US20230239821A1 - Wireless communication device and system - Google Patents
Wireless communication device and system Download PDFInfo
- Publication number
- US20230239821A1 US20230239821A1 US18/127,230 US202318127230A US2023239821A1 US 20230239821 A1 US20230239821 A1 US 20230239821A1 US 202318127230 A US202318127230 A US 202318127230A US 2023239821 A1 US2023239821 A1 US 2023239821A1
- Authority
- US
- United States
- Prior art keywords
- signal
- wireless communication
- communication device
- antenna
- time
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000004891 communication Methods 0.000 title claims abstract description 85
- 230000005540 biological transmission Effects 0.000 claims abstract description 24
- 230000004044 response Effects 0.000 claims abstract description 14
- 238000012790 confirmation Methods 0.000 claims description 2
- 238000010586 diagram Methods 0.000 description 8
- 238000000034 method Methods 0.000 description 6
- 230000006870 function Effects 0.000 description 5
- 238000004364 calculation method Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000004075 alteration Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W56/00—Synchronisation arrangements
- H04W56/0055—Synchronisation arrangements determining timing error of reception due to propagation delay
- H04W56/0065—Synchronisation arrangements determining timing error of reception due to propagation delay using measurement of signal travel time
- H04W56/009—Closed loop measurements
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B17/00—Monitoring; Testing
- H04B17/30—Monitoring; Testing of propagation channels
- H04B17/309—Measuring or estimating channel quality parameters
- H04B17/364—Delay profiles
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W56/00—Synchronisation arrangements
- H04W56/004—Synchronisation arrangements compensating for timing error of reception due to propagation delay
- H04W56/0045—Synchronisation arrangements compensating for timing error of reception due to propagation delay compensating for timing error by altering transmission time
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/69—Spread spectrum techniques
- H04B1/7163—Spread spectrum techniques using impulse radio
- H04B1/7183—Synchronisation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W4/00—Services specially adapted for wireless communication networks; Facilities therefor
- H04W4/02—Services making use of location information
- H04W4/025—Services making use of location information using location based information parameters
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W4/00—Services specially adapted for wireless communication networks; Facilities therefor
- H04W4/30—Services specially adapted for particular environments, situations or purposes
- H04W4/40—Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B2201/00—Indexing scheme relating to details of transmission systems not covered by a single group of H04B3/00 - H04B13/00
- H04B2201/69—Orthogonal indexing scheme relating to spread spectrum techniques in general
- H04B2201/7163—Orthogonal indexing scheme relating to impulse radio
- H04B2201/71634—Applied to ranging
Definitions
- the present invention relates to a wireless communication device and a system.
- JP 2020-118030A discloses a technology of performing ranging between devices by using ultra-wideband (UWB) signals.
- UWB ultra-wideband
- the present invention is made in view of the aforementioned issue, and an object of the present invention is to calculate the propagation times of signals transmitted and received between the devices more easily and accurately.
- a wireless communication device comprising a control section configured to control transmission and reception of a wireless signal by an antenna in conformity with a designated communication standard, wherein the control section controls a timing of causing the antenna to transmit a second signal in response to a first signal received by the antenna, on a basis of fixed time and delay time related to internal transfer in the wireless communication device, the fixed time being decided in advance.
- a wireless communication device comprising a control section configured to control transