLDH 1942 −6 0.001 0.981 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.003 0.001
    BLDH 1957 0 0.001 0.973 0.001 0.001 0.002 0.001 0.001 0.001 0.001 0.002 0.001
    IBIZ 1147 −8 0.001 0.002 0.003 0.001 0.001 0.001 0.017 0.001 0.002 0.097 0.002
    IBIZ 1148 −19 0.002 0.001 0.011 0.001 0.003 0.002 0.002 0.001 0.002 0.109 0.004
    IBIZ 1162 0 0.001 0.002 0.002 0.002 0.001 0.001 0.003 0.001 0.002 0.247 0.001
    IBIZ 1172 0 0.002 0.075 0.001 0.007 0.001 0.001 0.001 0.001 0.003 0.098 0.001
    IBIZ 1280 0 0.002 0.001 0.001 0.003 0.004 0.005 0.004 0.001 0.001 0.102 0.007
    PHAR 1292 −3 0.001 0.001 0.001 0.001 0.002 0.001 0.001 0.001 0.001 0.977 0.001
    PHAR 1947 −14 0.001 0    0.002 0.001 0.001 0.009 0.001 0.001 0.006 0.968 0.001
    PHAR 1962 −14 0.001 0.001 0.001 0.002 0.001 0.002 0.001 0.001 0.001 0.969 0   
    PHAR 1963 −10 0.002 0.001 0.001 0.001 0.008 0.001 0.002 0.001 0.001 0.956 0.001
    PTWD P142 −3 0.002 0.001 0.009 0.001 0.001 0.001 0.002 0.001 0.002 0.002 0.007
    PTWD P1 −6 0.001 0.008 0.003 0.001 0.002 0.002 0.001 0.001 0.002 0.001 0.001
    PTWD P238 −3 0.003 0.002 0.005 0.005 0.004 0.025 0.002 0.021 0.035 0.024 0.008
    PTWD P25 −2 0.006 0.002 0.016 0.005 0.002 0.031 0.028 0.005 0.004 0.003 0.003
    PTWD P67 0 0.002 0.001 0.001 0.001 0.003 0.003 0.001 0.001 0.002 0.009 0.001
    AMWS 2168 0 0.004 0.001 0.09  0.007 0.002 0.005 0.002 0.204 0.002 0.001 0.002
    AMWS 2279 −4 0.005 0.016 0.001 0.025 0.003 0.01  0.039 0.009 0.012 0.004 0.002
    AMWS 2327 −36 0.002 0.001 0.001 0.001 0.001 0.001 0.003 0.003 0.001 0.001 0.001
    AMWS 987 −1 0.001 0.002 0.001 0.001 0.002 0.001 0.001 0.001 0.001 0.001 0.001
    AMWS 988 0 0.004 0.001 0.019 0.002 0.004 0.003 0.002 0.007 0.006 0.007 0.002
    WSSP 1955 −14 0.001 0.001 0.001 0.001 0.004 0.001 0.001 0.001 0.001 0.001 0.001
    WSSP 2139 −1 0.002 0.002 0.001 0.001 0.001 0.002 0.01  0.017 0.002 0.001 0.001
    WSSP 2143 0 0.001 0.001 0.001 0.002 0.001 0.002 0.001 0.001 0.002 0.001 0.001
    WSSP 2195 −27 0.003 0.002 0.003 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.004
    WSSP 2286 −5 0.002 0.02  0.001 0.005 0.002 0.001 0.004 0.002 0.001 0.002 0.002
    Canid Canid Missing Populations*
    Populationa ID No. Data 55 56 57 58 59 60 61 62 63 64
    ECKR 1376 −1 0.008 0.001 0.001 0.001 0.006 0.003 0.004 0.002 0.072 0.009
    ECKR 1377 −2 0.003 0.003 0.002 0.002 0.003 0.003 0.005 0.003 0.023 0.002
    ECKR 1400 −2 0.001 0.001 0    0.001 0.001 0.001 0    0.001 0.002 0   
    ECKR 1404 −7 0.001 0.002 0.001 0.003 0.001 0.001 0.001 0.001 0.001 0.001
    ECKR 1511 −6 0.001 0.001 0.005 0.003 0.001 0.002 0.002 0.004 0.002 0.001
    ACKR 1035 −2 0.007 0.003 0.023 0.001 0.001 0.007 0.002 0.003 0.004 0.001
    ACKR 2261 −2 0.001 0.003 0.001 0.001 0.003 0.001 0.001 0.001 0.006 0.001
    ACKR 2310 −1 0.002 0.001 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.001
    ACKR 1956 −18 0.001 0.001 0.001 0.002 0.001 0.001 0.001 0.001 0.001 0.002
    ACKR 2260 −2 0.001 0.001 0.002 0.001 0.001 0.001 0.001 0.001 0    0.001
    CKCS 1513 −6 0.004 0.003 0.001 0.001 0.001 0.001 0.003 0.002 0.001 0.001
    CKCS 1639 −2 0.001 0.001 0.001 0.001 0.001 0.002 0.001 0.002 0.001 0.001
    CKCS 1640 −15 0.001 0.001 0.001 0.001 0.001 0.001 0.003 0.001 0.001 0.001
    CKCS 1642 −4 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
    CKCS 2054 −5 0    0    0.001 0.001 0    0    0    0    0    0   
    DOBP 1031 −1 0.003 0.001 0.966 0.001 0.001 0.001 0.002 0.003 0.001 0.001
    DOBP 1032 −3 0.001 0.001 0.929 0.001 0.001 0.005 0.001 0.002 0.003 0.002
    DOBP 1749 −2 0.001 0.001 0.979 0.002 0.001 0.001 0.001 0.001 0    0.002
    DOBP 2162 −5 0.001 0.002 0.964 0.001 0.001 0.003 0.001 0.001 0.001 0.001
    DOBP 2245 −2 0    0.001 0.989 0.001 0    0    0    0    0.001 0.001
    MNTY 1539 −1 0.001 0.001 0.006 0.007 0.001 0.005 0.001 0.001 0.007 0.003
    MNTY 1732 −15 0.001 0.001 0.004 0.002 0.001 0.001 0.001 0.001 0.001 0.001
    MNTY 2145 −19 0    0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
    MNTY 2149 −47 0.003 0.008 0.002 0.001 0.001 0.001 0.001 0.001 0.004 0.003
    IRSE 1540 −5 0.006 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.978
    IRSE 1617 −4 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.983
    IRSE 1896 0 0.015 0.001 0.001 0.002 0.002 0.004 0.001 0.002 0.002 0.94 
    IRSE 2084 −6 0.001 0.001 0.001 0.004 0.001 0.002 0.014 0.008 0.001 0.927
    IRSE 2085 −17 0.001 0.003 0.001 0.005 0.004 0.002 0.003 0.001 0.005 0.936
    PNTR 1382 0 0.965 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.001 0.003
    PNTR 1383 −2 0.967 0.003 0.001 0.002 0.001 0.001 0.002 0.001 0.001 0.002
    PNTR 1869 −2 0.942 0.003 0.001 0.002 0.004 0.001 0.011 0.001 0.001 0.002
    PNTR 1938 −6 0.965 0.001 0.001 0.002 0.001 0.002 0.002 0.001 0.006 0.003
    PNTR 1948 −31 0.933 0.003 0.002 0.001 0.003 0.002 0.002 0.002 0.003 0.002
    GSHP 1628 −5 0.015 0.001 0.087 0.002 0.002 0.003 0.002 0.012 0.002 0.003
    GSHP 1708 −22 0.005 0.003 0.001 0.042 0.001 0.001 0.001 0.002 0.001 0.001
    GSHP 1710 −28 0.001 0.002 0.001 0.001 0.005 0.003 0.005 0.001 0.006 0.001
    GSHP 1833 −26 0.072 0.001 0.001 0.01  0.044 0.025 0.067 0.095 0.001 0.003
    GSHP 1892 −4 0.012 0.002 0.002 0.004 0.182 0.011 0.004 0.028 0.003 0.203
    MSNZ 1587 −9 0.001 0.001 0    0.001 0.001 0.001 0.001 0.001 0.001 0.001
    MSNZ 1756 −6 0.001 0.001 0.001 0    0.001 0.001 0.001 0.001 0.002 0.001
    MSNZ 1851 −7 0.001 0.001 0.001 0.002 0.002 0.003 0.001 0.001 0.001 0.001
    MSNZ 2034 −1 0.002 0.003 0.001 0.027 0.001 0.011 0.01  0.004 0.001 0.001
    MSNZ 2613 −16 0.002 0.023 0.003 0.003 0.001 0.001 0.002 0.001 0.003 0.002
    SSNZ 13352 0 0.002 0.002 0.001 0.968 0.004 0.002 0.002 0.001 0.001 0.003
    SSNZ 1360 −3 0.001 0.002 0.002 0.855 0.002 0.006 0.001 0.004 0.005 0.001
    SSNZ 1827 −9 0.001 0.001 0.001 0.988 0.001 0.001 0    0.001 0    0.001
    SSNZ 20457 −1 0.002 0.002 0    0.97  0.001 0.002 0.001 0.001 0.001 0.004
    SSNZ 22647 −3 0.001 0.001 0.001 0.976 0.001 0.001 0.001 0.001 0.001 0.001
    GSNZ 1868 −6 0.015 0.012 0.005 0.035 0.012 0.007 0.008 0.106 0.004 0.008
    GSNZ 22739 0 0.001 0.001 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.003
    GSNZ 27093 0 0.002 0.001 0.001 0.002 0.001 0.004 0.008 0.001 0.002 0.002
    GSNZ 27106 −1 0.004 0.001 0.002 0.093 0.002 0.002 0.001 0.001 0.001 0.003
    GSNZ 33390 0 0.001 0.104 0.002 0.016 0.012 0.004 0.002 0.005 0.001 0.001
    AHRT 1120 −1 0.002 0.001 0.001 0.002 0.977 0.001 0.002 0.001 0.001 0.001
    AHRT 1121 −3 0.002 0.001 0    0.001 0.979 0.001 0.002 0.002 0.001 0.001
    AHRT 1122 0 0.001 0.016 0.003 0.001 0.854 0.009 0.002 0.008 0.008 0.005
    AHRT 1123 −1 0.001 0.004 0.003 0.003 0.888 0.004 0.011 0.004 0.007 0.002
    AHRT 1124 −2 0.001 0.001 0.001 0.001 0.984 0.001 0.001 0.001 0.001 0.001
    AIRT 1603 −3 0.001 0.001 0    0    0.001 0.001 0.001 0    0.001 0   
    AIRT 1604 −7 0.001 0.005 0.001 0.002 0.001 0.001 0.001 0.001 0.001 0.001
    AIRT 1788 −2 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.002
    AIRT 1875 −1 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
    BASS 1341 0 0.001 0    0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
    BASS 1342 −5 0.001 0.001 0.001 0.001 0.004 0.001 0.001 0.001 0.003 0.001
    BASS 1506 0 0.001 0.001 0.002 0.001 0.001 0.002 0.002 0.005 0.011 0.005
    BASS 1917 −4 0.001 0.002 0.001 0    0.001 0.001 0.003 0.001 0.001 0.001
    BEAG 1323 −2 0.001 0.017 0.001 0.001 0.007 0.004 0.859 0.003 0.002 0.002
    BEAG 1324 −1 0.001 0.001 0.231 0.001 0.244 0.008 0.421 0.012 0.002 0.001
    BEAG 1327 −2 0.002 0.011 0.001 0.001 0.002 0.007 0.928 0.002 0.001 0.001
    BEAG 994 −3 0.002 0.001 0.001 0.001 0.001 0.001 0.98  0.001 0.001 0.001
    BEAG 995 −2 0.001 0.002 0.001 0.002 0.001 0.001 0.972 0.001 0.001 0.002
    BLDH 1186 0 0    0.001 0.001 0    0    0.001 0.001 0    0.001 0   
    BLDH 1223 −2 0.001 0.002 0.001 0.001 0.001 0.001 0.006 0.001 0.006 0.007
    BLDH 1410 −8 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.001 0.001 0.001
    BLDH 1942 −6 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
    BLDH 1957 0 0.001 0.003 0.001 0.001 0.001 0.001 0.002 0.003 0.001 0.001
    IBIZ 1147 −8 0.001 0.01  0.001 0.003 0.001 0.002 0.008 0.84  0.002 0.002
    IBIZ 1148 −19 0.001 0.002 0.001 0.001 0.002 0.002 0.001 0.852 0.001 0.001
    IBIZ 1162 0 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.725 0.001 0.003
    IBIZ 1172 0 0.001 0.002 0.001 0.002 0.002 0.002 0.002 0.795 0.001 0.002
    IBIZ 1280 0 0.005 0.001 0.001 0.001 0.003 0.004 0.001 0.85  0.002 0.002
    PHAR 1292 −3 0.001 0.001 0.001 0.001 0.001 0.004 0.001 0.002 0.001 0.002
    PHAR 1947 −14 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.002 0.001 0.001
    PHAR 1962 −14 0.001 0.001 0.001 0.002 0.001 0.005 0.001 0.003 0.003 0.001
    PHAR 1963 −10 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.003 0.001 0.016
    PTWD P142 −3 0.003 0.005 0.002 0.002 0.005 0.942 0.002 0.003 0.005 0.002
    PTWD P1 −6 0.001 0.001 0.001 0.023 0.002 0.929 0.002 0.002 0.015 0.002
    PTWD P238 −3 0.007 0.002 0.002 0.003 0.003 0.503 0.301 0.018 0.022 0.005
    PTWD P25 −2 0.007 0.005 0.054 0.004 0.01  0.767 0.008 0.014 0.025 0.003
    PTWD P67 0 0.001 0.001 0.001 0.001 0.005 0.957 0.003 0.002 0.002 0.002
    AMWS 2168 0 0.001 0.626 0.001 0.002 0.004 0.002 0.005 0.002 0.036 0.003
    AMWS 2279 −4 0.013 0.706 0.069 0.005 0.042 0.005 0.014 0.009 0.002 0.011
    AMWS 2327 −36 0.001 0.975 0.001 0.003 0.001 0.001 0.001 0.001 0.001 0.001
    AMWS 987 −1 0.001 0.974 0.001 0.001 0.001 0.001 0.003 0.003 0.003 0.001
    AMWS 988 0 0.002 0.897 0.001 0.003 0.025 0.007 0.002 0.004 0.002 0.001
    WSSP 1955 −14 0.001 0.001 0.001 0.002 0.001 0.001 0.001 0.002 0.977 0.001
    WSSP 2139 −1 0.001 0.001 0.001 0.001 0.003 0.001 0.001 0.001 0.948 0.001
    WSSP 2143 0 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.977 0.002
    WSSP 2195 −27 0.002 0.004 0.002 0.002 0.001 0.003 0.002 0.001 0.962 0.001
    WSSP 2286 −5 0.001 0.002 0.002 0.002 0.002 0.003 0.002 0.001 0.943 0.001
  • TABLE 17C
    Canid Canid Missing Populations*
    Populationa ID No. Data 22 23 24 25 26 27 28 29 30 31 32 33 34
    TURV 1622 −1 0.001 0.002 0.001 0.002 0.004 0.003 0.002 0.001 0.003 0.002 0.001 0.002 0.001
    TURV 2194 −1 0.003 0.001 0.001 0.008 0.001 0.002 0.005 0.001 0.005 0.002 0.001 0.005 0.002
    TURV 2200 0 0.003 0.001 0.001 0.002 0.001 0.001 0.001 0.001 0.004 0.005 0.005 0.002 0.002
    TURV 2222 0 0.003 0.003 0.008 0.004 0.009 0.006 0.006 0.001 0.003 0.004 0.003 0.002 0.002
    BELS 1351 −1 0.001 0.001 0.001 0.003 0.001 0.001 0.001 0.003 0.002 0.005 0.001 0.001 0.001
    BELS 2111 −6 0.001 0.004 0.006 0.001 0.001 0.001 0.001 0.001 0.001 0.003 0.002 0.001 0.002
    BELS 2153 0 0.001 0.001 0.001 0.001 0.001 0 0.001 0.001 0.001 0.003 0.001 0.001 0.001
    BELS 2209 −1 0.001 0.001 0.001 0.001 0.001 0.001 0.011 0.001 0.001 0.001 0.002 0.001 0.001
    BELS 2210 0 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.001 0.001 0.001
    OES 1984 −1 0.905 0.004 0.006 0.002 0.006 0.002 0.004 0.002 0.004 0.001 0.001 0.004 0.003
    OES 2171 −4 0.85 0.004 0.002 0.004 0.003 0.001 0.001 0.002 0.003 0.002 0.003 0.019 0.001
    OES 2179 −9 0.881 0.025 0.004 0.002 0.002 0.001 0.001 0.007 0.001 0.007 0.012 0.008 0.006
    OES 1914 −5 0.966 0.001 0.001 0.004 0.002 0.001 0.003 0.001 0.002 0.003 0.001 0.001 0.001
    OES 2626 −38 0.965 0.001 0.001 0.001 0.003 0.002 0.002 0.001 0.001 0.002 0.002 0.002 0.001
    BORD 1648 −26 0.003 0.001 0.003 0.003 0.001 0.001 0.001 0.001 0.002 0.004 0.003 0.002 0.002
    BORD 1828 −17 0.002 0.005 0.023 0.002 0.001 0.01 0.003 0.001 0.001 0.001 0.003 0.002 0.001
    BORD 1829 −1 0.009 0.003 0.012 0.012 0.021 0.002 0.004 0.003 0.005 0.017 0.001 0.002 0.008
    BORD 2002 −3 0.006 0.002 0.002 0.003 0.001 0.001 0.001 0.001 0.002 0.005 0.002 0.002 0.001
    BORD 2003 −3 0.008 0.021 0.002 0.004 0.002 0.004 0.002 0.008 0.002 0.001 0.003 0.005 0.007
    AUSS 1336 −2 0.011 0.003 0.002 0.009 0.039 0.008 0.003 0.002 0.004 0.01 0.015 0.002 0.003
    AUSS 1337 −2 0.005 0.006 0.001 0.005 0.013 0.004 0.001 0.001 0.096 0.003 0.002 0.032 0.003
    AUSS 1500 −15 0.002 0.001 0.003 0.003 0.015 0.002 0.002 0.003 0.004 0.009 0.001 0.001 0.001
    AUSS 1521 −3 0.128 0.003 0.002 0.08 0.074 0.001 0.002 0.001 0.007 0.002 0.001 0.003 0.002
    AUSS 1683 −4 0.031 0.004 0.002 0.013 0.005 0.001 0.002 0.001 0.003 0.006 0.002 0.014 0.001
    COLL 1692 −2 0.001 0.001 0.001 0.002 0.973 0.001 0.001 0.001 0.001 0.001 0.001 0.004 0.002
    COLL 1701 −11 0.001 0.001 0.001 0.002 0.958 0 0.003 0.002 0.001 0.001 0.003 0.002 0.002
    COLL 2284 −16 0.001 0.001 0.001 0.001 0.978 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
    COLL 373 −2 0.001 0 0.001 0.001 0.983 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
    COLL 379 −3 0.001 0.001 0.001 0.001 0.978 0 0.001 0.001 0.002 0.001 0.001 0.001 0.001
    SSHP 1379 0 0.005 0.002 0.002 0.01 0.878 0.003 0.006 0.002 0.002 0.012 0.001 0.018 0.003
    SSHP 1523 −1 0.001 0.008 0.002 0.002 0.868 0.035 0.001 0.003 0.001 0.003 0.008 0.002 0.004
    SSHP 1824 −6 0.004 0.001 0.006 0.003 0.869 0.001 0.001 0.001 0.001 0.004 0.001 0.011 0.001
    SSHP 1921 −30 0.002 0.002 0.004 0.001 0.971 0.001 0.001 0.001 0.002 0.002 0.001 0.001 0.001
    SSHP 2040 −19 0.004 0.002 0.001 0.001 0.907 0.002 0.006 0.003 0.002 0.004 0.001 0.003 0.001
    DACH 1051 −5 0.002 0.001 0.001 0.002 0.001 0.001 0.001 0.003 0.002 0.001 0.002 0.002 0.002
    DACH 1052 −2 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0 0.001 0.001 0.001 0.001
    DACH 1053 −2 0.012 0.005 0.002 0.002 0.002 0.002 0.002 0.016 0.001 0.002 0.001 0.002 0.004
    DACH 1054 0 0.001 0.001 0.001 0.002 0.001 0.014 0.001 0.002 0.001 0.002 0.001 0.001 0.001
    DACH 1055 −1 0.001 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.001 0.002 0.003 0.001 0.001
    DANE 1574 −5 0.004 0.922 0.002 0.002 0.003 0.002 0.001 0.002 0.001 0.001 0.003 0.002 0.001
    DANE 1575 −11 0.004 0.9 0.002 0.002 0.001 0.032 0.001 0.001 0.002 0.001 0.002 0.002 0.003
    DANE 1580 −2 0.002 0.977 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.002
    DANE 1700 −7 0.002 0.934 0.003 0.002 0.004 0.001 0.002 0.004 0.002 0.012 0.001 0.001 0.002
    DANE 1748 −3 0.001 0.973 0.001 0.001 0.001 0.001 0.002 0.001 0.001 0.001 0.004 0.001 0.001
    IWOF 1581 −21 0.001 0.001 0.001 0.001 0 0 0.001 0.001 0.001 0.001 0.001 0.001 0.001
    IWOF 1761 −12 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
    IWOF 1792 −4 0.001 0.001 0.003 0.002 0.001 0.001 0.001 0.001 0.001 0.002 0.001 0.001 0.001
    IWOF 1906 −6 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
    IWOF 1993 −3 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.003 0.001 0.002 0.001 0.001 0.001
    BORZ 1378 0 0.004 0.001 0.001 0.002 0.004 0.001 0.944 0.007 0.001 0.003 0.002 0.007 0.003
    BORZ 1401 −4 0.001 0.001 0.002 0.001 0.001 0.001 0.979 0.001 0 0.001 0.001 0.001 0.002
    BORZ 1808 −2 0.001 0.004 0.001 0.003 0.001 0.002 0.959 0.001 0.001 0.001 0.004 0.001 0.002
    BORZ 2268 0 0.003 0.003 0.002 0.002 0.008 0.004 0.858 0.004 0.002 0.012 0.005 0.002 0.002
    BORZ 978 −1 0.003 0.008 0.001 0.004 0.002 0.001 0.936 0.001 0.011 0.006 0.006 0.003 0.003
    GREY 2477 −1 0.002 0.001 0.001 0.001 0.001 0.001 0.019 0.023 0.001 0.864 0.008 0.002 0.001
    GREY 2478 0 0.001 0.004 0.01 0.002 0.002 0.002 0.001 0.002 0.006 0.951 0.001 0.001 0.003
    GREY 2479 0 0.004 0.002 0.001 0.007 0.003 0.001 0.005 0.001 0.004 0.932 0.009 0.002 0.003
    GREY 2480 −3 0.002 0.001 0.001 0.004 0.004 0.011 0.004 0.001 0.001 0.929 0.002 0.001 0.002
    GREY 2481 −3 0.001 0.004 0.002 0.013 0.002 0.004 0.012 0.045 0.006 0.829 0.004 0.001 0.002
    WHIP 1355 −1 0.003 0.001 0.002 0.001 0.001 0.001 0.002 0.001 0.002 0.96 0.004 0.008 0.002
    WHIP 1395 −42 0.003 0.002 0.004 0.006 0.001 0.004 0.022 0.005 0.003 0.61 0.001 0.002 0.002
    WHIP 1407 −2 0.001 0.001 0.001 0.002 0.001 0.002 0.002 0.002 0.002 0.881 0.002 0.005 0.002
    WHIP 1409 −2 0.001 0.001 0.001 0.001 0.002 0.001 0.001 0.002 0.001 0.97 0.001 0.002 0.001
    WHIP 1518 −14 0.001 0.001 0.001 0.003 0.003 0.001 0.001 0.002 0.001 0.942 0.006 0.012 0.001
    ITGR 1568 −1 0.001 0.004 0.008 0.002 0.001 0.004 0.001 0.001 0.008 0.002 0.95 0.001 0.002
    ITGR 1570 −25 0.001 0.001 0.001 0.001 0.001 0.004 0.002 0.001 0.001 0.001 0.975 0.002 0.001
    ITGR 1862 −5 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0 0.001 0.001 0.978 0.002 0.001
    ITGR 1881 −12 0.001 0.001 0.001 0.002 0.001 0.001 0.001 0.001 0.006 0.002 0.949 0.004 0.001
    ITGR 1882 −3 0.001 0.002 0.001 0.001 0.001 0.001 0.004 0.002 0.001 0.002 0.972 0.002 0.001
    RHOD 1444 −16 0.002 0.001 0.006 0.003 0.043 0.002 0.001 0.001 0.002 0.001 0.002 0.004 0.002
    RHOD 1454 −2 0.035 0.003 0.01 0.014 0.004 0.001 0.002 0.002 0.002 0.015 0.014 0.004 0.01
    RHOD 1505 −3 0.03 0.023 0.003 0.036 0.002 0.014 0.002 0.001 0.03 0.003 0.002 0.008 0.005
    RHOD 1592 −14 0.001 0.001 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.001 0.001
    RHOD 1609 −50 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.003 0.001 0.001 0.001 0.001 0.001
    STBD 1075 −1 0.006 0.005 0.005 0.026 0.003 0.005 0.002 0.838 0.017 0.005 0.001 0.002 0.012
    STBD 1714 −5 0.001 0.001 0.001 0.002 0.001 0.001 0.001 0.98 0.001 0.001 0 0.001 0.001
    STBD 1750 −22 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.982 0.001 0.001 0.001 0.001 0.001
    STBD 2403 −17 0.001 0.002 0.001 0.001 0.003 0.001 0.005 0.967 0.001 0.001 0.001 0.005 0.001
    STBD 2404 −2 0.001 0.001 0.002 0.001 0.002 0 0.001 0.975 0.001 0.001 0.001 0.001 0.001
    CLSP 1008 −1 0.001 0.003 0.003 0.001 0.001 0.976 0 0.001 0.001 0.001 0.001 0.001 0.001
    CLSP 1009 0 0 0.001 0 0.001 0.001 0.988 0 0.001 0.001 0.001 0.001 0 0
    CLSP 1802 −2 0 0.001 0 0 0 0.992 0 0 0 0 0 0 0
    CLSP 2312 −1 0.001 0.001 0.001 0.002 0.001 0.978 0.001 0.001 0.001 0.001 0.001 0.001 0.001
    CLSP 2314 0 0 0 0.001 0.001 0.001 0.988 0 0.001 0 0.001 0.001 0 0
    AUST 1387 −3 0.006 0.006 0.002 0.003 0.006 0.001 0.003 0.001 0.002 0.004 0.011 0.91 0.004
    AUST 1531 −1 0.003 0.004 0.002 0.002 0.004 0.007 0.005 0.002 0.018 0.002 0.001 0.899 0.004
    AUST 1564 −7 0.001 0.001 0.001 0.002 0.003 0 0.001 0.001 0.001 0.001 0.003 0.973 0.002
    AUST 1870 −5 0.001 0.001 0.002 0.002 0.003 0.003 0.011 0.001 0.001 0.001 0.001 0.95 0.001
    AUST 1871 0 0.012 0.009 0.005 0.016 0.002 0.002 0.002 0.003 0.002 0.014 0.001 0.806 0.007
    WHWT 1388 −13 0.002 0.001 0.001 0.001 0.002 0.007 0.004 0.001 0.954 0.002 0.007 0.002 0.002
    WHWT 1420 −7 0.001 0.001 0.001 0.003 0.001 0.001 0.001 0.113 0.856 0.003 0.001 0.002 0.001
    WHWT 1992 −5 0.002 0.001 0.001 0.003 0.001 0.006 0.001 0.001 0.968 0.001 0.001 0.001 0.001
    WHWT 2100 −4 0.002 0.003 0.005 0.003 0.006 0.001 0.001 0.003 0.948 0.002 0.002 0.001 0.001
    WHWT 2128 0 0.002 0.001 0.001 0.002 0.001 0 0.001 0.001 0.979 0.001 0.001 0.001 0.001
    CAIR 1405 −1 0.002 0.002 0.002 0.638 0.002 0.007 0.001 0.004 0.28 0.006 0.001 0.002 0.011
    CAIR 2096 −28 0.001 0.001 0.003 0.857 0.002 0.002 0.002 0.001 0.076 0.005 0.011 0.002 0.003
    CAIR 2113 −4 0.003 0.003 0.003 0.693 0.001 0.001 0.004 0.001 0.242 0.004 0.004 0.002 0.004
    CAIR 2125 −1 0.005 0.001 0.005 0.619 0.001 0.001 0.001 0.001 0.332 0.004 0.002 0.002 0.002
    CAIR 2131 −8 0.009 0.003 0.002 0.917 0.005 0.003 0.003 0.002 0.007 0.005 0.002 0.004 0.003
    BEDT 1422 −5 0.001 0 0.987 0.001 0.001 0.001 0 0.001 0.001 0.001 0.001 0.001 0.001
    BEDT 1423 −8 0 0.001 0.986 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
    BEDT 1424 −21 0.001 0.001 0.982 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
    BEDT 1426 −30 0.001 0.001 0.981 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
    CHIH 1202 −8 0.002 0.002 0.002 0.002 0.003 0.001 0.001 0.003 0.001 0.001 0.002 0.002 0.963
    CHIH 1203 −4 0.001 0.001 0.001 0.003 0.001 0.001 0.001 0.001 0.002 0.001 0.001 0.002 0.969
    CHIH 1204 0 0.003 0.002 0.002 0.005 0.001 0.002 0.009 0.002 0.002 0.013 0.001 0.006 0.921
    CHIH 1205 −2 0.013 0.003 0.001 0.007 0.003 0.004 0.001 0.001 0.002 0.002 0.001 0.001 0.417
    CHIH 1206 −1 0.001 0.001 0.003 0.409 0.002 0.007 0.001 0.003 0.002 0.018 0.005 0.029 0.405
    Canid Canid Missing Populations*
    Populationa ID No. Data 35 36 37 38 39 40 41 42 43
    TURV 1622 −1 0.002 0.002 0.002 0.001 0.002 0.002 0.958 0.004 0.00 
    Figure US20230279505A1-20230907-P00899
    TURV 2194 −1 0.009 0.005 0.016 0.002 0.01 0.004 0.881 0.019 0.01 
    Figure US20230279505A1-20230907-P00899
    TURV 2200 0 0.003 0.001 0.008 0.001 0.003 0.001 0.951 0.002 0.00 
    Figure US20230279505A1-20230907-P00899
    TURV 2222 0 0.005 0.013 0.001 0.001 0.005 0.007 0.907 0.004 0.00 
    Figure US20230279505A1-20230907-P00899
    BELS 1351 −1 0.001 0.001 0.001 0.002 0.001 0.001 0.967 0.002 0.00 
    Figure US20230279505A1-20230907-P00899
    BELS 2111 −6 0.002 0.002 0.001 0.008 0.002 0.001 0.954 0.002 0.00 
    Figure US20230279505A1-20230907-P00899
    BELS 2153 0 0.001 0.001 0.001 0.001 0.001 0.001 0.981 0.001 0.00 
    Figure US20230279505A1-20230907-P00899
    BELS 2209 −1 0.001 0.001 0.001 0.001 0.001 0 0.973 0.001 0.00 
    Figure US20230279505A1-20230907-P00899
    BELS 2210 0 0.001 0.001 0.001 0.004 0.001 0.001 0.976 0.001 0.00 
    Figure US20230279505A1-20230907-P00899
    OES 1984 −1 0.006 0.002 0.001 0.003 0.021 0.001 0.002 0.0 
    Figure US20230279505A1-20230907-P00899
    Figure US20230279505A1-20230907-P00899
     .01 
    Figure US20230279505A1-20230907-P00899
    OES 2171 −4 0.018 0.019 0.002 0.004 0.023 0.002 0.001 0.0 
    Figure US20230279505A1-20230907-P00899
    Figure US20230279505A1-20230907-P00899
     .01 
    Figure US20230279505A1-20230907-P00899
    OES 2179 −9 0.004 0.01 0.005 0.006 0.004 0.002 0.005 0.004 0.00 
    Figure US20230279505A1-20230907-P00899
    OES 1914 −5 0.002 0.001 0.001 0.002 0.002 0.001 0.001 0.002 0.00 
    Figure US20230279505A1-20230907-P00899
    OES 2626 −38 0.002 0.002 0.002 0.001 0.002 0.002 0.002 0.002 0.00 
    Figure US20230279505A1-20230907-P00899
    BORD 1648 −26 0.002 0.958 0.003 0.001 0.002 0.001 0.001 0.002 0.00 
    Figure US20230279505A1-20230907-P00899
    BORD 1828 −17 0.003 0.749 0.006 0.168 0.003 0.006 0.001 0.004 0.00 
    Figure US20230279505A1-20230907-P00899
    BORD 1829 −1 0.018 0.823 0.001 0.002 0.02 0.002 0.005 0.014 0.01 
    Figure US20230279505A1-20230907-P00899
    BORD 2002 −3 0.002 0.955 0.002 0.001 0.003 0.001 0.001 0.003 0.00 
    Figure US20230279505A1-20230907-P00899
    BORD 2003 −3 0.006 0.886 0.002 0.005 0.005 0.003 0.008 0.011 0.00 
    Figure US20230279505A1-20230907-P00899
    AUSS 1336 −2 0.26 0.034 0.002 0.005 0.347 0.016 0.005 0.064 0.155
    AUSS 1337 −2 0.015 0.022 0.001 0.002 0.342 0.002 0.003 0.2 0.239
    AUSS 1500 −15 0.003 0.005 0.001 0.001 0.003 0.003 0.001 0.472 0.463
    AUSS 1521 −3 0.073 0.004 0.003 0.002 0.382 0.002 0.001 0.085 0.141
    AUSS 1683 −4 0.128 0.078 0.002 0.002 0.06 0.003 0.002 0.344 0.297
    COLL 1692 −2 0.001 0.003 0.001 0.002 0.001 0.002 0.001 0.001 0.001
    COLL 1701 −11 0.003 0.002 0.001 0.001 0.004 0.005 0.002 0.00 
    Figure US20230279505A1-20230907-P00899
    Figure US20230279505A1-20230907-P00899
     .003
    COLL 2284 −16 0.001 0.001 0.001 0.001 0.002 0.001 0.001 0.0 
    Figure US20230279505A1-20230907-P00899
    Figure US20230279505A1-20230907-P00899
     .002
    COLL 373 −2 0.001 0.001 0.001 0.001 0.001 0 0.001 0.001 0.001
    COLL 379 −3 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.001 0.001
    SSHP 1379 0 0.006 0.005 0.002 0.013 0.004 0.001 0.001 0.012 0.011
    SSHP 1523 −1 0.006 0.001 0.029 0.005 0.004 0.003 0.003 0.006 0.005
    SSHP 1824 −6 0.002 0.004 0.005 0.004 0.003 0.008 0.066 0.003 0.003
    SSHP 1921 −30 0.001 0.001 0.001 0.001 0.002 0.001 0.001 0.002 0.002
    SSHP 2040 −19 0.013 0.004 0.002 0.002 0.009 0.001 0.018 0.007 0.008
    DACH 1051 −5 0.002 0.002 0.001 0.001 0.002 0.968 0.001 0.001 0.001
    DACH 1052 −2 0.001 0.001 0.001 0.001 0.001 0.984 0.001 0.001 0.001
    DACH 1053 −2 0.005 0.002 0.007 0.004 0.003 0.915 0.002 0.005 0.004
    DACH 1054 0 0.002 0.001 0.001 0.001 0.001 0.961 0.001 0.001 0.002
    DACH 1055 −1 0.002 0.001 0.001 0.001 0.002 0.971 0.002 0.001 0.002
    DANE 1574 −5 0.002 0.001 0.005 0.037 0.001 0.002 0.004 0.00 
    Figure US20230279505A1-20230907-P00899
    Figure US20230279505A1-20230907-P00899
    002
    DANE 1575 −11 0.006 0.002 0.001 0.02 0.005 0.006 0.002 0.0 
    Figure US20230279505A1-20230907-P00899
    Figure US20230279505A1-20230907-P00899
     .00 
    Figure US20230279505A1-20230907-P00899
    DANE 1580 −2 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.001 0.00 
    Figure US20230279505A1-20230907-P00899
    DANE 1700 −7 0.002 0.002 0.013 0.001 0.002 0.001 0.006 0.002 0.00 
    Figure US20230279505A1-20230907-P00899
    DANE 1748 −3 0.001 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.00 
    Figure US20230279505A1-20230907-P00899
    IWOF 1581 −21 0.001 0.001 0.985 0.001 0.001 0 0.001 0.001 0.00 
    Figure US20230279505A1-20230907-P00899
    IWOF 1761 −12 0.001 0.001 0.981 0.001 0.001 0.001 0.001 0.001 0.00 
    Figure US20230279505A1-20230907-P00899
    IWOF 1792 −4 0.001 0.001 0.972 0.003 0.001 0.002 0.001 0.001 0.00 
    Figure US20230279505A1-20230907-P00899
    IWOF 1906 −6 0.001 0.001 0.982 0.002 0.001 0.001 0.001 0.001 0.00 
    Figure US20230279505A1-20230907-P00899
    IWOF 1993 −3 0.001 0 0.972 0.001 0.001 0.001 0.006 0.001 0.00 
    Figure US20230279505A1-20230907-P00899
    BORZ 1378 0 0.003 0.002 0.001 0.001 0.004 0.002 0.001 0.003 0.003
    BORZ 1401 −4 0.001 0.001 0.003 0.001 0.001 0.001 0 0.001 0.001
    BORZ 1808 −2 0.002 0.001 0.001 0.003 0.003 0.002 0.001 0.003 0.004
    BORZ 2268 0 0.007 0.002 0.058 0.002 0.005 0.004 0.004 0.006 0.004
    BORZ 978 −1 0.002 0.001 0.001 0.001 0.002 0.001 0.005 0.001 0.002
    GREY 2477 −1 0.012 0.001 0.018 0.005 0.011 0.001 0.003 0.015 0.009
    GREY 2478 0 0.002 0.001 0.001 0.001 0.002 0.002 0.001 0.00 
    Figure US20230279505A1-20230907-P00899
    Figure US20230279505A1-20230907-P00899
    02
    GREY 2479 0 0.004 0.002 0.004 0.002 0.005 0.001 0.001 0.0 
    Figure US20230279505A1-20230907-P00899
    Figure US20230279505A1-20230907-P00899
    004
    GREY 2480 −3 0.006 0.001 0.012 0.002 0.005 0.001 0.003 0.003 0.004
    GREY 2481 −3 0.011 0.005 0.017 0.001 0.006 0.002 0.003 0.012 0.016
    WHIP 1355 −1 0.002 0.001 0.002 0.001 0.002 0.001 0.001 0.001 0.002
    WHIP 1395 −42 0.006 0.02 0.148 0.004 0.02 0.004 0.002 0.067 0.065
    WHIP 1407 −2 0.003 0.002 0.083 0.001 0.002 0.002 0.002 0.002 0.002
    WHIP 1409 −2 0.001 0.001 0.007 0.001 0.001 0.001 0.002 0.001 0.001
    WHIP 1518 −14 0.003 0.002 0.001 0.001 0.003 0.001 0.001 0.006 0.00 
    Figure US20230279505A1-20230907-P00899
    ITGR 1568 −1 0.002 0.001 0.003 0.001 0.002 0.001 0.003 0.001 0.00 
    Figure US20230279505A1-20230907-P00899
    ITGR 1570 −25 0.001 0.001 0.002 0.001 0.001 0.001 0.001 0.001 0.00 
    Figure US20230279505A1-20230907-P00899
    ITGR 1862 −5 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.00 
    Figure US20230279505A1-20230907-P00899
    ITGR 1881 −12 0.003 0.003 0.001 0.005 0.002 0.004 0.003 0.003 0.00 
    Figure US20230279505A1-20230907-P00899
    ITGR 1882 −3 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.00 
    Figure US20230279505A1-20230907-P00899
    RHOD 1444 −16 0.002 0.004 0.001 0.908 0.003 0.002 0.002 0.00 
    Figure US20230279505A1-20230907-P00899
    Figure US20230279505A1-20230907-P00899
    00 
    Figure US20230279505A1-20230907-P00899
    RHOD 1454 −2 0.011 0.002 0.009 0.695 0.008 0.003 0.002 0.0 
    Figure US20230279505A1-20230907-P00899
    Figure US20230279505A1-20230907-P00899
    08 
    Figure US20230279505A1-20230907-P00899
    RHOD 1505 −3 0.01 0.003 0.009 0.774 0.023 0.002 0.002 0.009 0.0 
    Figure US20230279505A1-20230907-P00899
    RHOD 1592 −14 0.001 0.001 0.001 0.979 0.001 0.002 0.001 0.001 0.00 
    Figure US20230279505A1-20230907-P00899
    RHOD 1609 −50 0.001 0.001 0.001 0.977 0.001 0.001 0.001 0.001 0.00 
    Figure US20230279505A1-20230907-P00899
    STBD 1075 −1 0.02 0.004 0.002 0.001 0.011 0.001 0.017 0.01 0.01 
    Figure US20230279505A1-20230907-P00899
    STBD 1714 −5 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.00 
    Figure US20230279505A1-20230907-P00899
    STBD 1750 −22 0.001 0.001 0.001 0.001 0.001 0.001 0 0.001 0.00 
    Figure US20230279505A1-20230907-P00899
    STBD 2403 −17 0.001 0.001 0.001 0.001 0.001 0.002 0.002 0.001 0.00 
    Figure US20230279505A1-20230907-P00899
    STBD 2404 −2 0.001 0.001 0.003 0.002 0.001 0.002 0.001 0.001 0.00 
    Figure US20230279505A1-20230907-P00899
    CLSP 1008 −1 0.001 0.001 0.003 0.001 0.001 0.001 0.001 0.001 0.001
    CLSP 1009 0 0.001 0.001 0.001 0 0.001 0.001 0 0.001 0.001
    CLSP 1802 −2 0 0 0 0 0 0 0 0 0
    CLSP 2312 −1 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
    CLSP 2314 0 0.001 0.001 0 0.001 0.001 0 0 0.001 0.001
    AUST 1387 −3 0.003 0.002 0.015 0.002 0.005 0.003 0.002 0.005 0.004
    AUST 1531 −1 0.005 0.017 0.003 0.002 0.005 0.005 0.002 0.00 
    Figure US20230279505A1-20230907-P00899
    Figure US20230279505A1-20230907-P00899
     .004
    AUST 1564 −7 0.001 0.002 0.001 0.001 0.002 0.001 0.001 0.0 
    Figure US20230279505A1-20230907-P00899
    Figure US20230279505A1-20230907-P00899
     .001
    AUST 1870 −5 0.003 0.002 0.001 0.001 0.004 0.003 0.001 0.003 0.00 
    Figure US20230279505A1-20230907-P00899
    AUST 1871 0 0.006 0.004 0.002 0.083 0.007 0.001 0.003 0.007 0.00 
    Figure US20230279505A1-20230907-P00899
    WHWT 1388 −13 0.002 0.001 0.001 0.001 0.002 0.002 0.002 0.002 0.00 
    Figure US20230279505A1-20230907-P00899
    WHWT 1420 −7 0.002 0.002 0.001 0.001 0.002 0.001 0.001 0.002 0.00 
    Figure US20230279505A1-20230907-P00899
    WHWT 1992 −5 0.001 0.001 0.003 0.001 0.001 0.001 0.002 0.001 0.00 
    Figure US20230279505A1-20230907-P00899
    WHWT 2100 −4 0.003 0.002 0.001 0.001 0.003 0.005 0.003 0.002 0.00 
    Figure US20230279505A1-20230907-P00899
    WHWT 2128 0 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.00 
    Figure US20230279505A1-20230907-P00899
    CAIR 1405 −1 0.008 0.004 0.003 0.002 0.008 0.002 0.004 0.004 0.00 
    Figure US20230279505A1-20230907-P00899
    CAIR 2096 −28 0.004 0.001 0.001 0.002 0.005 0.003 0.001 0.007 0.00 
    Figure US20230279505A1-20230907-P00899
    CAIR 2113 −4 0.005 0.002 0.001 0.002 0.006 0.003 0.003 0.006 0.00 
    Figure US20230279505A1-20230907-P00899
    CAIR 2125 −1 0.004 0.001 0.001 0.004 0.003 0.001 0.005 0.003 0.00 
    Figure US20230279505A1-20230907-P00899
    CAIR 2131 −8 0.004 0.01 0.001 0.001 0.005 0.001 0.002 0.006 0.00 
    Figure US20230279505A1-20230907-P00899
    BEDT 1422 −5 0.001 0.001 0.001 0.001 0.001 0.001 0 0.00 
    Figure US20230279505A1-20230907-P00899
    Figure US20230279505A1-20230907-P00899
    00 
    Figure US20230279505A1-20230907-P00899
    BEDT 1423 −8 0.001 0 0.001 0.001 0.001 0.001 0 0.00 
    Figure US20230279505A1-20230907-P00899
    Figure US20230279505A1-20230907-P00899
     .00 
    Figure US20230279505A1-20230907-P00899
    BEDT 1424 −21 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.00 
    Figure US20230279505A1-20230907-P00899
    BEDT 1426 −30 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.00 
    Figure US20230279505A1-20230907-P00899
    CHIH 1202 −8 0.002 0.001 0.002 0.003 0.002 0.002 0.002 0.001 0.00 
    Figure US20230279505A1-20230907-P00899
    CHIH 1203 −4 0.002 0.001 0.001 0.001 0.002 0.002 0.002 0.001 0.00 
    Figure US20230279505A1-20230907-P00899
    CHIH 1204 0 0.006 0.003 0.002 0.001 0.007 0.001 0.001 0.005 0.00 
    Figure US20230279505A1-20230907-P00899
    CHIH 1205 −2 0.176 0.003 0.001 0.005 0.113 0.004 0.005 0.118 0.11 
    Figure US20230279505A1-20230907-P00899
    CHIH 1206 −1 0.013 0.018 0.012 0.006 0.011 0.005 0.007 0.021 0.01 
    Figure US20230279505A1-20230907-P00899
    Figure US20230279505A1-20230907-P00899
    indicates data missing or illegible when filed
  • TABLE 17D
    Canid Canid Missing Populations*
    Populationa ID No. Data 65 66 67 68 69 70 71 72 73 74
    CHBR 1546 −4 0.002 0.832 0.008 0.001 0.006 0.003 0.002 0.004 0.004 0.006
    CHBR 1549 −4 0.001 0.955 0.001 0.002 0.001 0.001 0.004 0.003 0.004 0.003
    CHBR 1813 −3 0.001 0.951 0.002 0.001 0.003 0.003 0.002 0.003 0.002 0.002
    CHBR 2091 −1 0.003 0.868 0.005 0.001 0.003 0.003 0.001 0.004 0.022 0.021
    CHBR 888 −12 0.002 0.959 0.001 0.009 0.001 0.001 0.001 0.001 0.002 0.001
    FCR 1188 −1 0.002 0.001 0.001 0.001 0.221 0.001 0.001 0.001 0.001 0.001
    FCR 2020 −11 0.001 0.005 0.001 0.001 0.215 0.001 0.001 0.001 0.002 0.001
    FCR 2042 −7 0.002 0.001 0.001 0.001 0.221 0.001 0.001 0.001 0.001 0.001
    FCR 2044 0 0.002 0.009 0.001 0.001 0.193 0.002 0.007 0.001 0.001 0.001
    FCR 2259 0 0.005 0.001 0.001 0.001 0.213 0.008 0.002 0.002 0.001 0.001
    GOLD 591 −3 0.003 0.002 0.003 0.002 0.001 0.002 0.004 0.004 0.001 0.005
    GOLD 592 −3 0.001 0.009 0.001 0.003 0.01 0.001 0.002 0.005 0.004 0.01
    GOLD 593 −1 0.002 0.003 0.001 0.001 0.001 0.007 0.003 0.001 0.002 0.003
    GOLD 603 0 0.001 0.002 0.001 0.002 0.001 0.001 0.001 0.002 0.001 0.001
    GOLD 604 0 0.001 0.002 0.001 0.001 0.009 0.002 0.002 0.004 0.002 0.001
    LAB 1310 −2 0.008 0.002 0.005 0.102 0.003 0.016 0.002 0.019 0.01 0.012
    LAB 1465 −2 0.001 0.003 0.001 0.001 0.002 0.001 0.001 0.001 0.001 0.001
    LAB 1468 −12 0.001 0.004 0.001 0.001 0.005 0.005 0.005 0.001 0.004 0.002
    LAB 1754 −12 0.023 0.002 0.002 0.001 0.001 0.002 0.001 0.009 0.005 0.004
    LAB 1830 −17 0.001 0.003 0.005 0.021 0.001 0.009 0.003 0.013 0.003 0.002
    GSD 1666 −23 0.002 0.001 0.001 0 0.001 0.001 0.001 0.001 0.001 0.001
    GSD 1776 −9 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.001 0.001 0.001
    GSD 2011 −2 0.001 0.001 0.001 0.003 0.001 0.002 0.001 0.001 0.001 0.001
    GSD 2060 −2 0.001 0.001 0.001 0.001 0.003 0.001 0.002 0.001 0.001 0.002
    GSD 2086 −6 0.003 0.003 0.005 0.001 0.001 0.002 0.001 0.002 0.002 0.001
    IRTR 2152 −4 0.75 0.055 0.008 0.053 0.007 0.001 0.001 0.013 0.004 0.003
    IRTR 2189 −4 0.987 0.001 0.001 0.001 0.001 0 0 0 0.001 0.001
    IRTR 2238 −1 0.973 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
    IRTR 2242 −1 0.984 0.001 0.001 0.001 0.001 0 0.001 0.002 0.001 0.001
    KERY 13878 0 0.007 0.042 0.006 0.003 0.001 0.001 0.002 0.002 0.91 0.002
    KERY 1483 −11 0.001 0.002 0.001 0.002 0.001 0.001 0.001 0.001 0.975 0.001
    KERY 1579 −2 0.002 0.001 0.001 0.004 0.001 0.001 0.001 0.002 0.968 0.001
    KERY 2014 0 0.003 0.058 0.003 0.002 0.001 0.004 0.001 0.009 0.852 0.006
    KERY 24255 −1 0.001 0.001 0.001 0.134 0.002 0.001 0.001 0.001 0.826 0.001
    SCWT 1624 −30 0.001 0.001 0.001 0.978 0.001 0.001 0.001 0.001 0.001 0.001
    SCWT 1770 −4 0.004 0.001 0.001 0.973 0.001 0.001 0.001 0.001 0.005 0.001
    SCWT 2250 −6 0.003 0.001 0.001 0.982 0.001 0.001 0 0.001 0.001 0.001
    SCWT 2301 −15 0.001 0.002 0.001 0.975 0.001 0.001 0.001 0.001 0.001 0.001
    POM 1190 −2 0.001 0.002 0.001 0.003 0.004 0.001 0.004 0.002 0.004 0.002
    POM 1191 −2 0.001 0.002 0.003 0.005 0.005 0.009 0.004 0.02 0.004 0.002
    POM 1210 −8 0.007 0.003 0.003 0.007 0.004 0.007 0.007 0.001 0.003 0.007
    POM 1238 0 0.003 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.002
    POM 1239 −14 0.004 0.005 0.002 0.003 0.001 0.001 0.001 0.002 0.003 0.002
    SCHP 1386 −9 0.008 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.002
    SCHP 1471 −13 0.002 0.001 0.001 0.001 0.002 0.002 0.001 0.001 0.001 0.002
    SCHP 1814 −1 0.001 0.001 0.001 0.001 0.001 0.002 0.028 0.002 0.001 0.001
    SCHP 1852 0 0.001 0.001 0.001 0.004 0.001 0.001 0.001 0.001 0.001 0.003
    BMD 941 −11 0.001 0.003 0.001 0.002 0.004 0.014 0.007 0.002 0.002 0.002
    BMD 943 −10 0.002 0.002 0.001 0.002 0.002 0.005 0.002 0.001 0.002 0.002
    BMD 968 −15 0.001 0.001 0.001 0.001 0.001 0.002 0.002 0.002 0.001 0.001
    BMD 1763 −10 0.012 0.003 0.002 0.002 0.005 0.003 0.003 0.002 0.012 0.002
    BMD 969 −2 0.001 0.001 0.001 0.001 0.013 0.002 0.001 0.003 0.004 0.001
    GSMD 1547 −4 0.001 0.001 0.001 0.001 0 0.001 0.001 0 0.001 0.001
    GSMD 1659 0 0.002 0.001 0.001 0.001 0.001 0.001 0.003 0.001 0.002 0.001
    GSMD 1660 −4 0.003 0.003 0.007 0.005 0.001 0.002 0.002 0.002 0.002 0.002
    GSMD 1662 −42 0.001 0.004 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
    GSMD 1663 −5 0.001 0.001 0 0.001 0 0.001 0 0.001 0.001 0
    BOX 1176 0 0.001 0.001 0 0 0.981 0.001 0.001 0.001 0.001 0.002
    BOX 1177 −1 0.004 0.021 0.002 0.002 0.912 0.001 0.006 0.002 0.002 0.003
    BOX 1178 0 0.001 0.001 0.003 0.001 0.978 0.001 0.001 0.002 0.002 0.001
    BOX 1179 −3 0.001 0 0.001 0 0.988 0.001 0.001 0.001 0 0.001
    BOX 1304 −1 0.001 0.001 0.001 0.001 0.984 0.001 0.001 0.001 0.001 0.002
    MBLT 1915 −5 0.003 0.001 0.956 0.001 0.002 0.001 0.001 0.002 0.003 0.002
    MBLT 2253 −12 0.001 0.001 0.979 0.002 0.001 0.001 0.001 0.001 0.001 0.001
    MBLT 2254 −33 0.001 0.001 0.989 0.001 0.001 0.001 0.001 0.001 0 0.001
    MBLT 2255 −23 0.002 0.001 0.98 0.001 0.001 0.001 0.001 0.001 0.001 0.001
    MBLT 2256 −34 0.001 0.001 0.981 0.001 0.002 0.002 0.001 0.001 0.001 0.001
    BULD 1193 −1 0.001 0.002 0.003 0.001 0.002 0.002 0.001 0.003 0.009 0.003
    BULD 1194 −2 0.001 0.001 0.001 0.009 0.001 0.002 0.002 0.003 0.002 0.002
    BULD 1195 −8 0.005 0.001 0.001 0.002 0.001 0.001 0.001 0.003 0.001 0.002
    BULD 1197 −3 0.001 0.001 0.002 0.001 0.001 0.001 0.005 0.001 0.001 0.001
    BULD 1198 0 0.001 0.004 0.002 0.001 0.002 0.002 0.001 0.005 0.003 0.003
    FBLD 1507 −9 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
    FBLD 1508 −7 0.001 0.003 0.003 0.004 0.004 0.002 0.001 0.003 0.008 0.003
    FBLD 1509 −5 0.001 0.001 0.002 0.002 0.002 0.001 0.002 0.001 0.001 0.001
    FBLD 2671 −15 0.017 0.001 0.05 0.003 0.001 0.001 0.001 0.003 0.001 0.002
    PRES 1082 −4 0.002 0.003 0.12 0.001 0.012 0.002 0.001 0.016 0.002 0.002
    PRES 1096 0 0.003 0.018 0.003 0.001 0.007 0.006 0.002 0.007 0.05 0.748
    PRES 1115 0 0.001 0.002 0.015 0.002 0.016 0.002 0.001 0.003 0.002 0.926
    PRES 1127 −7 0.002 0.021 0.003 0.001 0.011 0.002 0.006 0.002 0.001 0.817
    PRES 1095 −5 0.005 0.003 0.009 0.013 0.006 0.002 0.002 0.014 0.007 0.909
    BULM 1105 0 0.008 0.003 0.003 0.002 0.008 0.011 0.001 0.922 0.001 0.005
    BULM 1106 −3 0.002 0.009 0.003 0.002 0.001 0.004 0.001 0.902 0.002 0.007
    BULM 1107 −1 0.002 0.002 0.001 0.001 0.003 0.001 0.001 0.972 0.001 0.001
    BULM 1108 0 0.016 0.01 0.065 0.005 0.001 0.002 0.001 0.844 0.004 0.015
    BULM 1109 0 0.005 0.001 0.007 0.004 0.007 0.001 0.002 0.915 0.002 0.01
    MAST 1015 0 0.001 0.001 0.004 0.002 0.001 0.001 0.001 0.968 0.004 0.001
    MAST 1016 0 0.002 0.002 0.001 0.001 0.001 0.001 0.001 0.911 0.003 0.002
    MAST 1017 −25 0.002 0.001 0.001 0.002 0.002 0.002 0.001 0.964 0.002 0.002
    MAST 1066 −3 0.001 0.002 0.002 0.001 0.001 0.001 0.002 0.962 0.002 0.001
    MAST 991 −18 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.977 0.003 0.001
    NEWF 271 −2 0.002 0.004 0.001 0.001 0.005 0.874 0.01 0.002 0.002 0.016
    NEWF 274 −1 0.001 0.001 0.002 0.001 0.001 0.968 0.001 0.002 0.001 0.001
    NEWF 275 −2 0.002 0.002 0.001 0.001 0.001 0.979 0.002 0.001 0.001 0.001
    NEWF 277 0 0.002 0.001 0.001 0.001 0.006 0.904 0.005 0.02 0.001 0.002
    NEWF 278 −2 0.002 0.003 0.001 0.001 0.002 0.667 0.003 0.005 0.002 0.203
    ROTT 1014 −2 0.003 0.005 0.001 0.004 0.001 0.011 0.933 0.002 0.001 0.001
    ROTT 1028 −3 0.001 0.001 0 0 0.001 0.003 0.981 0 0 0.001
    ROTT 1029 −1 0.001 0.002 0.002 0.006 0.001 0.007 0.939 0.001 0.001 0.001
    ROTT 1033 −4 0.002 0.002 0.003 0.001 0.001 0.003 0.963 0.002 0.001 0.003
    ROTT 1034 0 0.001 0.002 0.001 0.001 0.004 0.001 0.967 0.001 0.002 0.001
    Canid Populations*
    Populationa 75 76 77 78 79 80 81 82 83 84 85
    CHBR 0.031 0.008 0.003 0.007 0.044 0.005 0.014 0.009 0.002 0.002 0.006
    CHBR 0.002 0.004 0.001 0.002 0.003 0.001 0.002 0.004 0.001 0.003 0.001
    CHBR 0.002 0.002 0.005 0.003 0.006 0.002 0.002 0.001 0.003 0.003 0.001
    CHBR 0.002 0.007 0.002 0.002 0.007 0.007 0.004 0.027 0.001 0.002 0.009
    CHBR 0.001 0.001 0.001 0.001 0.001 0.002 0.002 0.001 0.002 0.001 0.01
    FCR 0.005 0.002 0.002 0.001 0.001 0.002 0.002 0.748 0.001 0.001 0.004
    FCR 0.002 0.001 0.001 0.001 0.003 0.001 0.002 0.759 0.001 0.001 0.001
    FCR 0.001 0.001 0.001 0 0.001 0.001 0.001 0.759 0.001 0.004 0.001
    FCR 0.003 0.004 0.004 0.002 0.002 0.001 0.002 0.746 0.001 0.011 0.004
    FCR 0.001 0.001 0.001 0.001 0.002 0.001 0.001 0.754 0.001 0.001 0.002
    GOLD 0.027 0.003 0.001 0.001 0.925 0.002 0.003 0.01 0.001 0.001 0.001
    GOLD 0.144 0.07 0.003 0.001 0.642 0.005 0.019 0.063 0.001 0.002 0.003
    GOLD 0.006 0.003 0.004 0.001 0.95 0.002 0.003 0.002 0.002 0.001 0.003
    GOLD 0.001 0.001 0.002 0.001 0.979 0.001 0.001 0.001 0.001 0.001 0
    GOLD 0.001 0.002 0.004 0.011 0.939 0.003 0.002 0.005 0.002 0.001 0.003
    LAB 0.547 0.045 0.001 0.008 0.002 0.004 0.029 0.179 0.003 0.003 0.002
    LAB 0.745 0.001 0.003 0.002 0.002 0.001 0.001 0.23 0.001 0.001 0.001
    LAB 0.728 0.004 0.002 0.001 0.001 0.001 0.002 0.222 0.001 0.005 0.001
    LAB 0.703 0.004 0.002 0.003 0.006 0.002 0.007 0.214 0.006 0.001 0.001
    LAB 0.359 0.082 0.001 0.006 0.027 0.001 0.363 0.095 0.002 0.001 0.002
    GSD 0.001 0.001 0.006 0.977 0.001 0.001 0.001 0.001 0.001 0.001 0.001
    GSD 0.001 0.001 0.003 0.98 0.001 0.001 0.001 0.001 0.001 0.002 0.001
    GSD 0.001 0.001 0.002 0.975 0.001 0.001 0.002 0.001 0.001 0.001 0.001
    GSD 0.001 0.001 0.001 0.977 0.001 0.001 0.001 0.001 0.001 0.001 0.001
    GSD 0.003 0.002 0.003 0.961 0.002 0.001 0.003 0.002 0.001 0.001 0.002
    IRTR 0.008 0.034 0.002 0.002 0.005 0.003 0.009 0.036 0.001 0.002 0.002
    IRTR 0.001 0.001 0.001 0 0 0.001 0 0.001 0.001 0 0.001
    IRTR 0.001 0.001 0.002 0.001 0.001 0.001 0.001 0.003 0.001 0.001 0.004
    IRTR 0.001 0.001 0.001 0 0.001 0.001 0.001 0.001 0.001 0.001 0.001
    KERY 0.003 0.003 0.005 0.001 0.001 0.001 0.001 0.002 0.003 0.001 0.001
    KERY 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.002 0.001 0.003
    KERY 0.003 0.001 0.001 0.001 0.004 0.001 0.002 0.002 0.001 0.001 0.001
    KERY 0.006 0.005 0.002 0.002 0.002 0.028 0.004 0.002 0.002 0.001 0.007
    KERY 0.001 0.001 0.001 0.001 0.001 0.003 0.002 0.001 0.002 0.013 0.005
    SCWT 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.003 0.001
    SCWT 0.001 0.001 0.001 0 0.001 0.001 0.002 0.001 0.004 0.001 0.001
    SCWT 0.001 0.001 0.001 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.001
    SCWT 0.001 0.001 0.001 0.002 0.001 0 0.001 0.003 0.001 0.001 0.002
    POM 0.004 0.005 0.026 0.001 0.008 0.895 0.022 0.003 0.003 0.003 0.006
    POM 0.005 0.004 0.003 0.009 0.002 0.892 0.003 0.007 0.011 0.008 0.002
    POM 0.004 0.007 0.007 0.002 0.003 0.908 0.003 0.002 0.001 0.008 0.005
    POM 0.001 0.002 0.001 0.001 0.001 0.975 0.001 0.001 0.001 0.001 0.001
    POM 0.03 0.352 0.002 0.001 0.005 0.553 0.025 0.001 0.002 0.002 0.002
    SCHP 0.001 0.001 0.001 0.001 0.002 0.001 0.001 0.002 0.001 0.001 0.969
    SCHP 0.001 0.001 0.001 0.002 0.001 0.001 0.001 0.003 0.001 0.001 0.972
    SCHP 0.001 0.002 0.006 0.002 0.004 0.002 0.001 0.001 0.001 0.001 0.941
    SCHP 0.002 0.001 0.002 0.001 0.001 0.002 0.001 0.004 0.001 0.002 0.966
    BMD 0.001 0.002 0.94 0.001 0.003 0.003 0.004 0.001 0.001 0.005 0.001
    BMD 0.005 0.005 0.869 0.002 0.002 0.087 0.004 0.002 0.001 0.002 0.001
    BMD 0.001 0.002 0.973 0.001 0.004 0.001 0.001 0.001 0.001 0.001 0.001
    BMD 0.001 0.002 0.916 0.005 0.007 0.005 0.002 0.002 0.01 0.001 0.003
    BMD 0.002 0.001 0.954 0.002 0.002 0.001 0.002 0.002 0.002 0.003 0.001
    GSMD 0.001 0.001 0.986 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
    GSMD 0.001 0.001 0.976 0.001 0.002 0.002 0.001 0.001 0.001 0.001 0.001
    GSMD 0.002 0.002 0.932 0.023 0.001 0.002 0.002 0.001 0.001 0.001 0.001
    GSMD 0.001 0.002 0.97 0.001 0.002 0.001 0.004 0.001 0.002 0.001 0.001
    GSMD 0.001 0.001 0.988 0.001 0 0.001 0 0.001 0.001 0 0.001
    BOX 0.001 0.001 0.002 0.001 0.001 0.001 0.001 0.001 0.002 0.001 0.001
    BOX 0.002 0.003 0.002 0.002 0.006 0.014 0.003 0.005 0.002 0.002 0.003
    BOX 0.001 0.001 0 0.001 0.001 0.001 0.001 0.001 0.002 0.001 0.001
    BOX 0.001 0.001 0.001 0 0 0.001 0.001 0 0.001 0.001 0.001
    BOX 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
    MBLT 0.002 0.002 0.001 0.001 0.001 0.001 0.002 0.004 0.002 0.004 0.01
    MBLT 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.001 0.001 0.001 0.001
    MBLT 0.001 0.001 0 0 0.001 0.001 0.001 0.001 0.001 0.001 0.001
    MBLT 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.004 0.001 0.001 0.001
    MBLT 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.001
    BULD 0.005 0.002 0.002 0.001 0.001 0.002 0.006 0.002 0.001 0.952 0.001
    BULD 0.002 0.002 0.001 0 0.001 0.003 0.001 0.001 0.009 0.952 0.002
    BULD 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.974 0.001
    BULD 0.003 0.002 0.001 0.001 0.001 0.001 0.002 0.002 0.001 0.97 0.001
    BULD 0.002 0.002 0.005 0.001 0.001 0.003 0.002 0.002 0.013 0.944 0.001
    FBLD 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.984 0.001 0.001
    FBLD 0.002 0.002 0.001 0.001 0.002 0.01 0.002 0.001 0.939 0.002 0.004
    FBLD 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.95 0.029 0.001
    FBLD 0.001 0.002 0.002 0.001 0.002 0.001 0.004 0.001 0.9 0.001 0.004
    PRES 0.043 0.015 0.002 0.001 0.001 0.003 0.757 0.002 0.002 0.013 0.002
    PRES 0.002 0.008 0.002 0.032 0.001 0.002 0.014 0.005 0.001 0.082 0.008
    PRES 0.002 0.003 0.001 0.001 0.009 0.001 0.003 0.002 0.003 0.003 0.001
    PRES 0.01 0.017 0.004 0.002 0.004 0.006 0.004 0.003 0.02 0.059 0.005
    PRES 0.003 0.004 0.002 0.002 0.002 0.002 0.003 0.001 0.005 0.003 0.002
    BULM 0.002 0.003 0.003 0.001 0.005 0.002 0.004 0.002 0.004 0.006 0.002
    BULM 0.007 0.004 0.002 0.001 0.024 0.002 0.006 0.002 0.003 0.006 0.007
    BULM 0.001 0.002 0.001 0.001 0.001 0.002 0.002 0.002 0.001 0.001 0.001
    BULM 0.003 0.004 0.002 0.008 0.002 0.003 0.003 0.003 0.002 0.003 0.004
    BULM 0.003 0.003 0.001 0.005 0.002 0.003 0.003 0.006 0.001 0.018 0.001
    MAST 0.001 0.002 0.002 0.001 0.003 0.002 0.001 0.001 0.002 0.001 0.001
    MAST 0.002 0.002 0.003 0.001 0.001 0.002 0.004 0.001 0.002 0.055 0.001
    MAST 0.001 0.002 0.002 0.003 0.002 0.001 0.002 0.002 0.001 0.002 0.003
    MAST 0.002 0.003 0.001 0.001 0.002 0.001 0.007 0.001 0.003 0.003 0.001
    MAST 0.001 0.001 0.001 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.001
    NEWF 0.006 0.009 0.006 0.002 0.01 0.015 0.006 0.014 0.005 0.005 0.004
    NEWF 0.005 0.002 0.002 0.002 0.002 0.001 0.002 0.002 0.001 0.001 0.001
    NEWF 0.001 0.001 0.001 0.003 0.001 0.001 0.001 0.001 0.001 0.001 0
    NEWF 0.034 0.002 0.001 0.004 0.001 0.001 0.003 0.011 0.001 0.001 0.001
    NEWF 0.013 0.057 0.001 0.015 0.003 0.004 0.01 0.004 0.002 0.002 0.001
    ROTT 0.002 0.004 0.008 0.004 0.002 0.004 0.005 0.001 0.004 0.002 0.002
    ROTT 0.001 0.001 0.001 0.001 0.002 0.001 0.001 0.001 0.001 0.001 0.001
    ROTT 0.004 0.003 0.007 0.008 0.004 0.001 0.002 0.003 0.002 0.002 0.001
    ROTT 0.002 0.003 0.001 0.001 0.002 0.001 0.004 0.001 0.001 0.002 0.002
    ROTT 0.001 0.001 0.004 0.003 0.001 0.001 0.001 0.001 0.004 0.001 0.001
    aSee Table 5 for abbreviations of canid populations.
    *All values for the populations that are not shown are zero.
    KBB:pbe
  • TABLE 18A-F
    Population Canid ID No.
    AMAL 1629 0.998 0.002
    AMAL 1779 0.997 0.003
    AMAL 1845 0.997 0.003
    AMAL 2132 0.987 0.013
    AMAL 2214 0.997 0.003
    HUSK 1469 0.003 0.997
    HUSK 1883 0.001 0.999
    HUSK 2115 0.003 0.997
    HUSK 2117 0.006 0.994
    HUSK 2118 0.005 0.995
    BULM 1105 0.003 0.997
    BULM 1106 0.002 0.998
    BULM 1107 0.002 0.998
    BULM 1108 0.006 0.994
    BULM 1109 0.003 0.997
    MAST 1015 0.998 0.002
    MAST 1016 0.997 0.003
    MAST 1017 0.995 0.005
    MAST 1066 0.997 0.003
    MAST 991 0.995 0.005
    BMD 941 0.002 0.998
    BMD 943 0.003 0.997
    BMD 968 0.001 0.999
    BMD 1763 0.002 0.998
    BMD 969 0.002 0.998
    GSMD 1547 0.998 0.002
    GSMD 1659 0.997 0.003
    GSMD 1660 0.999 0.001
    GSMD 1662 0.997 0.003
    GSMD 1663 0.998 0.002
    GREY 2477 0.005 0.995
    GREY 2478 0.007 0.993
    GREY 2479 0.003 0.997
    GREY 2480 0.003 0.997
    GREY 2481 0.005 0.995
    WHIP 1355 0.993 0.007
    WHIP 1395 0.992 0.008
    WHIP 1407 0.919 0.081
    WHIP 1409 0.997 0.003
    WHIP 1518 0.976 0.024
    BELS 1351 0.515 0.485
    BELS 2111 0.515 0.485
    BELS 22153 0.504 0.496
    BELS 2209 0.504 0.496
    BELS 2210 0.522 0.478
    TURV 1622 0.517 0.483
    TURV 2194 0.521 0.479
    TURV 2200 0.527 0.473
    TURV 2222 0.514 0.486
    COLL 1692 0.003 0.997
    COLL 1701 0.005 0.995
    COLL 2284 0.002 0.998
    COLL 373 0.003 0.997
    COLL 379 0.003 0.997
    SSHP 1379 0.996 0.004
    SSHP 1523 0.998 0.002
    SSHP 1824 0.998 0.002
    SSHP 1921 0.998 0.002
    SSHP 2040 0.997 0.003
    * See Table 5 for abbreviations of canid populations.
  • TABLE 19A
    Canid Canid k = 4, 15 Run Average
    Populationa ID No. Pop1 Pop2 Pop3 Pop4
    SHIB 1769 0.9862 0.00393333 0.00473333 0.00493333
    SHIB 1854 0.9806 0.0052 0.00626667 0.00793333
    SHIB 1856 0.94133333 0.01373333 0.02513333 0.02
    SHIB 1860 0.98093333 0.0056 0.00733333 0.00653333
    SHIB 1981 0.98026667 0.00573333 0.00753333 0.00653333
    CHOW 1633 0.98393333 0.00593333 0.0052 0.005
    CHOW 1835 0.986 0.00473333 0.00366667 0.00546667
    CHOW 1837 0.9802 0.00813333 0.00606667 0.00553333
    CHOW 1838 0.98626667 0.0044 0.0048 0.0048
    CHOW 1839 0.97853333 0.0088 0.00573333 0.0068
    AKIT 1130 0.94546667 0.0058 0.0374 0.01133333
    AKIT 1131 0.97693333 0.00486667 0.0144 0.0038
    AKIT 1132 0.9882 0.00453333 0.00333333 0.00393333
    AKIT 1133 0.98713333 0.00546667 0.00393333 0.00366667
    AKIT 1134 0.98873333 0.00266667 0.00353333 0.00526667
    AMAL 1629 0.87893333 0.06 0.0244 0.03693333
    AMAL 1779 0.7818 0.01673333 0.01706667 0.1842
    AMAL 1845 0.9252 0.02833333 0.02626667 0.0202
    AMAL 2132 0.91766667 0.02413333 0.01786667 0.04006667
    AMAL 2214 0.91493333 0.01646667 0.03 0.0388
    BSJI 1338 0.7572 0.0864 0.02133333 0.1354
    BSJI 1339 0.96393333 0.01353333 0.0158 0.00686667
    BSJI 1645 0.97746667 0.00886667 0.00626667 0.00733333
    BSJI 1675 0.95526667 0.02933333 0.00886667 0.00673333
    BSJI 1717 0.97253333 0.00953333 0.00733333 0.01033333
    SHAR 1573 0.95946667 0.0204 0.00653333 0.01366667
    SHAR 1593 0.85086667 0.111 0.02073333 0.0172
    SHAR 1619 0.90013333 0.0718 0.01546667 0.0128
    SHAR 1998 0.8014 0.02793333 0.09453333 0.07633333
    SHAR 1999 0.956 0.01933333 0.0078 0.01686667
    HUSK 1469 0.90333333 0.02393333 0.0232 0.04973333
    HUSK 1883 0.8904 0.00786667 0.07193333 0.02953333
    HUSK 2115 0.77413333 0.0192 0.09933333 0.1074
    HUSK 2117 0.67213333 0.027 0.1188 0.18193333
    HUSK 2118 0.90086667 0.02786667 0.04093333 0.03006667
    AFGH 1812 0.56573333 0.02113333 0.06673333 0.3464
    AFGH 1939 0.6262 0.03553333 0.1018 0.23666667
    AFGH 2264 0.55926667 0.05073333 0.0692 0.3208
    AFGH 1936 0.74713333 0.05586667 0.05413333 0.14273333
    AFGH 1937 0.67166667 0.0436 0.04986667 0.23486667
    SALU 1491 0.4006 0.04506667 0.06466667 0.4898
    SALU 1535 0.49886667 0.01166667 0.05393333 0.4354
    SALU 1607 0.45526667 0.02433333 0.04333333 0.477
    SALU 1873 0.2272 0.06186667 0.08613333 0.62433333
    SALU 2610 0.37806667 0.0618 0.0416 0.5184
    TIBT 1466 0.49693333 0.0552 0.18146667 0.26653333
    TIBT 1562 0.36673333 0.1172 0.24446667 0.27173333
    TIBT 1707 0.38166667 0.2034 0.04906667 0.36593333
    TIBT 26078 0.43486667 0.0804 0.101 0.38373333
    TIBT 28086 0.16093333 0.14593333 0.12653333 0.56666667
    LHSA 1524 0.35406667 0.01493333 0.55546667 0.0756
    LHSA 1525 0.44253333 0.01693333 0.4188 0.12166667
    LHSA 1526 0.331 0.03193333 0.42106667 0.21606667
    LHSA 1528 0.28613333 0.07026667 0.5356 0.10806667
    LHSA 2074 0.59526667 0.01573333 0.28666667 0.1024
    SAMO 1375 0.23546667 0.01233333 0.6444 0.1078
    SAMO 1532 0.46653333 0.0064 0.48693333 0.04046667
    SAMO 1560 0.51173333 0.02726667 0.37386667 0.08686667
    SAMO 169 0.3968 0.0122 0.50726667 0.0838
    SAMO 239 0.40986667 0.02673333 0.49193333 0.07133333
    PEKE 1143 0.30666667 0.0062 0.5552 0.13173333
    PEKE 1145 0.1708 0.00693333 0.60313333 0.2192
    PEKE 1211 0.1872 0.0086 0.65013333 0.15393333
    PEKE 1212 0.14846667 0.1002 0.59466667 0.15693333
    PEKE 1213 0.23773333 0.0056 0.6136 0.14306667
    SHIH 1393 0.15306667 0.08493333 0.61986667 0.14206667
    SHIH 1783 0.14486667 0.00826667 0.70373333 0.14333333
    SHIH 2068 0.15553333 0.0106 0.66613333 0.16773333
    SHIH 2859 0.20993333 0.01053333 0.69053333 0.08913333
    SHIH 2860 0.3304 0.01586667 0.40086667 0.2528
    IWOF 1581 0.0168 0.3314 0.57773333 0.0742
    IWOF 1761 0.00506667 0.11346667 0.66893333 0.2124
    IWOF 1792 0.01426667 0.1258 0.641 0.21893333
    IWOF 1906 0.01446667 0.13733333 0.70666667 0.14166667
    IWOF 1993 0.00586667 0.11806667 0.65613333 0.22006667
    STBD 1075 0.0306 0.2296 0.40906667 0.33073333
    STBD 1714 0.01853333 0.08833333 0.6668 0.2266
    STBD 1750 0.01566667 0.22233333 0.48973333 0.27226667
    STBD 2403 0.00846667 0.0614 0.69553333 0.23453333
    STBD 2404 0.0078 0.40166667 0.524 0.0666
    GREY 2477 0.0444 0.09686667 0.765 0.0938
    GREY 2478 0.01273333 0.05146667 0.75186667 0.18393333
    GREY 2479 0.0094 0.17826667 0.6994 0.11306667
    GREY 2480 0.01386667 0.04133333 0.8324 0.1126
    GREY 2481 0.00573333 0.0872 0.65273333 0.2544
    BELS 1351 0.00686667 0.0086 0.96793333 0.0168
    BELS 2111 0.0314 0.00953333 0.94333333 0.0158
    BELS 2153 0.00373333 0.00453333 0.98086667 0.0108
    BELS 2209 0.01126667 0.0056 0.9696 0.01353333
    BELS 2210 0.01166667 0.01566667 0.94853333 0.02413333
    TURV 1622 0.00333333 0.0054 0.97573333 0.01573333
    TURV 2194 0.01046667 0.05633333 0.799 0.13413333
    TURV 2200 0.01726667 0.01913333 0.90673333 0.05713333
    TURV 2222 0.00473333 0.01653333 0.84253333 0.13633333
    BORZ 1378 0.05593333 0.01486667 0.7554 0.17386667
    BORZ 1401 0.0358 0.03173333 0.68146667 0.25066667
    BORZ 1808 0.064 0.0278 0.66526667 0.2428
    BORZ 2268 0.02186667 0.0252 0.81853333 0.13446667
    BORZ 978 0.0262 0.02046667 0.68133333 0.2722
    COLL 1692 0.00513333 0.0512 0.718 0.22553333
    COLL 1701 0.01646667 0.01206667 0.76006667 0.21133333
    COLL 2284 0.0048 0.01013333 0.786 0.19926667
    COLL 373 0.00393333 0.01066667 0.78246667 0.2028
    COLL 379 0.00393333 0.0094 0.7856 0.20113333
    SSHP 1379 0.02233333 0.19673333 0.5936 0.18726667
    SSHP 1523 0.02086667 0.04446667 0.73086667 0.20373333
    SSHP 1824 0.0084 0.168 0.65733333 0.16646667
    SSHP 1921 0.00573333 0.08706667 0.6808 0.22633333
    SSHP 2040 0.0296 0.03046667 0.7582 0.18166667
    PUG 1077 0.00746667 0.0072 0.4794 0.50606667
    PUG 1104 0.0188 0.0076 0.49706667 0.47646667
    PUG 1183 0.07146667 0.01226667 0.4226 0.49393333
    PUG 1184 0.0082 0.00713333 0.495 0.48966667
    PUG 1192 0.006 0.05273333 0.438 0.50326667
    KOMO 1484 0.02893333 0.08226667 0.29953333 0.5892
    KOMO 1964 0.03166667 0.1022 0.2362 0.63
    KOMO 2321 0.04006667 0.13546667 0.2222 0.6022
    KOMO 2323 0.08526667 0.10286667 0.14026667 0.67173333
    KOMO 2334 0.00913333 0.08426667 0.1342 0.77246667
    WHIP 1355 0.0062 0.05526667 0.4162 0.52246667
    WHIP 1395 0.00873333 0.09993333 0.4982 0.39313333
    WHIP 1407 0.00713333 0.12913333 0.30046667 0.56313333
    WHIP 1409 0.00566667 0.05026667 0.72593333 0.218
    WHIP 1518 0.0056 0.10146667 0.45786667 0.435
    SPOO 1530 0.05693333 0.25666667 0.36106667 0.3252
    SPOO 1582 0.07346667 0.11826667 0.38393333 0.42473333
    SPOO 1876 0.0106 0.12953333 0.50726667 0.35246667
    SPOO 1877 0.0136 0.16693333 0.37186667 0.44753333
    SPOO 2337 0.00593333 0.0468 0.2268 0.7206
    BICH 1943 0.0758 0.0702 0.35546667 0.4986
    BICH 1954 0.14973333 0.05386667 0.31746667 0.47873333
    BICH 933 0.03653333 0.1844 0.31173333 0.46746667
    BICH 974 0.07046667 0.0902 0.29946667 0.53993333
    KEES 1501 0.03973333 0.03486667 0.5276 0.39786667
    KEES 1589 0.00533333 0.03853333 0.44706667 0.5092
    KEES 1818 0.02126667 0.0422 0.4594 0.47733333
    KEES 1819 0.00526667 0.0386 0.54426667 0.41153333
    KEES 2072 0.0064 0.06153333 0.4162 0.51586667
    MNTY 1539 0.01293333 0.2696 0.13173333 0.5856
    MNTY 1732 0.0262 0.15633333 0.1496 0.66773333
    MNTY 2145 0.01133333 0.20213333 0.35033333 0.4362
    MNTY 2149 0.01066667 0.06813333 0.57466667 0.34666667
    NELK 2216 0.05673333 0.1076 0.30873333 0.52693333
    NELK 2239 0.18626667 0.03333333 0.4914 0.289
    NELK 2240 0.02666667 0.1904 0.44286667 0.34013333
    NELK 2281 0.012 0.0752 0.10806667 0.80493333
    NELK 2295 0.24066667 0.04506667 0.29186667 0.42233333
    KUVZ 1482 0.0566 0.0156 0.52573333 0.4018
    KUVZ 1551 0.18713333 0.02206667 0.41506667 0.3758
    KUVZ 1672 0.07186667 0.05426667 0.20386667 0.66993333
    KUVZ 1913 0.02453333 0.06113333 0.34526667 0.56926667
    KUVZ 1994 0.04446667 0.06193333 0.40193333 0.49186667
    DANE 1574 0.01126667 0.086 0.17386667 0.72873333
    DANE 1575 0.1096 0.12853333 0.19233333 0.5696
    DANE 1580 0.0112 0.0698 0.21413333 0.705
    DANE 1700 0.00773333 0.06426667 0.41106667 0.51706667
    DANE 1748 0.19526667 0.07813333 0.20826667 0.51826667
    WSSP 1955 0.00506667 0.0726 0.3252 0.59726667
    WSSP 2139 0.01333333 0.0658 0.24086667 0.67993333
    WSSP 2143 0.00386667 0.07613333 0.20346667 0.71646667
    WSSP 2195 0.0078 0.10353333 0.29773333 0.59093333
    WSSP 2286 0.0054 0.09933333 0.20973333 0.68546667
    DOBP 1031 0.007 0.08406667 0.18426667 0.7248
    DOBP 1032 0.03506667 0.09113333 0.1938 0.68006667
    DOBP 1749 0.01766667 0.17506667 0.19726667 0.60986667
    DOBP 2162 0.00786667 0.08273333 0.19973333 0.70986667
    DOBP 2245 0.0054 0.0814 0.1972 0.71593333
    SSNZ 13352 0.00353333 0.26246667 0.1206 0.61326667
    SSNZ 1360 0.00353333 0.12506667 0.1222 0.74906667
    SSNZ 1827 0.00653333 0.092 0.19446667 0.70726667
    SSNZ 20457 0.0084 0.07666667 0.22706667 0.6882
    SSNZ 22647 0.00753333 0.18713333 0.16033333 0.64526667
    ITGY 1568 0.03193333 0.076 0.1174 0.77473333
    ITGY 1570 0.01333333 0.0768 0.0818 0.82806667
    ITGY 1862 0.10826667 0.06413333 0.08133333 0.74633333
    ITGY 1881 0.042 0.06533333 0.0726 0.82
    ITGY 1882 0.172 0.05926667 0.12893333 0.6398
    OES 1984 0.0208 0.0792 0.06466667 0.83533333
    OES 2171 0.0094 0.07693333 0.17926667 0.7344
    OES 2179 0.01033333 0.08166667 0.1854 0.72273333
    OES 1914 0.02013333 0.12153333 0.10093333 0.75773333
    OES 2626 0.05893333 0.0684 0.0808 0.79173333
    AMWS 2168 0.01106667 0.07626667 0.16186667 0.7508
    AMWS 2279 0.01213333 0.13833333 0.1118 0.73766667
    AMWS 2327 0.06306667 0.14373333 0.07946667 0.71366667
    AMWS 987 0.0132 0.09766667 0.17166667 0.71766667
    AMWS 988 0.0164 0.17813333 0.12913333 0.6764
    MSNZ 1587 0.00553333 0.15366667 0.11553333 0.72533333
    MSNZ 1756 0.00593333 0.07446667 0.16326667 0.75586667
    MSNZ 1851 0.00406667 0.09013333 0.1284 0.77753333
    MSNZ 2034 0.026 0.2376 0.1144 0.62193333
    MSNZ 2613 0.00513333 0.12266667 0.12486667 0.74726667
    AUST 1387 0.04046667 0.11066667 0.20053333 0.6482
    AUST 1531 0.0178 0.139 0.06606667 0.77713333
    AUST 1564 0.00726667 0.0902 0.0582 0.8444
    AUST 1870 0.0388 0.1046 0.13213333 0.7246
    AUST 1871 0.00673333 0.0902 0.06326667 0.84006667
    ECKR 1376 0.004 0.11126667 0.0808 0.8038
    ECKR 1377 0.00406667 0.08373333 0.14606667 0.76593333
    ECKR 1400 0.0034 0.06993333 0.26133333 0.66546667
    ECKR 1404 0.0034 0.09186667 0.23986667 0.66486667
    ECKR 1511 0.0068 0.08413333 0.18326667 0.72573333
    IRSE 1540 0.00333333 0.0736 0.08586667 0.83726667
    IRSE 1617 0.0038 0.072 0.07486667 0.8494
    IRSE 1896 0.00906667 0.07533333 0.11866667 0.79666667
    IRSE 2084 0.00406667 0.06606667 0.2228 0.70706667
    IRSE 2085 0.00326667 0.0842 0.0818 0.831
    WHWT 1388 0.0142 0.0704 0.05473333 0.86053333
    WHWT 1420 0.0452 0.0842 0.08166667 0.7888
    WHWT 1992 0.0108 0.08613333 0.07613333 0.82693333
    WHWT 2100 0.01053333 0.0824 0.04333333 0.86353333
    WHWT 2128 0.0158 0.0728 0.03166667 0.87973333
    PNTR 1382 0.00826667 0.07166667 0.07566667 0.8442
    PNTR 1383 0.01426667 0.07086667 0.0714 0.84353333
    PNTR 1869 0.00726667 0.0582 0.12293333 0.81146667
    PNTR 1938 0.0098 0.07566667 0.15733333 0.75693333
    PNTR 1948 0.05646667 0.0598 0.0958 0.78773333
    BASS 1341 0.02966667 0.1016 0.04426667 0.82446667
    BASS 1342 0.01053333 0.0758 0.09866667 0.81473333
    BASS 1506 0.0078 0.08493333 0.0752 0.8318
    BASS 1917 0.00926667 0.10106667 0.04406667 0.84593333
    CKCS 1513 0.0408 0.0656 0.12133333 0.77233333
    CKCS 1639 0.00753333 0.07806667 0.12053333 0.794
    CKCS 1640 0.00806667 0.0998 0.1152 0.77686667
    CKCS 1642 0.0048 0.07466667 0.13413333 0.78653333
    CKCS 2054 0.00553333 0.07133333 0.1202 0.80293333
    GSNZ 1868 0.27746667 0.06873333 0.06233333 0.5912
    GSNZ 22739 0.1848 0.06566667 0.06806667 0.68133333
    GSNZ 27093 0.05206667 0.08053333 0.06046667 0.807
    GSNZ 27106 0.0098 0.10226667 0.0224 0.8656
    GSNZ 33390 0.0082 0.09093333 0.0874 0.81346667
    PHAR 1292 0.12533333 0.05726667 0.0088 0.80886667
    PHAR 1947 0.1386 0.05446667 0.01913333 0.78773333
    PHAR 1962 0.13706667 0.0674 0.06313333 0.7326
    PHAR 1963 0.10473333 0.0708 0.012 0.81246667
    GOLD 591 0.00453333 0.15633333 0.02266667 0.8164
    GOLD 592 0.02186667 0.2448 0.0112 0.72213333
    GOLD 593 0.00693333 0.1734 0.01473333 0.80526667
    GOLD 603 0.0058 0.148 0.009 0.83726667
    GOLD 604 0.00386667 0.19653333 0.03653333 0.76313333
    BEAG 1323 0.012 0.169 0.01126667 0.80753333
    BEAG 1324 0.01733333 0.09226667 0.126 0.7644
    BEAG 1327 0.00813333 0.2708 0.0204 0.70093333
    BEAG 994 0.029 0.25213333 0.06993333 0.64906667
    BEAG 995 0.01573333 0.0918 0.06013333 0.83213333
    BLDH 1186 0.0088 0.224 0.02646667 0.7406
    BLDH 1223 0.0126 0.15126667 0.01466667 0.82126667
    BLDH 1410 0.0056 0.3068 0.00726667 0.68026667
    BLDH 1942 0.00893333 0.17273333 0.00906667 0.80933333
    BLDH 1957 0.00693333 0.16 0.01146667 0.82153333
    AIRT 1603 0.03993333 0.15466667 0.11033333 0.69526667
    AIRT 1604 0.00613333 0.08966667 0.12693333 0.7772
    AIRT 1788 0.00466667 0.20253333 0.09266667 0.70013333
    AIRT 1875 0.01793333 0.09733333 0.13313333 0.7516
    ACKR 1035 0.0102 0.09006667 0.08406667 0.8156
    ACKR 2261 0.02313333 0.0972 0.1014 0.77833333
    ACKR 2310 0.0038 0.09926667 0.026 0.87086667
    ACKR 1956 0.00913333 0.1278 0.02146667 0.84173333
    ACKR 2260 0.00533333 0.10193333 0.03026667 0.86233333
    AHRT 1120 0.00986667 0.12326667 0.0524 0.8144
    AHRT 1121 0.0104 0.18726667 0.04926667 0.753
    AHRT 1122 0.00853333 0.1532 0.089 0.74886667
    AHRT 1123 0.00866667 0.14433333 0.07606667 0.77093333
    AHRT 1124 0.0076 0.1374 0.05166667 0.80346667
    CHBR 1546 0.01113333 0.13993333 0.05573333 0.7932
    CHBR 1549 0.06426667 0.33173333 0.01326667 0.5908
    CHBR 1813 0.00446667 0.17893333 0.02786667 0.7888
    CHBR 2091 0.0086 0.1008 0.038 0.85266667
    CHBR 888 0.00506667 0.11486667 0.02473333 0.8552
    CAIR 1405 0.00846667 0.277 0.0828 0.6316
    CAIR 2096 0.0146 0.07973333 0.03353333 0.87213333
    CAIR 2113 0.01413333 0.1012 0.10746667 0.77733333
    CAIR 2125 0.0062 0.0752 0.07646667 0.8422
    CAIR 2131 0.0292 0.08106667 0.0632 0.82666667
    PTWD P142 0.0074 0.1588 0.11633333 0.71733333
    PTWD P1  0.00453333 0.192 0.1194 0.68413333
    PTWD P238 0.01333333 0.1686 0.17253333 0.64566667
    PTWD P25  0.00413333 0.07453333 0.1428 0.77853333
    PTWD P67  0.00613333 0.07766667 0.1434 0.77266667
    GSHP 1628 0.00506667 0.13306667 0.08306667 0.77886667
    GSHP 1708 0.02013333 0.08246667 0.20713333 0.69033333
    GSHP 1710 0.02533333 0.08533333 0.072 0.8172
    GSHP 1833 0.00806667 0.44793333 0.03073333 0.5134
    GSHP 1892 0.01533333 0.1122 0.07586667 0.79673333
    BORD 1648 0.11253333 0.07173333 0.0404 0.77573333
    BORD 1828 0.01326667 0.07473333 0.09166667 0.82006667
    BORD 1829 0.00546667 0.24266667 0.13626667 0.61566667
    BORD 2002 0.01993333 0.10706667 0.12306667 0.75
    BORD 2003 0.03286667 0.08433333 0.11186667 0.77086667
    BEDT 1422 0.00793333 0.32966667 0.12893333 0.5334
    BEDT 1423 0.00626667 0.1544 0.15853333 0.68086667
    BEDT 1424 0.01353333 0.12806667 0.2118 0.64666667
    BEDT 1426 0.0142 0.2006 0.16206667 0.62333333
    CLSP 1008 0.00746667 0.3506 0.06153333 0.5802
    CLSP 1009 0.00386667 0.316 0.075 0.60473333
    CLSP 1802 0.00646667 0.32126667 0.07473333 0.59733333
    CLSP 2312 0.00413333 0.3918 0.06026667 0.5438
    CLSP 2314 0.00473333 0.395 0.06026667 0.53973333
    IBIZ 1147 0.0094 0.09326667 0.0498 0.84746667
    IBIZ 1148 0.0076 0.2762 0.12373333 0.59233333
    IBIZ 1162 0.00813333 0.07513333 0.0816 0.8354
    IBIZ 1172 0.02393333 0.09233333 0.1424 0.7416
    IBIZ 1280 0.027 0.20926667 0.20173333 0.56186667
    RHOD 1444 0.0056 0.13373333 0.17626667 0.68426667
    RHOD 1454 0.02113333 0.17686667 0.17033333 0.63213333
    RHOD 1505 0.01006667 0.11066667 0.0728 0.80653333
    RHOD 1592 0.00833333 0.4782 0.06833333 0.44506667
    RHOD 1609 0.00606667 0.1752 0.2602 0.55853333
    DACH 1051 0.01053333 0.25333333 0.23673333 0.49933333
    DACH 1052 0.00893333 0.2756 0.21553333 0.49993333
    DACH 1053 0.0174 0.33433333 0.12966667 0.5186
    DACH 1054 0.02753333 0.43573333 0.13406667 0.40273333
    DACH 1055 0.00966667 0.27553333 0.24213333 0.47253333
    AUSS 1336 0.19213333 0.16606667 0.19266667 0.449
    AUSS 1337 0.01626667 0.218 0.16453333 0.60106667
    AUSS 1500 0.00893333 0.06726667 0.2208 0.70266667
    AUSS 1521 0.11106667 0.43073333 0.18213333 0.27613333
    AUSS 1683 0.01366667 0.2222 0.091 0.67313333
    CHIH 1202 0.0064 0.22773333 0.1 0.66586667
    CHIH 1203 0.0148 0.09106667 0.30626667 0.58766667
    CHIH 1204 0.01226667 0.12713333 0.14806667 0.71253333
    CHIH 1205 0.0992 0.32273333 0.15366667 0.42466667
    CHIN 1206 0.0062 0.37573333 0.09806667 0.51986667
    KERY 13878 0.00706667 0.22393333 0.15313333 0.61586667
    KERY 1483 0.00713333 0.2578 0.16 0.57506667
    KERY 1579 0.0126 0.10493333 0.18953333 0.69286667
    KERY 2014 0.0036 0.342 0.07906667 0.5752
    KERY 24255 0.00853333 0.35613333 0.15386667 0.48133333
    SCHP 1386 0.0076 0.19293333 0.036 0.76353333
    SCHP 1471 0.00766667 0.20733333 0.02273333 0.76213333
    SCHP 1814 0.01046667 0.289 0.0824 0.6182
    SCHP 1852 0.0162 0.13586667 0.15466667 0.69326667
    IRTR 2152 0.01113333 0.14993333 0.093 0.746
    IRTR 2189 0.01146667 0.36666667 0.08746667 0.53433333
    IRTR 2238 0.0052 0.36626667 0.043 0.58546667
    IRTR 2242 0.00893333 0.27573333 0.06926667 0.64613333
    FCR 1188 0.0062 0.22606667 0.05746667 0.7102
    FCR 2020 0.00506667 0.1566 0.08913333 0.749
    FCR 2042 0.0048 0.23086667 0.0638 0.70053333
    FCR 2044 0.00613333 0.17806667 0.16073333 0.65506667
    FCR 2259 0.0036 0.24293333 0.048 0.70526667
    SCWT 1624 0.0506 0.4248 0.08933333 0.4352
    SCWT 1770 0.00433333 0.2824 0.31153333 0.40166667
    SCWT 2250 0.00513333 0.22033333 0.04646667 0.7282
    SCWT 2301 0.0162 0.36513333 0.03973333 0.57913333
    POM 1190 0.09806667 0.35386667 0.32793333 0.22
    POM 1191 0.00926667 0.7472 0.04853333 0.19473333
    POM 1210 0.04093333 0.3494 0.1288 0.48053333
    POM 1238 0.00613333 0.16306667 0.26906667 0.56173333
    POM 1239 0.1202 0.08513333 0.2394 0.555
    LAB 1310 0.11153333 0.54806667 0.0612 0.2794
    LAB 1465 0.01346667 0.33846667 0.05966667 0.5884
    LAB 1468 0.02113333 0.40553333 0.09626667 0.477
    LAB 1754 0.01206667 0.6368 0.01 0.34093333
    LAB 1830 0.00533333 0.5134 0.14593333 0.33526667
    PRES 1082 0.00793333 0.73346667 0.0294 0.22913333
    PRES 1096 0.00493333 0.7488 0.05413333 0.19193333
    PRES 1115 0.00993333 0.64406667 0.086 0.2604
    PRES 1127 0.10286667 0.85446667 0.01946667 0.0234
    PRES 1095 0.05353333 0.82886667 0.03246667 0.08533333
    ROTT 1014 0.01153333 0.72453333 0.13553333 0.12833333
    ROTT 1028 0.00553333 0.712 0.13746667 0.1448
    ROTT 1029 0.0042 0.8398 0.05386667 0.10193333
    ROTT 1033 0.006 0.85826667 0.04853333 0.08746667
    ROTT 1034 0.00453333 0.85426667 0.11393333 0.02726667
    BULM 1105 0.0056 0.94446667 0.01333333 0.03626667
    BULM 1106 0.00486667 0.61486667 0.0896 0.2908
    BULM 1107 0.01853333 0.90133333 0.026 0.05413333
    BULM 1108 0.00653333 0.93873333 0.02386667 0.03073333
    BULM 1109 0.00513333 0.96613333 0.00746667 0.0212
    NEWF 271 0.0132 0.866 0.0532 0.0676
    NEWF 274 0.00526667 0.94806667 0.00966667 0.03706667
    NEWF 275 0.00733333 0.97226667 0.0052 0.01533333
    NEWF 277 0.00586667 0.97893333 0.00673333 0.00833333
    NEWF 278 0.06706667 0.8476 0.01493333 0.07053333
    GSD 1666 0.00613333 0.88413333 0.08013333 0.02946667
    GSD 1776 0.00306667 0.89873333 0.07173333 0.0264
    GSD 2011 0.00773333 0.853 0.0962 0.04313333
    GSD 2060 0.00613333 0.81526667 0.10273333 0.07626667
    GSD 2086 0.00573333 0.84086667 0.10013333 0.05313333
    FBUL 1507 0.0104 0.96366667 0.0158 0.00986667
    FBUL 1508 0.00626667 0.96013333 0.01466667 0.0188
    FBUL 1509 0.00493333 0.97453333 0.0106 0.01006667
    FBUL 2671 0.01693333 0.91053333 0.01173333 0.0608
    MBLT 1915 0.00553333 0.9154 0.008 0.071
    MBLT 2253 0.0068 0.89166667 0.045 0.0564
    MBLT 2254 0.036 0.9132 0.03073333 0.02006667
    MBLT 2255 0.0098 0.90326667 0.00946667 0.0772
    MBLT 2256 0.0062 0.97946667 0.00573333 0.0086
    BULD 1193 0.01906667 0.95466667 0.01473333 0.01153333
    BULD 1194 0.00513333 0.9824 0.00626667 0.00593333
    BULD 1195 0.0036 0.98433333 0.00473333 0.00726667
    BULD 1197 0.0052 0.92026667 0.05506667 0.0194
    BULD 1198 0.00553333 0.96853333 0.0138 0.01206667
    BOX 1176 0.00313333 0.91446667 0.07333333 0.009
    BOX 1177 0.00366667 0.92693333 0.05286667 0.01653333
    BOX 1178 0.00446667 0.93326667 0.05726667 0.00513333
    BOX 1179 0.00233333 0.92526667 0.06886667 0.0036
    BOX 1304 0.00266667 0.9162 0.07473333 0.00593333
    MAST 1015 0.004 0.9386 0.0162 0.04126667
    MAST 1016 0.009 0.90766667 0.06406667 0.01933333
    MAST 1017 0.0046 0.9216 0.0498 0.024
    MAST 1066 0.0158 0.94853333 0.018 0.01753333
    MAST 991 0.01866667 0.95213333 0.0108 0.0186
    BMD 941 0.00406667 0.76213333 0.21013333 0.02386667
    BMD 943 0.0094 0.58306667 0.2496 0.1578
    BMD 968 0.0062 0.74973333 0.21286667 0.03113333
    BMD 1763 0.0046 0.74813333 0.20066667 0.04646667
    BMD 969 0.00373333 0.69866667 0.2714 0.02653333
    GSMD 1547 0.0066 0.41546667 0.36546667 0.21266667
    GSMD 1659 0.0052 0.5908 0.34013333 0.0638
    GSMD 1660 0.013 0.41086667 0.435 0.14126667
    GSMD 1662 0.04386667 0.51266667 0.304 0.13973333
    GSMD 1663 0.00653333 0.50973333 0.42086667 0.063
  • TABLE 19B
    Canid Canid k = 3, 15 Run Average
    Populationa ID No. Pop1 Pop2 Pop3
    SHIB 1769 0.989667 0.004667 0.005667
    SHIB 1854 0.982933 0.006867 0.0102
    SHIB 1856 0.9584 0.016067 0.025667
    SHIB 1860 0.9852 0.0066 0.008267
    SHIB 1981 0.983733 0.0078 0.008133
    CHOW 1633 0.985533 0.008133 0.0064
    CHOW 1835 0.988133 0.006133 0.0058
    CHOW 1837 0.982067 0.0094 0.0084
    CHOW 1838 0.9884 0.0056 0.006
    CHOW 1839 0.978667 0.0116 0.009867
    AKIT 1130 0.9576 0.007467 0.035
    AKIT 1131 0.988933 0.0052 0.005733
    AKIT 1132 0.989133 0.005867 0.004933
    AKIT 1133 0.988133 0.0072 0.004667
    AKIT 1134 0.991 0.003667 0.005467
    AMAL 1629 0.8604 0.083867 0.055733
    AMAL 1779 0.7986 0.020667 0.1806
    AMAL 1845 0.9078 0.047 0.045067
    AMAL 2132 0.920333 0.0362 0.043533
    AMAL 2214 0.908333 0.0218 0.069733
    BSJI 1338 0.762067 0.122333 0.1156
    BSJI 1339 0.973267 0.018 0.0088
    BSJI 1645 0.977733 0.012933 0.009467
    BSJI 1675 0.945333 0.0468 0.007933
    BSJI 1717 0.972533 0.013667 0.013867
    SHAR 1573 0.9602 0.028267 0.0116
    SHAR 1593 0.845667 0.138 0.016533
    SHAR 1619 0.870933 0.1136 0.015467
    SHAR 1998 0.7902 0.031533 0.178267
    SHAR 1999 0.957 0.029067 0.014
    HUSK 1469 0.915533 0.037133 0.0474
    HUSK 1883 0.907867 0.0104 0.0818
    HUSK 2115 0.748733 0.013533 0.237867
    HUSK 2117 0.632333 0.013333 0.3544
    HUSK 2118 0.905133 0.042133 0.052533
    AFGH 1812 0.601933 0.0432 0.3548
    AFGH 1939 0.6604 0.084067 0.255467
    AFGH 2264 0.6198 0.122933 0.2574
    AFGH 1936 0.785067 0.0934 0.121467
    AFGH 1937 0.717867 0.070933 0.2112
    SALU 1491 0.4102 0.017667 0.5722
    SALU 1535 0.542067 0.007067 0.450867
    SALU 1607 0.500067 0.020533 0.479467
    SALU 1873 0.292667 0.031667 0.675733
    SALU 2610 0.4434 0.055533 0.501
    TIBT 1466 0.479867 0.027867 0.492333
    TIBT 1562 0.355667 0.0502 0.594
    TIBT 1707 0.397133 0.240333 0.362333
    TIBT 26078 0.431867 0.0466 0.521533
    TIBT 28086 0.163267 0.103733 0.733067
    LHSA 1524 0.558933 0.034333 0.4066
    LHSA 1525 0.5262 0.023 0.451
    LHSA 1526 0.463467 0.020533 0.5162
    LHSA 1528 0.3624 0.0748 0.562667
    LHSA 2074 0.705 0.023 0.272067
    SAMO 1375 0.271267 0.011733 0.716867
    SAMO 1532 0.553067 0.0086 0.438267
    SAMO 1560 0.5902 0.0374 0.372533
    SAMO 169 0.436867 0.016867 0.546267
    SAMO 239 0.458933 0.038267 0.502867
    PEKE 1143 0.696267 0.013267 0.2904
    PEKE 1145 0.445133 0.011533 0.543333
    PEKE 1211 0.457267 0.010667 0.532133
    PEKE 1212 0.380333 0.2828 0.336733
    PEKE 1213 0.61 0.012933 0.377067
    SHIH 1393 0.390067 0.1362 0.473867
    SHIN 1783 0.3624 0.011267 0.626333
    SHIH 2068 0.379533 0.009533 0.610867
    SHIH 2859 0.4456 0.0228 0.531667
    SHIH 2860 0.5422 0.0238 0.433933
    IWOF 1581 0.0226 0.2552 0.7222
    IWOF 1761 0.0088 0.020333 0.970733
    IWOF 1792 0.026267 0.069467 0.904467
    IWOF 1906 0.052267 0.033933 0.914
    IWOF 1993 0.007267 0.026733 0.966067
    STBD 1075 0.0464 0.139933 0.813733
    STBD 1714 0.059 0.030333 0.910733
    STBD 1750 0.047733 0.2466 0.705533
    STBD 2403 0.013333 0.0294 0.9572
    STBD 2404 0.0206 0.376867 0.602533
    GREY 2477 0.1562 0.0356 0.808267
    GREY 2478 0.017867 0.018267 0.963733
    GREY 2479 0.0112 0.063333 0.925333
    GREY 2480 0.059467 0.011467 0.929067
    GREY 2481 0.009133 0.02 0.970867
    BELS 1351 0.0132 0.007333 0.979467
    BELS 2111 0.0744 0.013133 0.912267
    BELS 2153 0.0058 0.006067 0.988
    BELS 2209 0.031467 0.005733 0.962933
    BELS 2210 0.034733 0.026267 0.938867
    TURV 1622 0.009067 0.010133 0.980667
    TURV 2194 0.013067 0.057467 0.929333
    TURV 2200 0.020267 0.010467 0.969133
    TURV 2222 0.0056 0.009133 0.985133
    BORZ 1378 0.136 0.007733 0.856333
    BORZ 1401 0.114733 0.024133 0.861133
    BORZ 1808 0.1772 0.014467 0.8084
    BORZ 2268 0.063467 0.015867 0.920867
    BORZ 978 0.042 0.014733 0.9434
    COLL 1692 0.011933 0.020667 0.9674
    COLL 1701 0.0218 0.011 0.967
    COLL 2284 0.0116 0.021867 0.9666
    COLL 373 0.008933 0.013 0.977933
    COLL 379 0.0058 0.011267 0.9828
    SSHP 1379 0.032667 0.1834 0.783933
    SSHP 1523 0.050067 0.043333 0.9064
    SSHP 1824 0.016067 0.141133 0.842867
    SSHP 1921 0.0062 0.118733 0.875
    SSHP 2040 0.08 0.152 0.768133
    PUG 1077 0.010667 0.008933 0.9804
    PUG 1104 0.048267 0.017733 0.933933
    PUG 1183 0.121733 0.0116 0.866667
    PUG 1184 0.013467 0.011733 0.975
    PUG 1192 0.009333 0.098867 0.8916
    KOMO 1484 0.035 0.041867 0.923067
    KOMO 1964 0.036133 0.055333 0.908333
    KOMO 2321 0.036 0.099533 0.8644
    KOMO 2323 0.086267 0.096333 0.817467
    KOMO 2334 0.0092 0.036467 0.9544
    WHIP 1355 0.006867 0.0162 0.9768
    WHIP 1395 0.010667 0.0362 0.953067
    WHIP 1407 0.0076 0.073267 0.9192
    WHIP 1409 0.006333 0.014267 0.9794
    WHIP 1518 0.005933 0.039267 0.9546
    SPOO 1530 0.0676 0.185267 0.747067
    SPOO 1582 0.0744 0.064333 0.8612
    SPOO 1876 0.015 0.155 0.830067
    SPOO 1877 0.018467 0.190133 0.791333
    SPOO 2337 0.006867 0.016533 0.976667
    BICH 1943 0.0654 0.019933 0.9146
    BICH 1954 0.239867 0.018 0.741933
    BICH 933 0.050933 0.159467 0.789467
    BICH 974 0.109533 0.092333 0.798067
    KEES 1501 0.060867 0.013067 0.925933
    KEES 1589 0.006467 0.007267 0.986267
    KEES 1818 0.015467 0.027133 0.9572
    KEES 1819 0.007133 0.012733 0.980067
    KEES 2072 0.008 0.0212 0.970667
    MNTY 1539 0.0138 0.264733 0.7214
    MNTY 1732 0.0298 0.1218 0.8486
    MNTY 2145 0.014333 0.155133 0.830333
    MNTY 2149 0.010533 0.014533 0.974933
    NELK 2216 0.0872 0.0802 0.832467
    NELK 2239 0.214533 0.02 0.765467
    NELK 2240 0.0426 0.1888 0.768667
    NELK 2281 0.0142 0.027533 0.958333
    NELK 2295 0.293 0.025867 0.681467
    KUVZ 1482 0.0854 0.0086 0.906
    KUVZ 1551 0.198533 0.008533 0.793
    KUVZ 1672 0.075467 0.032267 0.8924
    KUVZ 1913 0.033333 0.073267 0.8936
    KUVZ 1994 0.0498 0.042467 0.907867
    DANE 1574 0.016533 0.026467 0.957
    DANE 1575 0.1558 0.1312 0.713
    DANE 1580 0.011 0.007067 0.982
    DANE 1700 0.0088 0.016933 0.9742
    DANE 1748 0.1982 0.034533 0.767333
    WSSP 1955 0.0066 0.015867 0.977533
    WSSP 2139 0.018667 0.028867 0.952533
    WSSP 2143 0.0056 0.033333 0.961133
    WSSP 2195 0.014467 0.065667 0.920133
    WSSP 2286 0.007133 0.102133 0.890867
    DOBP 1031 0.012667 0.102067 0.8852
    DOBP 1032 0.047733 0.092733 0.859267
    DOBP 1749 0.0394 0.2362 0.724467
    DOBP 2162 0.013133 0.0862 0.9008
    DOBP 2245 0.008467 0.085933 0.9056
    SSNZ 13352 0.004733 0.290333 0.705133
    SSNZ 1360 0.004267 0.093667 0.902133
    SSNZ 1827 0.007067 0.034467 0.958533
    SSNZ 20457 0.009267 0.021267 0.969267
    SSNZ 22647 0.0088 0.203333 0.7878
    ITGY 1568 0.022933 0.012267 0.965067
    ITGY 1570 0.019333 0.061067 0.919533
    ITGY 1862 0.1134 0.021067 0.865533
    ITGY 1881 0.0564 0.017467 0.9262
    ITGY 1882 0.1768 0.014467 0.808667
    OES 1984 0.022133 0.022067 0.955667
    OES 2171 0.009 0.028867 0.962067
    OES 2179 0.011267 0.022 0.966867
    OES 1914 0.020467 0.0566 0.9232
    OES 2626 0.062467 0.013267 0.924333
    AMWS 2168 0.012 0.020333 0.967667
    AMWS 2279 0.012 0.195533 0.792467
    AMWS 2327 0.0978 0.257667 0.6446
    AMWS 987 0.018933 0.108533 0.8722
    AMWS 988 0.019667 0.155133 0.825333
    MSNZ 1587 0.0078 0.129067 0.8634
    MSNZ 1756 0.006733 0.011 0.9824
    MSNZ 1851 0.005067 0.029733 0.9652
    MSNZ 2034 0.0352 0.1964 0.7686
    MSNZ 2613 0.0062 0.0746 0.919333
    AUST 1387 0.046333 0.052533 0.9012
    AUST 1531 0.0178 0.145467 0.836933
    AUST 1564 0.008067 0.045867 0.946
    AUST 1870 0.051933 0.069333 0.878667
    AUST 1871 0.008533 0.072 0.9196
    ECKR 1376 0.005467 0.0664 0.928
    ECKR 1377 0.005133 0.032267 0.962333
    ECKR 1400 0.003867 0.036667 0.9594
    ECKR 1404 0.004067 0.042933 0.952867
    ECKR 1511 0.008333 0.081333 0.910267
    IRSE 1540 0.0042 0.0116 0.984133
    IRSE 1617 0.005267 0.010867 0.9838
    IRSE 1896 0.009267 0.017133 0.9736
    IRSE 2084 0.004333 0.008133 0.9876
    IRSE 2085 0.004267 0.029467 0.966067
    WHWT 1388 0.013 0.013667 0.973533
    WHWT 1420 0.037133 0.0254 0.937267
    WHWT 1992 0.0094 0.02 0.970867
    WHWT 2100 0.009933 0.033333 0.956667
    WHWT 2128 0.011533 0.009467 0.979
    PNTR 1382 0.0116 0.0096 0.978867
    PNTR 1383 0.025867 0.019933 0.9542
    PNTR 1869 0.011667 0.007867 0.980533
    PNTR 1938 0.010867 0.015533 0.973667
    PNTR 1948 0.066533 0.008533 0.925
    BASS 1341 0.035333 0.0746 0.890067
    BASS 1342 0.014067 0.015467 0.970533
    BASS 1506 0.008467 0.045133 0.946533
    BASS 1917 0.0118 0.065067 0.923133
    CKCS 1513 0.039067 0.011467 0.949533
    CKCS 1639 0.0096 0.034067 0.956267
    CKCS 1640 0.011467 0.1124 0.875867
    CKCS 1642 0.008133 0.017133 0.9748
    CKCS 2054 0.0076 0.014533 0.977733
    GSNZ 1868 0.2806 0.028467 0.691
    GSNZ 22739 0.187 0.026133 0.787
    GSNZ 27093 0.064533 0.027667 0.9078
    GSNZ 27106 0.0126 0.0828 0.9048
    GSNZ 33390 0.011667 0.053533 0.9348
    PHAR 1292 0.152867 0.015267 0.831867
    PHAR 1947 0.207067 0.007933 0.785067
    PHAR 1962 0.1676 0.0442 0.788333
    PHAR 1963 0.142533 0.021667 0.8358
    GOLD 591 0.006467 0.268667 0.724933
    GOLD 592 0.0284 0.465467 0.506067
    GOLD 593 0.007867 0.295733 0.696533
    GOLD 603 0.0082 0.3306 0.6614
    GOLD 604 0.004533 0.283333 0.712267
    BEAG 1323 0.012467 0.292 0.695667
    BEAG 1324 0.019267 0.052133 0.928667
    BEAG 1327 0.008867 0.3602 0.630667
    BEAG 994 0.0326 0.3418 0.625467
    BEAG 995 0.026333 0.1152 0.858467
    BLDH 1186 0.014133 0.626733 0.358933
    BLDH 1223 0.017133 0.404467 0.578267
    BLDH 1410 0.006467 0.772733 0.2208
    BLDH 1942 0.013 0.5678 0.419333
    BLDH 1957 0.008933 0.458133 0.532733
    AIRT 1603 0.059733 0.2394 0.701067
    AIRT 1604 0.008533 0.090133 0.901467
    AIRT 1788 0.006533 0.4282 0.5652
    AIRT 1875 0.022733 0.1192 0.857867
    ACKR 1035 0.014333 0.040733 0.944933
    ACKR 2261 0.0278 0.050867 0.921333
    ACKR 2310 0.004867 0.061133 0.9338
    ACKR 1956 0.0142 0.155667 0.830267
    ACKR 2260 0.006867 0.077 0.915867
    AHRT 1120 0.016333 0.104 0.879467
    AHRT 1121 0.013733 0.185067 0.801267
    AHRT 1122 0.0096 0.190467 0.8002
    AHRT 1123 0.0118 0.097333 0.891
    AHRT 1124 0.0106 0.091933 0.8974
    CHBR 1546 0.013133 0.096333 0.890667
    CHBR 1549 0.0814 0.445533 0.473
    CHBR 1813 0.0054 0.23 0.7646
    CHBR 2091 0.0118 0.073267 0.915
    CHBR 888 0.0056 0.118533 0.876
    CAIR 1405 0.01 0.289333 0.7004
    CAIR 2096 0.022667 0.041733 0.935533
    CAIR 2113 0.0158 0.050867 0.933333
    CAIR 2125 0.006333 0.0114 0.9824
    CAIR 2131 0.0202 0.027533 0.952333
    PTWD P142 0.007067 0.1418 0.8512
    PTWD P1  0.005067 0.2378 0.757
    PTWD P238 0.0172 0.209333 0.773467
    PTWD P25  0.005133 0.021667 0.9732
    PTWD P67  0.007067 0.023 0.97
    GSHP 1628 0.006533 0.155933 0.837533
    GSHP 1708 0.042867 0.041333 0.915867
    GSHP 1710 0.0406 0.0372 0.922133
    GSHP 1833 0.012533 0.549533 0.438133
    GSHP 1892 0.0154 0.0414 0.943267
    BORD 1648 0.1348 0.036733 0.8286
    BORD 1828 0.017867 0.032733 0.949467
    BORD 1829 0.006667 0.211667 0.781733
    BORD 2002 0.026467 0.061533 0.911933
    BORD 2003 0.044533 0.055467 0.9
    BEDT 1422 0.009067 0.3274 0.6634
    BEDT 1423 0.007933 0.189867 0.802333
    BEDT 1424 0.017533 0.1126 0.870133
    BEDT 1426 0.014933 0.238867 0.7462
    CLSP 1008 0.01 0.7082 0.281667
    CLSP 1009 0.005333 0.637667 0.3572
    CLSP 1802 0.010467 0.666267 0.323267
    CLSP 2312 0.005 0.752 0.242867
    CLSP 2314 0.006067 0.7524 0.2416
    IBIZ 1147 0.011533 0.1148 0.8738
    IBIZ 1148 0.0164 0.235267 0.7482
    IBIZ 1162 0.013 0.055133 0.932
    IBIZ 1172 0.0232 0.1398 0.837
    IBIZ 1280 0.022333 0.175667 0.801867
    RHOD 1444 0.007267 0.143733 0.848733
    RHOD 1454 0.027467 0.127333 0.845067
    RHOD 1505 0.011 0.135467 0.853467
    RHOD 1592 0.010067 0.5242 0.4658
    RHOD 1609 0.008133 0.110267 0.881467
    DACH 1051 0.0216 0.564 0.414467
    DACH 1052 0.015267 0.618867 0.365733
    DACH 1053 0.015533 0.563867 0.420667
    DACH 1054 0.0254 0.728467 0.246133
    DACH 1055 0.016667 0.6114 0.3718
    AUSS 1336 0.17 0.2254 0.6046
    AUSS 1337 0.016133 0.237267 0.7464
    AUSS 1500 0.012067 0.026 0.962133
    AUSS 1521 0.1014 0.3078 0.590867
    AUSS 1683 0.0128 0.210267 0.776933
    CHIH 1202 0.007267 0.219867 0.7728
    CHIH 1203 0.022 0.0794 0.898667
    CHIH 1204 0.014467 0.104733 0.880667
    CHIN 1205 0.1532 0.3324 0.514333
    CHIH 1206 0.0068 0.388867 0.6042
    KERY 13878 0.007533 0.159533 0.833067
    KERY 1483 0.0064 0.175733 0.817867
    KERY 1579 0.012133 0.034067 0.953533
    KERY 2014 0.004333 0.339933 0.655933
    KERY 24255 0.009733 0.294667 0.695467
    SCHP 1386 0.0092 0.0818 0.9088
    SCHP 1471 0.013867 0.077267 0.908933
    SCHP 1814 0.0104 0.090933 0.898667
    SCHP 1852 0.013067 0.013733 0.973333
    IRTR 2152 0.011533 0.1228 0.865533
    IRTR 2189 0.0128 0.413133 0.5742
    IRTR 2238 0.006667 0.4018 0.591467
    IRTR 2242 0.009667 0.282267 0.7082
    FCR 1188 0.0058 0.172933 0.821267
    FCR 2020 0.006267 0.020467 0.973267
    FCR 2042 0.006067 0.123533 0.870267
    FCR 2044 0.006533 0.0468 0.946733
    FCR 2259 0.004667 0.199467 0.796
    SCWT 1624 0.081533 0.640867 0.2776
    SCWT 1770 0.005933 0.3122 0.682
    SCWT 2250 0.006867 0.422133 0.571
    SCWT 2301 0.021667 0.636533 0.3418
    POM 1190 0.155933 0.333533 0.5108
    POM 1191 0.010667 0.731067 0.258267
    POM 1210 0.050933 0.3128 0.636333
    POM 1238 0.007867 0.163933 0.827933
    POM 1239 0.203467 0.0754 0.721
    LAB 1310 0.119267 0.587867 0.292733
    LAB 1465 0.016267 0.392 0.591933
    LAB 1468 0.022733 0.3696 0.6078
    LAB 1754 0.0192 0.791933 0.188867
    LAB 1830 0.006333 0.538667 0.454867
    PRES 1082 0.009467 0.803133 0.187667
    PRES 1096 0.0064 0.797133 0.1968
    PRES 1115 0.012333 0.656733 0.330733
    PRES 1127 0.0976 0.877933 0.024533
    PRES 1095 0.083267 0.823733 0.0932
    ROTT 1014 0.015867 0.725267 0.258933
    ROTT 1028 0.006667 0.7466 0.246533
    ROTT 1029 0.004867 0.9082 0.086867
    ROTT 1033 0.007133 0.946867 0.045933
    ROTT 1034 0.006467 0.921933 0.071733
    BULM 1105 0.0064. 0.954333 0.0392
    BULM 1106 0.005667 0.552933 0.4414
    BULM 1107 0.0256 0.9174 0.057267
    BULM 1108 0.0084 0.9536 0.038
    BULM 1109 0.0064 0.9706 0.023267
    NEWF 271 0.0176 0.865867 0.116467
    NEWF 274 0.006533 0.9628 0.030333
    NEWF 275 0.006467 0.983733 0.009867
    NEWF 277 0.0074 0.983867 0.008667
    NEWF 278 0.086 0.862667 0.051467
    GSD 1666 0.007 0.954733 0.038133
    GSD 1776 0.003733 0.958067 0.0382
    GSD 2011 0.009867 0.893933 0.096067
    GSD 2060 0.0064 0.8242 0.169467
    GSD 2086 0.006933 0.917267 0.075733
    FBUL 1507 0.0122 0.975067 0.012933
    FBUL 1508 0.0082 0.970733 0.0212
    FBUL 1509 0.005 0.986333 0.008933
    FBUL 2671 0.023467 0.918267 0.0582
    MBLT 1915 0.007 0.936867 0.055933
    MBLT 2253 0.008133 0.953533 0.038467
    MBLT 2254 0.060133 0.904933 0.034933
    MBLT 2255 0.010533 0.957533 0.031867
    MBLT 2256 0.0066 0.985667 0.0078
    BULD 1193 0.021133 0.964667 0.0142
    BULD 1194 0.0056 0.9872 0.007067
    BULD 1195 0.003933 0.988533 0.0074
    BULD 1197 0.007133 0.9042 0.0888
    BULD 1198 0.006733 0.9778 0.0154
    BOX 1176 0.0038 0.982933 0.0132
    BOX 1177 0.0044 0.9746 0.020933
    BOX 1178 0.005733 0.9872 0.007133
    BOX 1179 0.002933 0.9922 0.004733
    BOX 1304 0.003733 0.9868 0.009667
    MAST 1015 0.0052 0.943267 0.0516
    MAST 1016 0.0114 0.9228 0.065867
    MAST 1017 0.006133 0.913733 0.08
    MAST 1066 0.0174 0.9588 0.023733
    MAST 991 0.017933 0.965933 0.016067
    BMD 941 0.004867 0.9596 0.035667
    BMD 943 0.013133 0.7552 0.231733
    BMD 968 0.010467 0.949133 0.040333
    BMD 1763 0.005733 0.938867 0.055267
    BMD 969 0.005067 0.902933 0.092067
    GSMD 1547 0.007533 0.4592 0.533067
    GSMD 1659 0.006133 0.687133 0.3066
    GSMD 1660 0.017067 0.4854 0.4974
    GSMD 1662 0.063933 0.632667 0.303133
    GSMD 1663 0.009933 0.5714 2.93
  • TABLE 19C
    Canid Canid k = 2, 15 Run Average
    Populationa ID No. Pop1 Pop2
    SHIB 1769 0.9954 0.0046
    SHIB 1854 0.991133 0.008867
    SHIB 1856 0.9642 0.0358
    SHIB 1860 0.992133 0.007867
    SHIB 1981 0.989467 0.010533
    CHOW 1633 0.993733 0.006267
    CHOW 1835 0.994867 0.005133
    CHOW 1837 0.991533 0.008467
    CHOW 1838 0.995 0.005
    CHOW 1839 0.988 0.012
    AKIT 1130 0.9788 0.0212
    AKIT 1131 0.995067 0.004933
    AKIT 1132 0.995267 0.004733
    AKIT 1133 0.994933 0.005067
    AKIT 1134 0.996 0.004
    AMAL 1629 0.8468 0.1532
    AMAL 1779 0.816733 0.183267
    AMAL 1845 0.913667 0.086333
    AMAL 2132 0.934867 0.065133
    AMAL 2214 0.9108 0.0892
    BSJI 1338 0.735267 0.264733
    BSJI 1339 0.986933 0.013067
    BSJI 1645 0.989667 0.010333
    BSJI 1675 0.9814 0.0186
    BSJI 1717 0.984867 0.015133
    SHAR 1573 0.9826 0.0174
    SHAR 1593 0.932 0.068
    SHAR 1619 0.931133 0.068867
    SHAR 1998 0.7944 0.2056
    SHAR 1999 0.9768 0.0232
    HUSK 1469 0.916333 0.083667
    HUSK 1883 0.939 0.061
    HUSK 2115 0.797333 0.202667
    HUSK 2117 0.642933 0.357067
    HUSK 2118 0.889267 0.110733
    AFGH 1812 0.582533 0.417467
    AFGH 1939 0.6042 0.3958
    AFGH 2264 0.572067 0.427933
    AFGH 1936 0.7372 0.2628
    AFGH 1937 0.666533 0.333467
    SALU 1491 0.427467 0.572533
    SALU 1535 0.6256 0.3744
    SALU 1607 0.548533 0.451467
    SALU 1873 0.323 0.677
    SALU 2610 0.452133 0.547867
    TIBT 1466 0.463867 0.536133
    TIBT 1562 0.334267 0.665733
    TIBT 1707 0.369133 0.630867
    TIBT 26078 0.402067 0.597933
    TIBT 28086 0.160333 0.839667
    LHSA 1524 0.547533 0.452467
    LHSA 1525 0.5422 0.4578
    LHSA 1526 0.453533 0.546467
    LHSA 1528 0.339 0.661
    LHSA 2074 0.688267 0.311733
    SAMO 1375 0.303933 0.696067
    SAMO 1532 0.592467 0.407533
    SAMO 1560 0.5672 0.4328
    SAMO 169 0.461933 0.538067
    SAMO 239 0.4442 0.5558
    PEKE 1143 0.7292 0.2708
    PEKE 1145 0.4824 0.5176
    PEKE 1211 0.4778 0.5222
    PEKE 1212 0.351067 0.648933
    PEKE 1213 0.638467 0.361533
    SHIH 1393 0.385467 0.614533
    SHIH 1783 0.4202 0.5798
    SHIH 2068 0.433667 0.566333
    SHIH 2859 0.481267 0.518733
    SHIH 2860 0.542 0.458
    IWOF 1581 0.018867 0.981133
    IWOF 1761 0.0092 0.9908
    IWOF 1792 0.017467 0.982533
    IWOF 1906 0.061533 0.938467
    IWOF 1993 0.0062 0.9938
    STBD 1075 0.035 0.965
    STBD 1714 0.056733 0.943267
    STBD 1750 0.045267 0.954733
    STBD 2403 0.019667 0.980333
    STBD 2404 0.021467 0.978533
    GREY 2477 0.155267 0.844733
    GREY 2478 0.0156 0.9844
    GREY 2479 0.0088 0.9912
    GREY 2480 0.1108 0.8892
    GREY 2481 0.0092 0.9908
    BELS 1351 0.030333 0.969667
    BELS 2111 0.1014 0.8986
    BELS 2153 0.0072 0.9928
    BELS 2209 0.053933 0.946067
    BELS 2210 0.0352 0.9648
    TURV 1622 0.0158 0.9842
    TURV 2194 0.0078 0.9922
    TURV 2200 0.030867 0.969133
    TURV 2222 0.006133 0.993867
    BORZ 1378 0.2322 0.7678
    BORZ 1401 0.170933 0.829067
    BORZ 1808 0.229267 0.770733
    BORZ 2268 0.1112 0.8888
    BORZ 978 0.102267 0.897733
    COLL 1692 0.011133 0.988867
    COLL 1701 0.0226 0.9774
    COLL 2284 0.015333 0.984667
    COLL 373 0.009267 0.990733
    COLL 379 0.006133 0.993867
    SSHP 1379 0.027867 0.972133
    SSHP 1523 0.054133 0.945867
    SSHP 1824 0.008133 0.991867
    SSHP 1921 0.0048 0.9952
    SSHP 2040 0.0838 0.9162
    PUG 1077 0.028133 0.971867
    PUG 1104 0.104933 0.895067
    PUG 1183 0.159933 0.840067
    PUG 1184 0.027533 0.972467
    PUG 1192 0.009467 0.990533
    KOMO 1484 0.025667 0.974333
    KOMO 1964 0.0836 0.9164
    KOMO 2321 0.035333 0.964667
    KOMO 2323 0.091133 0.908867
    KOMO 2334 0.0158 0.9842
    WHIP 1355 0.0084 0.9916
    WHIP 1395 0.008133 0.991867
    WHIP 1407 0.005533 0.994467
    WHIP 1409 0.006 0.994
    WHIP 1518 0.005267 0.994733
    SPOO 1530 0.044667 0.955333
    SPOO 1582 0.050467 0.949533
    SPOO 1876 0.022133 0.977867
    SPOO 1877 0.011933 0.988067
    SPOO 2337 0.0062 0.9938
    BICH 1943 0.131 0.869
    BICH 1954 0.286533 0.713467
    BICH 933 0.056867 0.943133
    BICH 974 0.142267 0.857733
    KEES 1501 0.059533 0.940467
    KEES 1589 0.009067 0.990933
    KEES 1818 0.018533 0.981467
    KEES 1819 0.007 0.993
    KEES 2072 0.0066 0.9934
    MNTY 1539 0.010933 0.989067
    MNTY 1732 0.022533 0.977467
    MNTY 2145 0.012533 0.987467
    MNTY 2149 0.011333 0.988667
    NELK 2216 0.107867 0.892133
    NELK 2239 0.220267 0.779733
    NELK 2240 0.037333 0.962667
    NELK 2281 0.0152 0.9848
    NELK 2295 0.2866 0.7134
    KUVZ 1482 0.1712 0.8288
    KUVZ 1551 0.2862 0.7138
    KUVZ 1672 0.110333 0.889667
    KUVZ 1913 0.041067 0.958933
    KUVZ 1994 0.104667 0.895333
    DANE 1574 0.018667 0.981333
    DANE 1575 0.153333 0.846667
    DANE 1580 0.0202 0.9798
    DANE 1700 0.007333 0.992667
    DANE 1748 0.1858 0.8142
    WSSP 1955 0.006133 0.993867
    WSSP 2139 0.015867 0.984133
    WSSP 2143 0.005067 0.994933
    WSSP 2195 0.020133 0.979867
    WSSP 2286 0.005333 0.994667
    DOBP 1031 0.014467 0.985533
    DOBP 1032 0.062467 0.937533
    DOBP 1749 0.052933 0.947067
    DOBP 2162 0.0146 0.9854
    DOBP 2245 0.0092 0.9908
    SSNZ 13352 0.003467 0.996533
    SSNZ 1360 0.003 0.997
    SSNZ 1827 0.004867 0.995133
    SSNZ 20457 0.010667 0.989333
    SSNZ 22647 0.006267 0.993733
    ITGY 1568 0.025333 0.974667
    ITGY 1570 0.016533 0.983467
    ITGY 1862 0.137667 0.862333
    ITGY 1881 0.0804 0.9196
    ITGY 1882 0.159933 0.840067
    OES 1984 0.0414 0.9586
    OES 2171 0.009067 0.990933
    OES 2179 0.008133 0.991867
    OES 1914 0.0212 0.9788
    OES 2626 0.142733 0.857267
    AMWS 2168 0.010867 0.989133
    AMWS 2279 0.007733 0.992267
    AMWS 2327 0.080333 0.919667
    AMWS 987 0.014133 0.985867
    AMWS 988 0.015467 0.984533
    MSNZ 1587 0.005 0.995
    MSNZ 1756 0.008267 0.991733
    MSNZ 1851 0.004667 0.995333
    MSNZ 2034 0.039 0.961
    MSNZ 2613 0.004867 0.995133
    AUST 1387 0.036867 0.963133
    AUST 1531 0.009 0.991
    AUST 1564 0.006133 0.993867
    AUST 1870 0.051467 0.948533
    AUST 1871 0.0066 0.9934
    ECKR 1376 0.004133 0.995867
    ECKR 1377 0.003933 0.996067
    ECKR 1400 0.002933 0.997067
    ECKR 1404 0.003133 0.996867
    ECKR 1511 0.0066 0.9934
    IRSE 1540 0.003267 0.996733
    IRSE 1617 0.004133 0.995867
    IRSE 1896 0.0136 0.9864
    IRSE 2084 0.004533 0.995467
    IRSE 2085 0.003533 0.996467
    WHWT 1388 0.016133 0.983867
    WHWT 1420 0.031467 0.968533
    WHWT 1992 0.0064 0.9936
    WHWT 2100 0.0078 0.9922
    WHWT 2128 0.010867 0.989133
    PNTR 1382 0.015 0.985
    PNTR 1383 0.0574 0.9426
    PNTR 1869 0.0322 0.9678
    PNTR 1938 0.009867 0.990133
    PNTR 1948 0.2778 0.7222
    BASS 1341 0.024267 0.975733
    BASS 1342 0.012733 0.987267
    BASS 1506 0.006667 0.993333
    BASS 1917 0.0066 0.9934
    CKCS 1513 0.070867 0.929133
    CKCS 1639 0.0084 0.9916
    CKCS 1640 0.0086 0.9914
    CKCS 1642 0.007267 0.992733
    CKCS 2054 0.007067 0.992933
    GSNZ 1868 0.274133 0.725867
    GSNZ 22739 0.177133 0.822867
    GSNZ 27093 0.087533 0.912467
    GSNZ 27106 0.0126 0.9874
    GSNZ 33390 0.008333 0.991667
    PHAR 1292 0.1702 0.8298
    PHAR 1947 0.275533 0.724467
    PHAR 1962 0.1786 0.8214
    PHAR 1963 0.158467 0.841533
    GOLD 591 0.0048 0.9952
    GOLD 592 0.029667 0.970333
    GOLD 593 0.005933 0.994067
    GOLD 603 0.007267 0.992733
    GOLD 604 0.003333 0.996667
    BEAG 1323 0.0084 0.9916
    BEAG 1324 0.037133 0.962867
    BEAG 1327 0.006667 0.993333
    BEAG 994 0.0264 0.9736
    BEAG 995 0.030333 0.969667
    BLDH 1186 0.007733 0.992267
    BLDH 1223 0.011667 0.988333
    BLDH 1410 0.005267 0.994733
    BLDH 1942 0.008933 0.991067
    BLDH 1957 0.0058 0.9942
    AIRT 1603 0.072867 0.927133
    AIRT 1604 0.007 0.993
    AIRT 1788 0.005667 0.994333
    AIRT 1875 0.029867 0.970133
    ACKR 1035 0.0096 0.9904
    ACKR 2261 0.023267 0.976733
    ACKR 2310 0.003667 0.996333
    ACKR 1956 0.012333 0.987667
    ACKR 2260 0.0052 0.9948
    AHRT 1120 0.011133 0.988867
    AHRT 1121 0.010067 0.989933
    AHRT 1122 0.007533 0.992467
    AHRT 1123 0.0102 0.9898
    AHRT 1124 0.006467 0.993533
    CHBR 1546 0.009667 0.990333
    CHBR 1549 0.088867 0.911133
    CHBR 1813 0.0042 0.9958
    CHBR 2091 0.011 0.989
    CHBR 888 0.004267 0.995733
    CAIR 1405 0.009 0.991
    CAIR 2096 0.029667 0.970333
    CAIR 2113 0.0138 0.9862
    CAIR 2125 0.006333 0.993667
    CAIR 2131 0.020467 0.979533
    PTWD P142 0.005333 0.994667
    PTWD P1  0.0038 0.9962
    PTWD P238 0.011533 0.988467
    PTWD P25  0.0044 0.9956
    PTWD P67  0.006933 0.993067
    GSHP 1628 0.004733 0.995267
    GSHP 1708 0.048067 0.951933
    GSHP 1710 0.040933 0.959067
    GSHP 1833 0.007667 0.992333
    GSHP 1892 0.008733 0.991267
    BORD 1648 0.164267 0.835733
    BORD 1828 0.0184 0.9816
    BORD 1829 0.0054 0.9946
    BORD 2002 0.033 0.967
    BORD 2003 0.045267 0.954733
    BEDT 1422 0.006933 0.993067
    BEDT 1423 0.0062 0.9938
    BEDT 1424 0.018133 0.981867
    BEDT 1426 0.01 0.99
    CLSP 1008 0.0074 0.9926
    CLSP 1009 0.004067 0.995933
    CLSP 1802 0.006667 0.993333
    CLSP 2312 0.004133 0.995867
    CLSP 2314 0.005067 0.994933
    IBIZ 1147 0.011467 0.988533
    IBIZ 1148 0.030933 0.969067
    IBIZ 1162 0.0162 0.9838
    IBIZ 1172 0.017867 0.982133
    IBIZ 1280 0.018733 0.981267
    RHOD 1444 0.004333 0.995667
    RHOD 1454 0.018 0.982
    RHOD 1505 0.008 0.992
    RHOD 1592 0.006733 0.993267
    RHOD 1609 0.005067 0.994933
    DACH 1051 0.0188 0.9812
    DACH 1052 0.009067 0.990933
    DACH 1053 0.016733 0.983267
    DACH 1054 0.028867 0.971133
    DACH 1055 0.009933 0.990067
    AUSS 1336 0.1524 0.8476
    AUSS 1337 0.013133 0.986867
    AUSS 1500 0.010667 0.989333
    AUSS 1521 0.102067 0.897933
    AUSS 1683 0.008467 0.991533
    CHIH 1202 0.005267 0.994733
    CHIH 1203 0.03 0.97
    CHIH 1204 0.013333 0.986667
    CHIH 1205 0.166867 0.833133
    CHIH 1206 0.004867 0.995133
    KERY 13878 0.0066 0.9934
    KERY 1483 0.005867 0.994133
    KERY 1579 0.011133 0.988867
    KERY 2014 0.0034 0.9966
    KERY 24255 0.007267 0.992733
    SCHP 1386 0.0082 0.9918
    SCHP 1471 0.020933 0.979067
    SCHP 1814 0.007667 0.992333
    SCHP 1852 0.0184 0.9816
    IRTR 2152 0.009333 0.990667
    IRTR 2189 0.008333 0.991667
    IRTR 2238 0.005467 0.994533
    IRTR 2242 0.0076 0.9924
    FCR 1188 0.004267 0.995733
    FCR 2020 0.0052 0.9948
    FCR 2042 0.004333 0.995667
    FCR 2044 0.005133 0.994867
    FCR 2259 0.003733 0.996267
    SCWT 1624 0.051067 0.948933
    SCWT 1770 0.004467 0.995533
    SCWT 2250 0.005533 0.994467
    SCWT 2301 0.0124 0.9876
    POM 1190 0.181067 0.818933
    POM 1191 0.006067 0.993933
    POM 1210 0.049267 0.950733
    POM 1238 0.010067 0.989933
    POM 1239 0.298467 0.701533
    LAB 1310 0.0756 0.9244
    LAB 1465 0.011 0.989
    LAB 1468 0.013533 0.986467
    LAB 1754 0.007067 0.992933
    LAB 1830 0.0052 0.9948
    PRES 1082 0.009 0.991
    PRES 1096 0.004667 0.995333
    PRES 1115 0.008667 0.991333
    PRES 1127 0.147867 0.852133
    PRES 1095 0.115533 0.884467
    ROTT 1014 0.016467 0.983533
    ROTT 1028 0.005333 0.994667
    ROTT 1029 0.003733 0.996267
    ROTT 1033 0.006933 0.993067
    ROTT 1034 0.003867 0.996133
    BULM 1105 0.004067 0.995933
    BULM 1106 0.004467 0.995533
    BULM 1107 0.007933 0.992067
    BULM 1108 0.005533 0.994467
    BULM 1109 0.004533 0.995467
    NEWF 271 0.014333 0.985667
    NEWF 274 0.005867 0.994133
    NEWF 275 0.006467 0.993533
    NEWF 277 0.008933 0.991067
    NEWF 278 0.106 0.894
    GSD 1666 0.005467 0.994533
    GSD 1776 0.003 0.997
    GSD 2011 0.004267 0.995733
    GSD 2060 0.004467 0.995533
    GSD 2086 0.005867 0.994133
    FBUL 1507 0.016867 0.983133
    FBUL 1508 0.0084 0.9916
    FBUL 1509 0.0066 0.9934
    FBUL 2671 0.032867 0.967133
    MBLT 1915 0.005467 0.994533
    MBLT 2253 0.007467 0.992533
    MBLT 2254 0.063667 0.936333
    MBLT 2255 0.006333 0.993667
    MBLT 2256 0.0102 0.9898
    BULD 1193 0.035 0.965
    BULD 1194 0.010067 0.989933
    BULD 1195 0.010867 0.989133
    BULD 1197 0.0042 0.9958
    BULD 1198 0.005133 0.994867
    BOX 1176 0.003133 0.996867
    BOX 1177 0.003467 0.996533
    BOX 1178 0.005533 0.994467
    BOX 1179 0.004467 0.995533
    BOX 1304 0.0046 0.9954
    MAST 1015 0.003533 0.996467
    MAST 1016 0.012467 0.987533
    MAST 1017 0.006933 0.993067
    MAST 1066 0.011333 0.988667
    MAST 991 0.0132 0.9868
    BMD 941 0.0054 0.9946
    BMD 943 0.0054 0.9946
    BMD 968 0.005933 0.994067
    BMD 1763 0.004133 0.995867
    BMD 969 0.0034 0.9966
    GSMD 1547 0.004867 0.995133
    GSMD 1659 0.004467 0.995533
    GSMD 1660 0.010933 0.989067
    GSMD 1662 0.0276 0.9724
    GSMD 1663 0.009267 0.990733
    aSee Table 5 for abbreviations of canid populations.
    KBB: pbe
  • TABLE 19D
    Canid Canid k =2 with wolf; 15 Run Average
    Populationa ID No. Pop1 Pop2
    WOLF W511  0.994 0.006
    WOLF W5131 0.982 0.018
    WOLF WC3 0.995 0.005
    WOLF WE10 0.995 0.005
    WOLF 282135 0.9918 0.0082
    WOLF 492-8 0.9968 0.0032
    WOLF 930121 0.9858 0.0142
    WOLF Iran-1 0.9388 0.0612
    SHIB 1769 0.993 0.007
    SHIB 1854 0.98 0.02
    SHIB 1856 0.938 0.062
    SHIB 1860 0.99 0.01
    SHIB 1981 0.987 0.013
    CHOW 1633 0.9904 0.0096
    CHOW 1835 0.9916 0.0084
    CHOW 1837 0.9774 0.0226
    CHOW 1838 0.9918 0.0082
    CHOW 1839 0.9796 0.0204.
    AKIT 1130 0.9724 0.0276
    AKIT 1131 0.993 0.007
    AKIT 1132 0.9934 0.0066
    AKIT 1133 0.995 0.005
    AKIT 1134 0.994 0.006
    AMAL 1629 0.5876 0.4124
    AMAL 1779 0.516 0.484
    AMAL 1845 0.6802 0.3198
    AMAL 2132 0.755 0.245
    AMAL 2214 0.7298 0.2702
    BSJI 1338 0.7944 0.2056
    BSJI 1339 0.976 0.024
    BSJI 1645 0.9792 0.0208
    BSJI 1675 0.9718 0.0282
    BSJI 1717 0.9672 0.0328
    SHAR 1573 0.9318 0.0682
    SHAR 1593 0.914 0.086
    SHAR 1619 0.8048 0.1952
    SHAR 1998 0.6918 0.3082
    SHAR 1999 0.9372 0.0628
    HUSK 1469 0.702 0.298
    HUSK 1883 0.7878 0.2122
    HUSK 2115 0.5934 0.4066
    HUSK 2117 0.5412 0.4588
    HUSK 2118 0.7718 0.2282
    AFGH 1812 0.4642 0.5358
    AFGH 1939 0.5172 0.4828
    AFGH 2264 0.4348 0.5652
    AFGH 1936 0.5942 0.4058
    AFGH 1937 0.583 0.417
    SALU 1491 0.3624 0.6376
    SALU 1535 0.4792 0.5208
    SALU 1607 0.4234 0.5766
    SALU 1873 0.2304 0.7696
    SALU 2610 0.4092 0.5908
    TIBT 1466 0.3684 0.6316
    TIBT 1562 0.2896 0.7104
    TIBT 1707 0.3136 0.6864
    TIBT 26078 0.3314 0.6686
    TIBT 28086 0.1316 0.8684
    LHSA 1524 0.4598 0.5402
    LHSA 1525 0.4652 0.5348
    LHSA 1526 0.4 0.6
    LHSA 1528 0.2798 0.7202
    LHSA 2074 0.5838 0.4162
    SAMO 1375 0.1684 0.8316
    SAMO 1532 0.5154 0.4846
    SAMO 1560 0.4444 0.5556
    SAMO 169 0.3686 0.6314
    SAMO 239 0.3666 0.6334
    PEKE 1143 0.5856 0.4144
    PEKE 1145 0.3948 0.6052
    PEKE 1211 0.416 0.584
    PEKE 1212 0.2806 0.7194
    PEKE 1213 0.4832 0.5168
    SHIH 1393 0.3196 0.6804
    SHIH 1783 0.3234 0.6766
    SHIH 2068 0.347 0.653
    SHIH 2859 0.3476 0.6524
    SHIH 2860 0.4582 0.5418
    IWOF 1581 0.0124 0.9876
    IWOF 1761 0.0054 0.9946
    IWOF 1792 0.0086 0.9914
    IWOF 1906 0.026 0.974
    IWOF 1993 0.0046 0.9954
    STBD 1075 0.0348 0.9652
    STBD 1714 0.0484 0.9516
    STBD 1750 0.028 0.972
    STBD 2403 0.021 0.979
    STBD 2404 0.0122 0.9878
    GREY 2477 0.0992 0.9008
    GREY 2478 0.0146 0.9854
    GREY 2479 0.0062 0.9938
    GREY 2480 0.1026 0.8974
    GREY 2481 0.0058 0.9942
    BELS 1351 0.0142 0.9858
    BELS 2111 0.0206 0.9794
    BELS 2153 0.0058 0.9942
    BELS 2209 0.036 0.964
    BELS 2210 0.0268 0.9732
    TURV 1622 0.0184 0.9816
    TURV 2194 0.0062 0.9938
    TURV 2200 0.0178 0.9822
    TURV 2222 0.0058 0.9942
    BORZ 1378 0.1582 0.8418
    BORZ 1401 0.1348 0.8652
    BORZ 1808 0.1496 0.8504
    BORZ 2268 0.0448 0.9552
    BORZ 978 0.0282 0.9718
    COLL 1692 0.0102 0.9898
    COLL 1701 0.0236 0.9764
    COLL 2284 0.0178 0.9822
    COLL 373 0.0102 0.9898
    COLL 379 0.0064 0.9936
    SSHP 1379 0.0186 0.9814
    SSHP 1523 0.055 0.945
    SSHP 1824 0.0058 0.9942
    SSHP 1921 0.0048 0.9952
    SSHP 2040 0.0678 0.9322
    PUG 1077 0.014 0.986
    PUG 1104 0.0376 0.9624
    PUG 1183 0.1068 0.8932
    PUG 1184 0.0102 0.9898
    PUG 1192 0.0064 0.9936
    KOMO 1484 0.0138 0.9862
    KOMO 1964 0.1264 0.8736
    KOMO 2321 0.0356 0.9644
    KOMO 2323 0.072 0.928
    KOMO 2334 0.0368 0.9632
    WHIP 1355 0.005 0.995
    WHIP 1395 0.006 0.994
    WHIP 1407 0.0048 0.9952
    WHIP 1409 0.0034 0.9966
    WHIP 1518 0.0038 0.9962
    SPOO 1530 0.0322 0.9678
    SPOO 1582 0.033 0.967
    SPOO 1876 0.0276 0.9724
    SPOO 1877 0.0108 0.9892
    SPOO 2337 0.0038 0.9962
    BICH 1943 0.0252 0.9748
    BICH 1954 0.2126 0.7874
    BICH 933 0.0202 0.9798
    BICH 974 0.09 0.91
    KEES 1501 0.0352 0.9648
    KEES 1589 0.012 0.988
    KEES 1818 0.0182 0.9818
    KEES 1819 0.005 0.995
    KEES 2072 0.0054 0.9946
    MNTY 1539 0.0104 0.9896
    MNTY 1732 0.013 0.987
    MNTY 2145 0.0126 0.9874
    MNTY 2149 0.0068 0.9932
    NELK 2216 0.0596 0.9404
    NELK 2239 0.1338 0.8662
    NELK 2240 0.0184 0.9816
    NELK 2281 0.0078 0.9922
    NELK 2295 0.1786 0.8214
    KUVZ 1482 0.0726 0.9274
    KUVZ 1551 0.2054 0.7946
    KUVZ 1672 0.0846 0.9154
    KUVZ 1913 0.012 0.988
    KUVZ 1994 0.0654 0.9346
    DANE 1574 0.0118 0.9882
    DANE 1575 0.1232 0.8768
    DANE 1580 0.0138 0.9862
    DANE 1700 0.0046 0.9954
    DANE 1748 0.0798 0.9202
    WSSP 1955 0.004 0.996
    WSSP 2139 0.0132 0.9868
    WSSP 2143 0.0068 0.9932
    WSSP 2195 0.0724 0.9276
    WSSP 2286 0.0038 0.9962
    DOBP 1031 0.0126 0.9874
    DOBP 1032 0.1052 0.8948
    DOBP 1749 0.0692 0.9308
    DOBP 2162 0.0136 0.9864
    DOBP 2245 0.0104 0.9896
    SSNZ 13352 0.003 0.997
    SSNZ 1360 0.0024 0.9976
    SSNZ 1827 0.004 0.996
    SSNZ 20457 0.0118 0.9882
    SSNZ 22647 0.0048 0.9952
    ITGY 1568 0.0098 0.9902
    ITGY 1570 0.0132 0.9868
    ITGY 1862 0.0478 0.9522
    ITGY 1881 0.0746 0.9254
    ITGY 1882 0.1056 0.8944
    OES 1984 0.0508 0.9492
    OES 2171 0.0068 0.9932
    OES 2179 0.005 0.995
    OES 1914 0.0148 0.9852
    OES 2626 0.129 0.871
    AMWS 2168 0.0194 0.9806
    AMWS 2279 0.0062 0.9938
    AMWS 2327 0.036 0.964
    AMWS 987 0.0054 0.9946
    AMWS 988 0.0116 0.9884
    MSNZ 1587 0.004 0.996
    MSNZ 1756 0.0076 0.9924
    MSNZ 1851 0.0046 0.9954
    MSNZ 2034 0.0374 0.9626
    MSNZ 2613 0.0038 0.9962
    AUST 1387 0.0208 0.9792
    AUST 1531 0.0048 0.9952
    AUST 1564 0.0038 0.9962
    AUST 1870 0.026 0.974
    AUST 1871 0.0038 0.9962
    ECKR 1376 0.0056 0.9944
    ECKR 1377 0.003 0.997
    ECKR 1400 0.002 0.998
    ECKR 1404 0.003 0.997
    ECKR 1511 0.0048 0.9952
    IRSE 1540 0.003 0.997
    IRSE 1617 0.004 0.996
    IRSE 1896 0.0104 0.9896
    IRSE 2084 0.0046 0.9954
    IRSE 2085 0.005 0.995
    WHWT 1388 0.0084 0.9916
    WHWT 1420 0.0328 0.9672
    WHWT 1992 0.0058 0.9942
    WHWT 2100 0.0054 0.9946
    WHWT 2128 0.0074 0.9926
    PNTR 1382 0.0368 0.9632
    PNTR 1383 0.0748 0.9252
    PNTR 1869 0.0274 0.9726
    PNTR 1938 0.0166 0.9834
    PNTR 1948 0.3046 0.6954
    BASS 1341 0.0212 0.9788
    BASS 1342 0.0078 0.9922
    BASS 1506 0.005 0.995
    BASS 1917 0.004 0.996
    CKCS 1513 0.0502 0.9498
    CKCS 1639 0.0058 0.9942
    CKCS 1640 0.0068 0.9932
    CKCS 1642 0.0074 0.9926
    CKCS 2054 0.0064 0.9936
    GSNZ 1868 0.224 0.776
    GSNZ 22739 0.116 0.884
    GSNZ 27093 0.0496 0.9504
    GSNZ 27106 0.0094 0.9906
    GSNZ 33390 0.0048 0.9952
    PHAR 1292 0.1686 0.8314
    PHAR 1947 0.3092 0.6908
    PHAR 1962 0.1454 0.8546
    PHAR 1963 0.0938 0.9062
    GOLD 591 0.0058 0.9942
    GOLD 592 0.0854 0.9146
    GOLD 593 0.0072 0.9928
    GOLD 603 0.0092 0.9908
    GOLD 604 0.003 0.997
    BEAG 1323 0.0048 0.9952
    BEAG 1324 0.0458 0.9542
    BEAG 1327 0.0068 0.9932
    BEAG 994 0.0198 0.9802
    BEAG 995 0.012 0.988
    BLDH 1186 0.005 0.995
    BLDH 1223 0.0086 0.9914
    BLDH 1410 0.0038 0.9962
    BLDH 1942 0.0068 0.9932
    BLDH 1957 0.004 0.996
    AIRT 1603 0.0658 0.9342
    AIRT 1604 0.0052 0.9948
    AIRT 1788 0.0046 0.9954
    AIRT 1875 0.0272 0.9728
    ACKR 1035 0.0066 0.9934
    ACKR 2261 0.0326 0.9674
    ACKR 2310 0.003 0.997
    ACKR 1956 0.0108 0.9892
    ACKR 2260 0.0038 0.9962
    AHRT 1120 0.0084 0.9916
    AHRT 1121 0.0068 0.9932
    AHRT 1122 0.0054 0.9946
    AHRT 1123 0.0104 0.9896
    AHRT 1124 0.0058 0.9942
    CHBR 1546 0.0058 0.9942
    CHBR 1549 0.0746 0.9254
    CHBR 1813 0.003 0.997
    CHBR 2091 0.0178 0.9822
    CHBR 888 0.0038 0.9962
    CAIR 1405 0.0106 0.9894
    CAIR 2096 0.0402 0.9598
    CAIR 2113 0.0078 0.9922
    CAIR 2125 0.0044 0.9956
    CAIR 2131 0.0132 0.9868
    PTWD P142 0.0052 0.9948
    PTWD P1  0.0036 0.9964
    PTWD P238 0.0082 0.9918
    PTWD P25  0.004 0.996
    PTWD P67  0.0062 0.9938
    GSHP 1628 0.0038 0.9962
    GSHP 1708 0.0518 0.9482
    GSHP 1710 0.0456 0.9544
    GSHP 1833 0.0068 0.9932
    GSHP 1892 0.0058 0.9942
    BORD 1648 0.0938 0.9062
    BORD 1828 0.0114 0.9886
    BORD 1829 0.0034 0.9966
    BORD 2002 0.0156 0.9844
    BORD 2003 0.0452 0.9548
    BEDT 1422 0.0048 0.9952
    BEDT 1423 0.005 0.995
    BEDT 1424 0.0302 0.9698
    BEDT 1426 0.0072 0.9928
    CLSP 1008 0.007 0.993
    CLSP 1009 0.0042 0.9958
    CLSP 1802 0.006 0.994
    CLSP 2312 0.0038 0.9962
    CLSP 2314 0.005 0.995
    IBIZ 1147 0.011 0.989
    IBIZ 1148 0.0974 0.9026
    IBIZ 1162 0.0106 0.9894
    IBIZ 1172 0.011 0.989
    IBIZ 1280 0.0148 0.9852
    RHOD 1444 0.0042 0.9958
    RHOD 1454 0.0154 0.9846
    RHOD 1505 0.006 0.994
    RHOD 1592 0.0082 0.9918
    RHOD 1609 0.0098 0.9902
    DACH 1051 0.0166 0.9834
    DACH 1052 0.0124 0.9876
    DACH 1053 0.0178 0.9822
    DACH 1054 0.051 0.949
    DACH 1055 0.0072 0.9928
    AUSS 1336 0.093 0.907
    AUSS 1337 0.0182 0.9818
    AUSS 1500 0.0206 0.9794
    AUSS 1521 0.0788 0.9212
    AUSS 1683 0.0088 0.9912
    CHIH 1202 0.004 0.996
    CHIH 1203 0.0298 0.9702
    CHIH 1204 0.0142 0.9858
    CHIH 1205 0.1506 0.8494
    CHIH 1206 0.004 0.996
    KERY 13878 0.0054 0.9946
    KERY 1483 0.0048 0.9952
    KERY 1579 0.0058 0.9942
    KERY 2014 0.0028 0.9972
    KERY 24255 0.0052 0.9948
    SCHP 1386 0.0136 0.9864
    SCHP 1471 0.0646 0.9354
    SCHP 1814 0.0076 0.9924
    SCHP 1852 0.0162 0.9838
    IRTR 2152 0.0086 0.9914
    IRTR 2189 0.0048 0.9952
    IRTR 2238 0.0048 0.9952
    IRTR 2242 0.0066 0.9934
    FCR 1188 0.004 0.996
    FCR 2020 0.004 0.996
    FCR 2042 0.004 0.996
    FCR 2044 0.0038 0.9962
    FCR 2259 0.0028 0.9972
    SCWT 1624 0.035 0.965
    SCWT 1770 0.0038 0.9962
    SCWT 2250 0.004 0.996
    SCWT 2301 0.0084 0.9916
    POM 1190 0.1668 0.8332
    POM 1191 0.0042 0.9958
    POM 1210 0.0374 0.9626
    POM 1238 0.0078 0.9922
    POM 1239 0.3112 0.6888
    LAB 1310 0.063 0.937
    LAB 1465 0.0172 0.9828
    LAB 1468 0.0124 0.9876
    LAB 1754 0.006 0.994
    LAB 1830 0.0076 0.9924
    PRES 1082 0.0108 0.9892
    PRES 1096 0.0052 0.9948
    PRES 1115 0.0092 0.9908
    PRES 1127 0.1526 0.8474
    PRES 1095 0.0906 0.9094
    ROTT 1014 0.0124 0.9876
    ROTT 1028 0.0068 0.9932
    ROTT 1029 0.0038 0.9962
    ROTT 1033 0.0204 0.9796
    ROTT 1034 0.0038 0.9962
    BULM 1105 0.003 0.997
    BULM 1106 0.0034 0.9966
    BULM 1107 0.0082 0.9918
    BULM 1108 0.005 0.995
    BULM 1109 0.0066 0.9934
    NEWF 271 0.0114 0.9886
    NEWF 274 0.0052 0.9948
    NEWF 275 0.0048 0.9952
    NEWF 277 0.0078 0.9922
    NEWF 278 0.1024 0.8976
    GSD 1666 0.0058 0.9942
    GSD 1776 0.003 0.997
    GSD 2011 0.004 0.996
    GSD 2060 0.0042 0.9958
    GSD 2086 0.0046 0.9954
    FBUL 1507 0.0098 0.9902
    FBUL 1508 0.0058 0.9942
    FBUL 1509 0.005 0.995
    FBUL 2671 0.0464 0.9536
    MBLT 1915 0.0038 0.9962
    MBLT 2253 0.0054 0.9946
    MBLT 2254 0.0454 0.9546
    MBLT 2255 0.0046 0.9954
    MBLT 2256 0.0078 0.9922
    BULD 1193 0.0234 0.9766
    BULD 1194 0.0098 0.9902
    BULD 1195 0.0162 0.9838
    BULD 1197 0.0042 0.9958
    BULD 1198 0.0038 0.9962
    BOX 1176 0.003 0.997
    BOX 1177 0.003 0.997
    BOX 1178 0.0048 0.9952
    BOX 1179 0.004 0.996
    BOX 1304 0.0058 0.9942
    MAST 1015 0.0038 0.9962
    MAST 1016 0.0104 0.9896
    MAST 1017 0.0096 0.9904
    MAST 1066 0.0078 0.9922
    MAST 991 0.012 0.988
    BMD 941 0.0056 0.9944
    BMD 943 0.004 0.996
    BMD 968 0.0058 0.9942
    BMD 1763 0.003 0.997
    BMD 969 0.0028 0.9972
    GSMD 1547 0.004 0.996
    GSMD 1659 0.003 0.997
    GSMD 1660 0.006 0.994
    GSMD 1662 0.0204 0.9796
    GSMD 1663 0.0072 0.9928
    aSee Table 5 for abbreviations of canid populations.
    KBB: pbe
  • TABLE 21A
    AHRT Canid ID NO BASS Canid ID NO BEAG Canid ID NO
    (missing genotypes) (missing genotypes) (missing genotypes)
    Canid 1119 1081 1121 24039 930 931 18586 18424 1323 1324 1325 1327
    population* (8) (2) (6) (19) (3) (3) (51) (13) (20) (16) (8) (12)
    AHTR 0.19003 0 0.2457 0 0 0 3.00E−05 0 0 0 0 0
    AMWS 0.00042 0 0 0 0 0 0 0 0 0 0 0
    BASS 0 0 0 2.00E−05 2.00E−05 0.36647 0 0 0 0 0 0
    BEAG 0 0 0 0 0 0.00068 0.00859 0.00634 0.99969 0.99504 0.99062 0.99804
    BEAC 0 0 0 0 0 0.00014 0 0 0 0 0 0
    BMD 0 0 0 0 0 0 1.00E−05 0 0 0.0049 0.00893 0
    BICH 0 0 0 0 0 0 0 0 0 2.00E−05 0 0
    BORZ 0 0 0 9.00E−05 0.00021 0 0.00012 0.01475 0 0 0 0
    BOX 0 0 0 0 0 0 0 0 0 0 0 0
    BULM 0 0.00023 0 0 1.00E−05 0.58998 0.00739 0 0 0 0 0
    ACKR 0.0015 0 0 0 0 0 0 0 0 0 0 0
    DACH 0.00304 0.99974 0.0102 0.99988 0.9996 0.03153 0.01324 0.97888 0 0 0 0.00142
    DALM 0 0 0 0 0 0 0 0 0 0 0 0
    ESPR 0 0 0.00011 0 0 0 0 0 0 0 0 0
    FSP 0 0 0 0 0 0 0 0 0 0 0 0
    FCR 0 0 0.2676 0 0 0 0.00017 0 0 0 0 0.00023
    EFOX 0 0 0 0 0 0 7.00E−05 0 0 0 0 0
    FBLD 0 0 0 0 0 0 0 0 0 0 0 0
    GPIN 0 0 0.00039 0 0 0 0 0 0 0 0 0
    GSHP 0.00029 0 0.00037 0 0 0 0 0 0 0 0 0
    GOLD 0 1.00E−05 0.4753 0 0 0.00759 7.00E−05 0 0 0 0 0
    IBIZ 0.76932 0 0.00027 0 0 0 0 0 0 0 0 0
    IRSE 0 0 0 0 0 0 0 0 0 0 0 0
    IRWS 0 0 0 0 0 0 0.001 0 0 0 0 0
    LAB 0 0 0 0 0.00013 6.00E−05 0 0 0 0 0 0
    MAST 0 0 0 0 0 0 0.92848 0 0 0 0 0
    PBGV 0 0 0 0 0 0 2.00E−05 0 0 0 0 0
    PAPI 0 0 0 0 0 0 3.00E−05 0 0 0 0 0
    PTWD 0 0 0 0 0 0.00346 0 0 0 0 0 0
    ROTT 0 0 0 0 0 0 0.04067 0 0.00029 0 0.00043 0
    STBD 0.03485 0 0 0 0 0 0 0 0 0 0 0
    SCDH 0 0 0 0 0 0 1.00E−05 0 0 0 0 0
    SPIN 0 0 0 0 0 0 0 0 0 0 0 1.00E−05
    SCOL 0 0 0 0 0 0 0 0 0 0 0 0
    SSCH 0 0 0 0 0 0 0 1.00E−05 0 0 0 0.00028
    WSSP 0.0005 0 0 0 0 1.00E−05 0 0 0 0 0 0
  • TABLE 21B
    BMD Canid Identification Number
    (missing genotypes) Borzoi
    Canid 918 883 941 943 21287 968 970 971 973 976 1655 978 979
    population* (16) (6) (7) (11) (16) (45) (17) (7) (28) (9) (24) (0) (22)
    AHTR 0 0 0 0 0 0 0 0 0 0 0 0 0
    AMWS 0 0 0 0 0 0 0 0 0 0 0 0 0
    BASS 0 0 0 0 0 0 0 0 0 0 0 0.8529 0.00981
    BEAG 0 0 0 0 0 0 0 0 0 0 0 0.00886 0
    BEAC 0 0 0 0 0 0 0 0 0 0 0 0 0
    BMD 0.99999 0.99999 0.99999 0.99995 0.99999 0.99999 0.99999 0.99999 0.99999 0.99999 0 0 0
    BICH 0 0 0 0 0 0 0 0 0 0 0 0 0
    BORZ 0 0 0 0 0 0 0 0 0 0 0 0.06219 0
    BOX 0 0 0 0 0 0 0 0 0 0 0 0 0
    BULM 0 0 0 0 0 0 0 0 0 0 0 0 0.0025
    ACKR 0 0 0 0 0 0 0 0 0 0 0 0 0
    DACH 0 0 0 0 0 0 0 0 0 0 0.99999 0.07511 0.98767
    DALM 0 0 0 0 0 0 0 0 0 0 0 1.00E−05 0
    ESPR 0 0 0 0 0 0 0 0 0 0 0 0 0
    FSP 0 0 0 0 0 0 0 0 0 0 0 0 0
    FCR 0 0 0 0 0 0 0 0 0 0 0 0 0
    EFOX 0 0 0 0 0 0 0 0 0 0 0 4.00E−05 0
    FBLD 0 0 0 0 0 0 0 0 0 0 0 0 0
    GPIN 0 0 0 0 0 0 0 0 0 0 0 0 0
    GSHP 0 0 0 0 0 0 0 0 0 0 0 0 0
    GOLD 0 0 0 4.00E−05 0 0 0 0 0 0 0 0.0001 0
    IBIZ 0 0 0 0 0 0 0 0 0 0 0 0 0
    IRSE 0 0 0 0 0 0 0 0 0 0 0 0 0
    IRWS 0 0 0 0 0 0 0 0 0 0 0 0 0
    LAB 0 0 0 0 0 0 0 0 0 0 0 0.00018 0
    MAST 0 0 0 0 0 0 0 0 0 0 0 4.00E−05 0
    PBGV 0 0 0 0 0 0 0 0 0 0 0 0 0
    PAPI 0 0 0 0 0 0 0 0 0 0 0 0.0005 0
    PTWD 0 0 0 0 0 0 0 0 0 0 0 0 0
    ROTT 0 0 0 0 0 0 0 0 0 0 0 0 0
    STBD 0 0 0 0 0 0 0 0 0 0 0 0 0
    SCDH 0 0 0 0 0 0 0 0 0 0 0 1.00E−05 0
    SPIN 0 0 0 0 0 0 0 0 0 0 0 0 0
    SCOL 0 0 0 0 0 0 0 0 0 0 0 0 0
    SSCH 0 0 0 0 0 0 0 0 0 0 0 0 0
    WSSP 0 0 0 0 0 0 0 0 0 0 0 0 0
  • TABLE 21C
    BOX Canid Identification Number
    (missing genotypes)
    Canid 584 585 583 586 587 588 589 590 997 1302 1304
    population* (56) (18) (14) (13) (43) (0) (6) (0) (0) (30) (12)
    AHTR 0 0 0 0 0 0 0 0 0 0 0
    AMWS 0 0 0 0 0 0 0 0 0 0 0
    BASS 0 0 0 0 0 0 0 0 0 0 0
    BEAG 0 0 0 0 0 0 0 0 0 0 0
    BEAC 0 0 0 0 0 0 0 0 0 0 0
    BMD 0 0 0 0 0 0 0 0 0 0 0
    BICH 0 0 0 0 0 0 0 0 0 0 0
    BORZ 0 0 0 0 0 0 0 0 0 0 0
    BOX 0.99999 0.99999 0.99999 0.99996 0.99996 0.99999 0.99391 0.99999 0.99999 0.99999 0.99999
    BULM 0 0 0 0 0 0 0 0 0 0 0
    ACKR 0 0 0 0 0 0 0 0 0 0 0
    DACH 0 0 0 0 0 0 0.00153 0 0 0 0
    DALM 0 0 0 0 0 0 0 0 0 0 0
    ESPR 0 0 0 0 0 0 0 0 0 0 0
    FSP 0 0 0 0 0 0 0 0 0 0 0
    FCR 0 0 0 0 0 0 0 0 0 0 0
    EFOX 0 0 0 0 0 0 0 0 0 0 0
    FBLD 0 0 0 0 0 0 0 0 0 0 0
    GPIN 0 0 0 0 0 0 0 0 0 0 0
    GSHP 0 0 0 0 0 0 0 0 0 0 0
    GOLD 0 0 0 3.00E−05 0 0 2.00E−05 0 0 0 0
    IBIZ 0 0 0 0 0 0 0 0 0 0 0
    IRSE 0 0 0 0 0 0 0 0 0 0 0
    IRWS 0 0 0 0 0 0 0 0 0 0 0
    LAB 0 0 0 0 0 0 0 0 0 0 0
    MAST 0 0 0 0 0 0 0 0 0 0 0
    PBGV 0 0 0 0 0 0 0 0 0 0 0
    PAPI 0 0 0 0 0 0 0 0 0 0 0
    PTWD 0 0 0 0 0 0 0 0 0 0 0
    ROTT 0 0 0 0 3.00E−05 0 0.00451 0 0 0 0
    STBD 0 0 0 0 0 0 0 0 0 0 0
    SCDH 0 0 0 0 0 0 0 0 0 0 0
    SPIN 0 0 0 0 0 0 0 0 0 0 0
    SCOL 0 0 0 0 0 0 0 0 0 0 0
    SSCH 0 0 0 0 0 0 0 0 0 0 0
    WSSP 0 0 0 0 0 0 0 0 0 0 0
  • TABLE 21D
    BULM Canid Identification Number FCR Canid Identification Number
    (missing genotypes) (missing genotypes)
    Canid 1098 1105 1106 1108 1109 1110 1111 1112 22417 746 752 839 791
    population* (23) (4) (16) (24) (0) (5) (2) (11) (29) (39) (13) (33) (7)
    AHTR 0 0 0 0 0 0 0 0 0 0 0 0 0
    AMWS 0 0 0 0 0 0 0 0 0 0 0 0 0
    BASS 0 0 0 0 0 0 0 0 0 0 0 0 0
    BEAG 0 0 0 0 0 0 0 0 0 0 0 0 0
    BEAC 0 0 0 0 0 0 0 0 0 0 0 0 0
    BMD 0 0 0 0 0 0 0 0 0 0 0 0 0
    BICH 0 0 0 0 0 0 0 0 0 0 0 0 0
    BORZ 0 0 0 0 0 0 0 0 0 0 0 0 0
    BOX 0 0 0 0 0 0 0 0 0 0 0 0 0
    BULM 0.99999 0.99999 0.99998 0.99999 0.99999 0.99999 0.99999 0.99999 0 0 0 0 0
    ACKR 0 0 0 0 0 0 0 0 0 0 0 0 0
    DACH 0 0 0 0 0 0 0 0 0 0 0 0.00017 9.00E−05
    DALM 0 0 0 0 0 0 0 0 0 0 0 0 0
    ESPR 0 0 0 0 0 0 0 0 0 0 0 0 0
    FSP 0 0 0 0 0 0 0 0 0 0 0 0 0
    FCR 0 0 0 0 0 0 0 0 0.99999 0.99999 0 0.99982 0.99986
    EFOX 0 0 0 0 0 0 0 0 0 0 0 0 0
    FBLD 0 0 0 0 0 0 0 0 0 0 0 0 0
    GPIN 0 0 0 0 0 0 0 0 0 0 0 0 0
    GSHP 0 0 0 0 0 0 0 0 0 0 0 0 0
    GOLD 0 0 1.00E−05 0 0 0 0 0 0 0 0.99997 0 0
    IBIZ 0 0 0 0 0 0 0 0 0 0 0 0 0
    IRSE 0 0 0 0 0 0 0 0 0 0 0 0 0
    IRWS 0 0 0 0 0 0 0 0 0 0 0 0 0
    LAB 0 0 0 0 0 0 0 0 0 0 0 0 0
    MAST 0 0 0 0 0 0 0 0 0 0 0 0 0
    PBGV 0 0 0 0 0 0 0 0 0 0 0 0 0
    PAPI 0 0 0 0 0 0 0 0 0 0 0 0 0
    PTWD 0 0 0 0 0 0 0 0 0 0 0 0 0
    ROTT 0 0 0 0 0 0 0 0 0 0 2.00E−05 0 4.00E−05
    STBD 0 0 0 0 0 0 0 0 0 0 0 0 0
    SCDH 0 0 0 0 0 0 0 0 0 0 0 0 0
    SPIN 0 0 0 0 0 0 0 0 0 0 0 0 0
    SCOL 0 0 0 0 0 0 0 0 0 0 0 0 0
    SSCH 0 0 0 0 0 0 0 0 0 0 0 0 0
    WSSP 0 0 0 0 0 0 0 0 0 0 0 0 0
  • TABLE 21E
    DACH Canid Identification Number
    (missing genotypes)
    Canid 20345 20274 1036 1037 1038 1048 1049 1050 1060 1061
    population* (8) (14) (19) (9) (26) (15) (10) (8) (13) (28)
    AHTR 0 0 0 0 0 0 0 0 0 0
    AMWS 0 0 0 0 0 0 0 0 0 0
    BASS 0 0 0 5.00E−05 0 0 0 0 0 0
    BEAG 0 0 0 0 2.00E−05 0 0 0 0 0
    BEAC 0 0 0 0 0 0 0 0 0 0
    BMD 0 0 0 0 0 0 0 0 0 0
    BICH 0 0 0 0 0 0 0 0 0 0
    BORZ 0.00012 0 0 0 0 0 0 0 0 0
    BOX 0 0 0 0 0 0 0 0 0 0
    BULM 0.0001 0 0 0 0 0 0 0 0 0
    ACKR 0 0 0 0 0 0 0 0 0 0
    DACH 0.99971 4.00E−05 0.99837 0.99993 0.99805 0.99999 0.99689 0.99999 0.99998 0.66498
    DALM 0 0 0 0 0 0 0 0 0 0
    ESPR 0 0 0 0 0 0 0 0 0 0
    FSP 0 0 0 0 0 0 0 0 0 0
    FCR 0 0 0 0 2.00E−05 0 0 0 0 0
    EFOX 0 0 0 0 0 0 0 0 0 0
    FBLD 0 0 0 0 0 0 0 0 0 0
    GPIN 0 0 0 0 0 0 0 0 0 0
    GSHP 0 0 0 0 0 0 0 0 0 0
    GOLD 0 0 0.00162 0 0.00188 0 0.00308 0 1.00E−05 1.00E−05
    IBIZ 0 0 0 0 0 0 0 0 0 0
    IRSE 1.00E−05 0 0 0 0 0 0 0 0 0
    IRWS 0 0 0 0 0 0 0 0 0 0
    LAB 2.00E−05 0 0 0 0 0 0 0 0 0
    MAST 0 0 0 0 0 0 0 0 0 0
    PBGV 0 0 0 0 0 0 0 0 0 0
    PAPI 0 0 0 0 0 0 0 0 0 0
    PTWD 0 0 0 0 0 0 0 0 0 0
    ROTT 0 0.99994 0 0 0 0 1.00E−05 0 0 0.33498
    STBD 0 0 0 0 0 0 0 0 0 0
    SCDH 0 0 0 0 0 0 0 0 0 0
    SPIN 0 0 0 0 0 0 0 0 0 0
    SCOL 0 0 0 0 0 0 0 0 0 0
    SSCH 0 0 0 0 0 0 0 0 0 0
    WSSP 0 0 0 0 0 0 0 0 0 0
  • TABLE 21F
    GOLD Canid Identification Number
    (missing genotypes)
    Canid 816 807 50 614 18477 591 592 593 603 604
    population* (0) (1) (10) (16) (26) (7) (14) (22) (27) (4)
    AHTR 0 0 0 0 0 0 0 0 0 0
    AMWS 0 0 0 0 0 0 0 0 0 0
    BASS 0 0 0 0 0 0 0 0 0 0
    BEAG 0 0 6.00E−05 0 0 0 0 0 0 0
    BEAC 0 0 0 0 0 0 0 0 0 0
    BMD 0 0 0 0.19213 0 0 0 0 0 0
    BICH 0 0 0 0 0 0 0 0 0 0
    BORZ 0 0 0 0 0 0 0 0 0 0
    BOX 0 0 0 0 0 0 0 0 0 0
    BULM 1.00E−05 0 0 0 0 0 0.00011 0 0 0
    ACKR 0 0 0 0 0 0 0 0 0 0
    DACH 0 0 0.7605 7.00E−05 0 0 0 0.00999 0.00015 0
    DALM 0 0 0 0 0 0 0 0 0 0
    ESPR 0 0 0 0 0 0 0 0 0 0
    FSP 0 0 0 0 0 0 0 0 0 0
    FCR 0 0 0 0 0 0 0 0 0 0
    EFOX 0 0 0 0 0 0 0 0 0 0
    FBLD 0 0 0 0 0 0 0 0 0 0
    GPIN 0 0 0 0 0 0 0 0 0 0
    GSHP 0 0 0 0 0 0 0 0 0 0
    GOLD 0.99998 0.99999 0.23937 0.80778 0.99999 0.78123 0.99987 0.99 0.99984 0.99979
    IBIZ 0 0 3.00E−05 0 0 0 0 0 0 0
    IRSE 0 0 0 0 0 0 0 0 0 0
    IRWS 0 0 0 0 0 0 0 0 0 0
    LAB 0 0 0 0 0 0 0 0 0 0
    MAST 0 0 0 0 0 0 0 0 0 0
    PBGV 0 0 0 0 0 0 0 0 0 0
    PAPI 0 0 0 0 0 0 0 0 0 0
    PTWD 0 0 0 0 0 0 0 0 0 0
    ROTT 0 0 0 0 0 0.21876 0 0 0 0.0002
    STBD 0 0 0 0 0 0 0 0 0 0
    SCDH 0 0 0 0 0 0 0 0 0 0
    SPIN 0 0 0 0 0 0 0 0 0 0
    SCOL 0 0 0 0 0 0 0 0 0 0
    SSCH 0 0 0 0 0 0 0 0 0 0
    WSSP 0 0 0 0 0 0 0 0 0 0
  • TABLE 21G
    ROTT Canid Identification Number
    (missing genotypes)
    Canid 817 818 886 896 22720 1014 1028 1029 1033 1034
    population* (2) (2) (2) (0) (15) (14) (0) (26) (79) (0)
    AHTR 0 0 0 0 0 0 0 0 0 0
    AMWS 0 0 0 0 0 0 0 0 0 0
    BASS 0 0 0 0 0 0 0 0 0 0
    BEAG 0 0 0 0 0 2.00E−05 0 0 0 0
    BEAC 0 0 0 0 0 0 0 0 0 0
    BMD 0 0 0 0 0 0 0 0 0 0
    BICH 0 0 0 0 0 0 0 0 0 0
    BORZ 0 0 0 0 0 0 0 0 0 0
    BOX 0 0 0 0 0 0 0 0 0 0
    BULM 0 0 0 0 0 0 0 0 0 0
    ACKR 0 0 0 0 0 0 0 0 0 0
    DACH 0 0 0 0 0 0.0017 0 0 0.00056 0
    DALM 0 0 0 0 0 0 0 0 0 0
    ESPR 0 0 0 0 0 0 0 0 0 0
    FSP 0 0 0 0 0 0 0 0 0 0
    FCR 0 0 0 0 0 0 0 0 0 0
    EFOX 0 0 0 0 0 0 0 0 0 0
    FBLD 0 0 0 0 0 0 0 0 0 0
    GPIN 0 0 0 0 0 0 0 0 0 0
    GSHP 0 0 0 0 0 0 0 0 0 0
    GOLD 0.02636 0 0 0 0 5.00E−05 0 0 0 0
    IBIZ 0 0 0 0 0 0 0 0 0 0
    IRSE 0 0 0 0 0 0 0 0 0 0
    IRWS 0 0 0 0 0 0 0 0 0 0
    LAB 0 0 0 0 0 0 0 0 0 0
    MAST 3.00E−05 0 0 0 0 0 0 0 0 0
    PBGV 0 0 0 0 0 0 0 0 0 0
    PAPI 0 0 0 0 0 0 0 0 0 0
    PTWD 0 0 0 0 0 0 0 0 0 0
    ROTT 0.97359 0.99999 0.99999 0.99999 0.99999 0.9982 0.99999 0.99998 0.99943 0.99999
    STBD 0 0 0 0 0 0 0 0 0 0
    SCDH 0 0 0 0 0 0 0 0 0 0
    SPIN 0 0 0 0 0 0 0 0 0 0
    SCOL 0 0 0 0 0 0 0 0 0 0
    SSCH 0 0 0 0 0 0 0 0 0 0
    WSSP 0 0 0 0 0 0 0 0 0 0
  • TABLE 21H
    MAST Canid ID NO SCOL Canid ID NO
    (missing genotypes) (missing genotypes)
    Canid 23967 991 1015 1016 992 1013 15628 375 363
    populationa (14) (6) (9) (11) (1) (80) (24) (12) (12)
    AHTR 0 0 0 0 0 0 0 0 0
    AMWS 0 0 0 0 0 0 0 0 0
    BASS 0 0 0 0 0 0 0 0 0
    BEAG 0 0 0 0 0 0 0 0 0
    BEAC 0 0 0 0 0 0 0 0 0
    BMD 0 0 0 0 0 0 0 0 0
    BICH 0 0 0 0 0 0 0 0 0
    BORZ 0 0 0 0 0 0 0 0 0
    BOX 0 0 0 0 0 0 0 0 0
    BULM 0 0 0 0 0 3.00E−05 0 4.00E−05 0
    ACKR 0 0 0 0 0 0 0 0 0
    DACH 0 0 0 0 0 0 0.00413 0 0.00057
    DALM 0 0 0 0 0 0 0 0 0
    ESPR 0 0 0 0 0 0 0 0 0
    FSP 0 0 0 0 0 0 0 0.00503 0
    FCR 0 0 0 0 0 0 0 0 0
    EFOX 0 0 0 0 0 0 0 0 0
    FBLD 0 0 0 0 0 0 9.00E−05 1.00E−05 0
    GPIN 0 0 0 0 0 0 0 0 0
    GSHP 0 0 0 0 0 0 0 0 0
    GOLD 0.00012 0 0 0 0.00146 0 4.00E−05 0.00043 0.00105
    IBIZ 0 0 0 0 0 0 0 0 0
    IRSE 0 0 0 0 0 0 0 0 0
    IRWS 0 0 0 0 0 0 0 0 0
    LAB 0 0 0 0 0 0 0 0 0
    MAST 0.99987 0.99999 0.99999 0.99999 0.99852 0.99995 0 0 0
    PBGV 0 0 0 0 0 0 0 0 0
    PAPI 0 0 0 0 0 0 0 0 0
    PTWD 0 0 0 0 0 0 0 0 0
    ROTT 0 0 0 0 0 0 0 0 0
    STBD 0 0 0 0 0 0 0 0 0
    SCDH 0 0 0 0 0 0 0 0 0
    SPIN 0 0 0 0 0 0 0 0 0
    SCOL 0 0 0 0 0 0 0.99572 0.99445 0.99837
    SSCH 0 0 0 0 0 0 0 0 0
    WSSP 0 0 0 0 0 0 0 0 0
    aSee Table 5 for abbreviations of canid populations.
    KBB:pbe

Claims (15)

1-23. (canceled)
24. A method for identifying a breed in a mixed-breed canid and managing healthcare of the mixed-breed canid based on a medical predisposition of the breed, wherein a genome of the mixed-breed canid is from two or more domestic breeds, the method comprising:
(i) contacting the genome of the mixed-breed canid with at least two primers selected from the group consisting of SEQ ID NOs: 1-200 and 244-327;
(ii) amplifying sequences of the genome of the mixed-breed canid to obtain amplicons of at least 50 microsatellite markers and at least 50 single nucleotide polymorphism markers,
wherein the at least 50 microsatellite markers are selected from REN285G14, C01.673, REN112I02, REN172C02, FH2793, REN143K19, FH2890, C02.466, C02.894, C02.342, FH2895, REN157C08, C03.445, FH2732, FH2776, REN160J02, REN262N08, REN92G21, REN285I23, C05.414, FH2752, REN210I14, REN37H09, REN97M11, REN286L19, FH2860, REN204K13, C08.373, C08.618, C09.173, C09.474, FH2885, C10.781, REN73F08, REN154G10, REN164B05, FH2874, C11.873, REN258L11, REN213F01, REN208M20, REN94K11, REN120P21, REN286P03, C13.758, C14.866, FH3072, FH3802, REN06C11, REN144M10, REN85N14, FH3096, C17.402, REN50B03, REN112G10, REN186N13, FH2795, C18.460, FH2783, REN91I14, REN274F18, FH2887, FH3109, REN293N22, FH2914, FH3069, REN49F22, REN107H05, REN78I16, FH3078, C23.277, REN181K04, REN106I06, FH3083, REN54E19, C25.213, REN87021, C26.733, C27.442, C27.436, REN72K15, FH2759, FH2785, REN239K24, FH3082, REN51C16, FH3053, REN43H24, FH2712, FH2875, FH2790, REN291M20, REN160M18, FH3060, REN314H10, REN01G01, REN112C08, REN106I07, FH2708, and REN86G15; and
wherein the at least 50 single nucleotide polymorphism markers are selected from 372-c5t-82, 372-c5t-133, 372-c15t-285, 372-e2s-271, 372-e2s-257, 372-e2s-128, 372-e2s-93, 372-e2s-50, 372-e13t-57, 372-e15t-312, 372-e15t-301, 372-e15t-258, 372-e15t-156, 372-e16s-254, 372-e18t-165, 372-g17t-66, 372-i23s-384, 372-m6t-138, 372-m6t-88, 372-m6t-266, 372-m7s-317, 372-m9t-108, 372-m9t-58, 372-m18t-170, 372-m18t-129, 372-m23t-76, 372-m23t-108, 372-m23t-229, 372-m23t-238, 372-m23t-263, 372-o13s-212, 373-a10s-274, 373-a15t-112, 373-a17t-73, 373-a17t-136, 373-a21s-89, 373-c13s-93, 373-c15t-242, 373-c15t-202, 373-c15t-131, 373-e1t-50, 373-e1t-102, 373-e1t-130, 373-e21t-282, 373-e21t-116, 373-g7t-243, 373-g7t-242, 373-g7t-84, 373-g19t-249, 373-g19t-251, 373-g19t-246, 373-g19t-224, 373-g19t-378, 373-i8s-199, 373-i8s-224, 373416s-312, 373416s-254, 373416s-250, 373416s-249, 373-k8s-181, 373-k8s-224, 373-k10t-261, 373-k10t-264, 372-c5s-112, 372-c5s-168, 372-c15s-121, 372-c15s-196, 372-e15s-67, 372-e15s-71, 372-e15s-165, 372-e15s-221, 372-i23t-97, 372-i23t-224, 372-m6s-67, 372-m6s-73, 372-m6s-100, 372-m6s-108, 372-m6s-127, 372-m6s-147, 372-m6s-186, 372-m7t-100, 372-m7t-273, 372-m18s-131, 373-a14t-290, 373-a14t-197, 373-a14t-160, 373-a14t-55, 373-a21t-93, 373-e21s-136, 373-e21s-175, 373-e21s-191, 373-g7s-263, 373-g7s-266, 373416t-47, 373416t-133, 373416t-173, 373416t-210, 373416t-302, 373416t-319, and 373-k16t-54;
(iii) sequencing the amplicons of the at least 50 microsatellite markers and the at least 50 single nucleotide polymorphism markers to produce a plurality of sequences; and
(iv) executing, with a processor, computer-readable instructions stored on a computer-readable medium to cause the processor to determine, with a plurality of computational steps, the breed of the mixed-breed canid based on the plurality of sequences, wherein the plurality of computational steps comprises:
(a) inputting the sequences of the amplicons of the at least 50 microsatellite markers and the at least 50 single nucleotide polymorphism markers into a data structure stored in the computer readable medium, wherein the data structure comprises a marker field corresponding to the at least 50 microsatellite markers and the at least 50 single nucleotide polymorphism markers and a genotyping information field comprising the allele identities of the at least 50 microsatellite markers and the at least 50 single nucleotide polymorphism markers;
(b) comparing the marker field and the genotyping information field of the data structure to a database, wherein the database comprises allele identity and allele frequency information of the at least 50 microsatellite markers and the at least 50 single nucleotide polymorphism markers of a plurality of domestic dog breeds, wherein the plurality of domestic dog breeds comprises at least five domestic dog breeds;
(c) identifying the two or more domestic dog breeds of the mixed-breed canid from the allele-identities provided in the data structure; and
(d) calculating a fraction of the genome of the mixed-breed canid that is from each of the plurality of domestic dog breeds, at parent, grandparent, and great-grandparent levels, and wherein the fraction of the genome of the mixed-breed canid from each of the two or more domestic dog breeds is at least 5%;
(v) identifying the medical predisposition based on the breed; and
(vi) testing the mixed-breed canid for a disease or a condition based on the medical predisposition.
25. The method of claim 24, wherein the plurality of domestic dog breeds comprises Mastiff, Dachshund, Bull Mastiff, Beagle, and Golden Retriever.
26. The method of claim 24, wherein the plurality of domestic dog breeds comprises:
(i) Belgian Sheep Dog and Belgian Tervuren,
(ii) Collie and Shetland Sheep Dog,
(iii) Whippet and Greyhound,
(iv) Siberian Husky and Alaskan Malamute,
(v) Greater Swiss Mountain Dog and Bernese Mountain Dog,
(vi) West Highland White Terrier and Cairn Terrier, and/or
(vii) Lhasa Apso, Shih Tzu, and Pekinese.
27. The method of claim 24, wherein the plurality of domestic dog breeds comprises between 5 and 500 domestic dog breeds.
28. The method of claim 24, wherein (iv)(c) identifying further comprises:
(1) obtaining a health recommendation based on the identified breed, wherein the health recommendation comprises treatments, special diets, or special products; and
(2) generating a document comprising the health recommendation, wherein the document comprises information of diseases and predispositions of the mixed breed canid.
29. The method of claim 24, wherein (d)(iii) identifying further comprises:
(i) discriminating between the fraction of the genome of the mixed-breed canid that is selected from the group consisting of:
(a) Belgian Sheep Dog and Belgian Tervuren,
(b) Collie and Shetland Sheep Dog,
(c) Whippet and Greyhound,
(d) Siberian Husky and Alaskan Malamute,
(e) Greater Swiss Mountain Dog and Bernese Mountain Dog,
(f) West Highland White Terrier and Cairn Terrier, and/or
(g) Lhasa Apso, Shih Tzu, and Pekinese.
30. A kit for performing the method of claim 24.
31. A kit for identifying a breed in a mixed-breed canid and managing healthcare of the mixed-breed canid based on a medical predisposition of the breed, wherein a genome of the mixed-breed canid is from two or more domestic breeds, the kit comprising:
at least two primers selected from the group consisting of SEQ ID NOs: 1-200 and 244-327, wherein the at least two primers are to contact a genome of a mixed-breed canid and amplify sequences of the genome of the mixed-breed canid to obtain amplicons of at least 50 microsatellite markers and at least 50 single nucleotide polymorphism markers;
wherein the at least 50 microsatellite markers are selected from REN285G14, C01.673, REN112102, REN172C02, FH2793, REN143K19, FH2890, C02.466, C02.894, C02.342, FH2895, REN157C08, C03.445, FH2732, FH2776, REN160J02, REN262N08, REN92G21, REN285I23, C05.414, FH2752, REN210I14, REN37H09, REN97M11, REN286L19, FH2860, REN204K13, C08.373, C08.618, C09.173, C09.474, FH2885, C10.781, REN73F08, REN154G10, REN164B05, FH2874, C11.873, REN258L11, REN213F01, REN208M20, REN94K11, REN120P21, REN286P03, C13.758, C14.866, FH3072, FH3802, REN06C11, REN144M10, REN85N14, FH3096, C17.402, REN50B03, REN112G10, REN186N13, FH2795, C18.460, FH2783, REN91114, REN274F18, FH2887, FH3109, REN293N22, FH2914, FH3069, REN49F22, REN107H05, REN78116, FH3078, C23.277, REN181K04, REN106106, FH3083, REN54E19, C25.213, REN87021, C26.733, C27.442, C27.436, REN72K15, FH2759, FH2785, REN239K24, FH3082, REN51C16, FH3053, REN43H24, FH2712, FH2875, FH2790, REN291M20, REN160M18, FH3060, REN314H10, REN01G01, REN112C08, REN106107, FH2708, and REN86G15; and
wherein the at least 50 single nucleotide polymorphism markers are selected from 372-c5t-82, 372-c5t-133, 372-c15t-285, 372-e2s-271, 372-e2s-257, 372-e2s-128, 372-e2s-93, 372-e2s-50, 372-e13t-57, 372-e15t-312, 372-e15t-301, 372-e15t-258, 372-e15t-156, 372-e16s-254, 372-e18t-165, 372-g17t-66, 372-i23s-384, 372-m6t-138, 372-m6t-88, 372-m6t-266, 372-m7s-317, 372-m9t-108, 372-m9t-58, 372-m18t-170, 372-m18t-129, 372-m23t-76, 372-m23t-108, 372-m23t-229, 372-m23t-238, 372-m23t-263, 372-o13s-212, 373-a10s-274, 373-a15t-112, 373-a17t-73, 373-a17t-136, 373-a21s-89, 373-c13s-93, 373-c15t-242, 373-c15t-202, 373-c15t-131, 373-e1t-50, 373-e1t-102, 373-e1t-130, 373-e21t-282, 373-e21t-116, 373-g7t-243, 373-g7t-242, 373-g7t-84, 373-g19t-249, 373-g19t-251, 373-g19t-246, 373-g19t-224, 373-g19t-378, 373-i8s-199, 373-i8s-224, 373-i16s-312, 373416s-254, 373416s-250, 373416s-249, 373-k8s-181, 373-k8s-224, 373-k10t-261, 373-k10t-264, 372-c5s-112, 372-c5s-168, 372-c15s-121, 372-c15s-196, 372-e15s-67, 372-e15s-71, 372-e15s-165, 372-e15s-221, 372-i23t-97, 372-i23t-224, 372-m6s-67, 372-m6s-73, 372-m6s-100, 372-m6s-108, 372-m6s-127, 372-m6s-147, 372-m6s-186, 372-m7t-100, 372-m7t-273, 372-m18s-131, 373-a14t-290, 373-a14t-197, 373-a14t-160, 373-a14t-55, 373-a21t-93, 373-e21s-136, 373-e21s-175, 373-e21s-191, 373-g7s-263, 373-g7s-266, 373416t-47, 373416t-133, 373416t-173, 373416t-210, 373416t-302, 373416t-319, and 373-k16t-54.
32. The kit of claim 31, wherein the amplicons of the at least 50 microsatellite markers and the at least 50 single nucleotide polymorphism markers are to produce a plurality of sequences for:
(i) determination of the breed of the mixed-breed canid;
(ii) identification of the medical predisposition based on the breed; and
(iii) evaluation of the mixed-breed canid for a disease or a condition based on the medical predisposition.
33. The kit of claim 31, wherein the two or more domestic dog breeds comprises two or more of Mastiff, Dachshund, Bull Mastiff, Beagle, and Golden Retriever.
34. The kit of claim 31, wherein the two or more domestic dog breeds comprises:
(i) Belgian Sheep Dog and Belgian Tervuren,
(ii) Collie and Shetland Sheep Dog,
(iii) Whippet and Greyhound,
(iv) Siberian Husky and Alaskan Malamute,
(v) Greater Swiss Mountain Dog and Bernese Mountain Dog,
(vi) West Highland White Terrier and Cairn Terrier, and/or
(vii) Lhasa Apso, Shih Tzu, and Pekinese.
35. The kit of claim 31, wherein the two or more domestic dog breeds comprises between 5 and 500 domestic dog breeds.
36. The kit of claim 31, wherein the determination of the breed of the mixed-breed canid is for:
(i) obtaining a health recommendation based on the breed, wherein the health recommendation comprises treatments, special diets, or special products; and
(ii) generating a document comprising the health recommendation, wherein the document comprises information of diseases and predispositions of the mixed breed canid.
37. The kit of claim 31, wherein the determination of the breed of the mixed-breed canid comprises:
(i) discriminating between the fraction of the genome of the mixed-breed canid that is selected from the group consisting of:
(a) Belgian Sheep Dog and Belgian Tervuren,
(b) Collie and Shetland Sheep Dog,
(c) Whippet and Greyhound,
(d) Siberian Husky and Alaskan Malamute,
(e) Greater Swiss Mountain Dog and Bernese Mountain Dog,
(f) West Highland White Terrier and Cairn Terrier, and/or
(g) Lhasa Apso, Shih Tzu, and Pekinese.
US18/063,532 2003-12-17 2022-12-08 Methods and materials for canine breed identification Pending US20230279505A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/063,532 US20230279505A1 (en) 2003-12-17 2022-12-08 Methods and materials for canine breed identification

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US53046403P 2003-12-17 2003-12-17
PCT/US2004/042267 WO2005059110A2 (en) 2003-12-17 2004-12-15 Methods and materials for canine breed identification
US10/536,369 US7729863B2 (en) 2003-12-17 2004-12-15 Methods and materials for canine breed identification
US12/768,427 US20100217534A1 (en) 2003-12-17 2010-04-27 Methods and materials for canine breed identification
US13/039,240 US20110224911A1 (en) 2003-12-17 2011-03-02 Methods and materials for canine breed identification
US18/063,532 US20230279505A1 (en) 2003-12-17 2022-12-08 Methods and materials for canine breed identification

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US13/039,240 Continuation US20110224911A1 (en) 2003-12-17 2011-03-02 Methods and materials for canine breed identification

Publications (1)

Publication Number Publication Date
US20230279505A1 true US20230279505A1 (en) 2023-09-07

Family

ID=34700139

Family Applications (4)

Application Number Title Priority Date Filing Date
US10/536,369 Active 2026-09-24 US7729863B2 (en) 2003-12-17 2004-12-15 Methods and materials for canine breed identification
US12/768,427 Abandoned US20100217534A1 (en) 2003-12-17 2010-04-27 Methods and materials for canine breed identification
US13/039,240 Abandoned US20110224911A1 (en) 2003-12-17 2011-03-02 Methods and materials for canine breed identification
US18/063,532 Pending US20230279505A1 (en) 2003-12-17 2022-12-08 Methods and materials for canine breed identification

Family Applications Before (3)

Application Number Title Priority Date Filing Date
US10/536,369 Active 2026-09-24 US7729863B2 (en) 2003-12-17 2004-12-15 Methods and materials for canine breed identification
US12/768,427 Abandoned US20100217534A1 (en) 2003-12-17 2010-04-27 Methods and materials for canine breed identification
US13/039,240 Abandoned US20110224911A1 (en) 2003-12-17 2011-03-02 Methods and materials for canine breed identification

Country Status (7)

Country Link
US (4) US7729863B2 (en)
EP (5) EP2333541B1 (en)
JP (3) JP2007518403A (en)
AU (2) AU2004298606B2 (en)
CA (3) CA2771330C (en)
IL (1) IL176258A0 (en)
WO (1) WO2005059110A2 (en)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060147962A1 (en) * 2003-06-16 2006-07-06 Mars, Inc. Genotype test
US20060008815A1 (en) * 2003-10-24 2006-01-12 Metamorphix, Inc. Compositions, methods, and systems for inferring canine breeds for genetic traits and verifying parentage of canine animals
US20070118295A1 (en) * 2005-03-02 2007-05-24 Al-Murrani Samer Waleed Khedhe Methods and Systems for Designing Animal Food Compositions
AU2006331551A1 (en) * 2005-12-20 2007-07-05 Mars, Incorporated Method and system for determining and providing a comprehensive pet health and nutrition feeding plan
WO2009079511A1 (en) * 2007-12-17 2009-06-25 Mars, Incorporated Wellness based pet diets that take into consideration breed type and genetic predisposition of a pet
AU2010101538A4 (en) * 2009-12-23 2016-05-26 Global Bloodlines Pty Ltd A method and a software application for the selection of an animal with desirable characteristics
EP2715474A4 (en) * 2011-05-24 2015-11-18 Namesforlife Llc Semiotic indexing of digital resources
JP5522577B2 (en) 2011-08-08 2014-06-18 ヤマトミシン製造株式会社 Double chainstitch sewing machine with seams
CN102719532A (en) * 2012-05-16 2012-10-10 新疆维吾尔自治区畜牧科学院中国-澳大利亚绵羊育种研究中心 Method for detecting early stage growth of Poll Dorset by microsatellite marker
AU2013312355A1 (en) * 2012-09-06 2014-09-18 Ancestry.Com Dna, Llc Using haplotypes to infer ancestral origins for recently admixed individuals
US9977708B1 (en) 2012-11-08 2018-05-22 23Andme, Inc. Error correction in ancestry classification
US9213947B1 (en) 2012-11-08 2015-12-15 23Andme, Inc. Scalable pipeline for local ancestry inference
US20140163895A1 (en) * 2012-12-12 2014-06-12 Noam Pik System and method for assessing health risk for mixed breed animals
GB2552122B (en) 2013-06-05 2020-02-26 Mars Inc Weight control apparatus
KR101700622B1 (en) * 2014-11-11 2017-02-01 대한민국 A DNA marker for breed discrimination of dog and discriminating method using the same
US10327400B2 (en) 2016-06-08 2019-06-25 Monsanto Technology Llc Methods for identifying crosses for use in plant breeding
WO2019047083A1 (en) * 2017-09-06 2019-03-14 深圳华大生命科学研究院 Method and device for determining snp loci set and applications thereof
CA3084443A1 (en) * 2017-12-10 2019-06-13 Monsanto Technology Llc Methods and systems for identifying hybrids for use in plant breeding
US11728010B2 (en) 2017-12-10 2023-08-15 Monsanto Technology Llc Methods and systems for identifying progenies for use in plant breeding
US20200090821A1 (en) * 2018-09-17 2020-03-19 Vet24seven Inc. Veterinary Services Inquiry System
CA3147888A1 (en) 2019-07-19 2021-01-28 23Andme, Inc. Phase-aware determination of identity-by-descent dna segments
CN110512007A (en) * 2019-09-03 2019-11-29 深圳市慧思基因科技有限公司 A kind of pair of canine gene loci collective database
JP2023501006A (en) 2019-11-18 2023-01-17 エンバーク ヴェテリナリー,インコーポレーテッド Methods and systems for determining ancestral kinship
KR102139646B1 (en) * 2019-12-31 2020-07-30 주식회사 클리노믹스 System for providing genetic breed information using standard genome map by breeds of animals and method thereof
KR102138165B1 (en) * 2020-01-02 2020-07-27 주식회사 클리노믹스 Method for providing identity analyzing service using standard genome map database by nationality, ethnicity, and race
KR102457733B1 (en) * 2020-01-07 2022-10-24 주식회사 클리노믹스 System for providing breed information based on genetic information and method thereof
CN111154888B (en) * 2020-01-16 2022-04-22 首都医科大学 Microsatellite marker for detecting beagle closed group and combination thereof
US11817176B2 (en) 2020-08-13 2023-11-14 23Andme, Inc. Ancestry composition determination
CN113444806B (en) * 2021-07-15 2022-09-23 二连海关技术中心 Kit for detecting wolf-derived components and application thereof
CN115035957B (en) * 2022-05-31 2023-04-18 陕西师范大学 Improved minimum residue method analysis mixed STR atlas based on particle swarm optimization

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US530464A (en) 1894-12-04 Robert b
EP0857219B1 (en) * 1995-09-28 2000-05-17 The Perkin-Elmer Corporation Microsatellite sequences for canine genotyping
AU1959797A (en) * 1996-02-22 1997-09-10 Board Of Trustees Of Michigan State University Microsatellite markers for identifying canine genetic diseases or traits
US5874217A (en) 1996-03-27 1999-02-23 The Perkin-Elmer Corporation Microsatellite sequences for canine genotyping
WO1998029736A1 (en) 1996-12-31 1998-07-09 Genometrix Incorporated Multiplexed molecular analysis apparatus and method
EP0983387A1 (en) 1997-05-30 2000-03-08 Pig Improvement Company UK Limited Methods for analyzing animal products
US5804388A (en) 1997-07-10 1998-09-08 Cornell Research Foundation, Inc. Chromosome 9 and progressive rod-cone degeneration disease genetic markers and assays
US6358546B1 (en) 1999-01-15 2002-03-19 Ralston Purina Company Methods for customizing pet food
US6274319B1 (en) * 1999-01-29 2001-08-14 Walter Messier Methods to identify evolutionarily significant changes in polynucleotide and polypeptide sequences in domesticated plants and animals
AU3442200A (en) 1999-03-23 2000-10-09 Gemini Genomics Ab Genetic polymorphism and polymorphic pattern for assessing disease status, and compositions for use thereof
US6210897B1 (en) 1999-05-26 2001-04-03 Leif Andersson Identification of canine leukocyte adhesion deficiency in dogs
WO2001008720A2 (en) 1999-07-30 2001-02-08 The Board Of Trustees Of The Leland Stanford Junior University Hypocretin and hypocretin receptors in regulation of sleep and related disorders
AU6606500A (en) 1999-08-06 2001-03-05 G.D. Searle & Co. Canine cyclooxygenase-1 (cox-1) and cyclooxygenase-2 (cox-2)
US6524609B1 (en) 1999-08-18 2003-02-25 Nutri-Vet, Llc Treating arthritis in animals with dietary supplements
WO2001028415A1 (en) 1999-10-15 2001-04-26 Dodds W Jean Animal health diagnosis
US6730023B1 (en) 1999-10-15 2004-05-04 Hemopet Animal genetic and health profile database management
US6287254B1 (en) * 1999-11-02 2001-09-11 W. Jean Dodds Animal health diagnosis
US20050090718A1 (en) 1999-11-02 2005-04-28 Dodds W J. Animal healthcare well-being and nutrition
WO2003029912A2 (en) 2001-07-02 2003-04-10 Hemopet Animal healthcare, well-being and nutrition
US7067147B2 (en) 2000-05-08 2006-06-27 The Iams Company Hypoallergenic dietary companion animal composition containing hydrolyzed poultry protein
US7054758B2 (en) 2001-01-30 2006-05-30 Sciona Limited Computer-assisted means for assessing lifestyle risk factors
US6493641B1 (en) 2001-06-15 2002-12-10 Nestec Ltd Methods and apparatus for customizing pet food
JP4119975B2 (en) 2002-12-24 2008-07-16 国立大学法人岐阜大学 Dog selection method, and PCR primers and polynucleotide probes used in the selection method
ZA200506094B (en) 2002-12-31 2006-11-29 Mmi Genomics Inc Compositions, methods and systems for inferring bovine traits
WO2004063390A2 (en) 2003-01-10 2004-07-29 Mmi Genomics, Inc. Compositions and methods for determining canine gender
US20060147962A1 (en) 2003-06-16 2006-07-06 Mars, Inc. Genotype test
US20060008815A1 (en) * 2003-10-24 2006-01-12 Metamorphix, Inc. Compositions, methods, and systems for inferring canine breeds for genetic traits and verifying parentage of canine animals

Also Published As

Publication number Publication date
IL176258A0 (en) 2006-10-05
US20060235625A1 (en) 2006-10-19
CA2733144C (en) 2017-07-04
CA2771330C (en) 2017-01-03
EP1711812A2 (en) 2006-10-18
EP2333541A3 (en) 2011-09-14
JP2011115174A (en) 2011-06-16
EP2944957A1 (en) 2015-11-18
EP1711812A4 (en) 2007-11-07
EP2360472A3 (en) 2011-09-14
EP2333541A2 (en) 2011-06-15
EP2360472B1 (en) 2015-04-15
AU2010210020A1 (en) 2010-09-02
CA2771330A1 (en) 2005-06-30
EP2944957B1 (en) 2018-08-22
CA2550219A1 (en) 2005-06-30
US7729863B2 (en) 2010-06-01
EP3438287A1 (en) 2019-02-06
JP2007518403A (en) 2007-07-12
AU2004298606B2 (en) 2010-05-13
EP3438287B1 (en) 2021-03-10
AU2010210020B2 (en) 2012-12-20
EP2333541B1 (en) 2015-04-15
WO2005059110A2 (en) 2005-06-30
WO2005059110A3 (en) 2006-04-27
CA2733144A1 (en) 2005-06-30
US20100217534A1 (en) 2010-08-26
AU2004298606A1 (en) 2005-06-30
JP5656678B2 (en) 2015-01-21
US20110224911A1 (en) 2011-09-15
EP2360472A2 (en) 2011-08-24
JP2013223507A (en) 2013-10-31

Similar Documents

Publication Publication Date Title
US20230279505A1 (en) Methods and materials for canine breed identification
Hamblin et al. Empirical comparison of simple sequence repeats and single nucleotide polymorphisms in assessment of maize diversity and relatedness
Oleksa et al. Wing geometric morphometrics and microsatellite analysis provide similar discrimination of honey bee subspecies
Uribe-Convers et al. A phylogenomic approach based on PCR target enrichment and high throughput sequencing: Resolving the diversity within the South American species of Bartsia L.(Orobanchaceae)
Ernst et al. Molecular advances in QTL discovery and application in pig breeding
Loukovitis et al. Quantitative trait loci involved in sex determination and body growth in the gilthead sea bream (Sparus aurata L.) through targeted genome scan
KR20210082127A (en) Genetic marker for parentage and thereof in Limanda yokohamae
CN109554483B (en) Method for rapidly detecting common cattle and tumor cattle by utilizing Y chromosome molecular marker
Johnson et al. Development and evaluation of a new microsatellite multiplex system for parental allocation and management of rainbow trout (Oncorhynchus mykiss) broodstocks
Smith et al. Limited domestic introgression in a final refuge of the wild pigeon
US20060172329A1 (en) DNA markers for cattle growth
Amish et al. Rapid SNP genotyping, sex identification, and hybrid-detection in threatened bull trout
Diedericks et al. Sleeping with the enemy: introgressive hybridization in two invasive centrarchids
Sottas et al. Patterns of hybridization in a secondary contact zone between two passerine species, the common nightingale Luscinia megarhynchos and the thrush nightingale Luscinia luscinia
Quignon et al. Fine mapping a locus controlling leg morphology in the domestic dog
Scarpulla et al. First core microsatellite panel identification in Apennine brown bears (Ursus arctos marsicanus): A collaborative approach
Burt Chicken genomics charts a path to the genome sequence
Stipoljev Variability of DRB locus of MHC genes class II in chamois (Rupicapra spp.)
D’Agaro et al. Canine Genetics and Genomics
Ye et al. Multi-omics-data-assisted genomic feature preselection improves the accuracy of genomic prediction
Uribe-Convers et al. A targeted subgenomic approach for phylogenomics based on microfluidic PCR and high throughput sequencing
Gangaraj Evaluation of Genetic Merit of Buffaloes by Direct Sequencing
Ye et al. Multi-omics-data-assisted genomic feature preselection improves the accuracy of genomic
Ye et al. Multi-omics-data-assisted genomic feature preselection improves the accuracy of
Steward Genetic diversity in the Australian dingo

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION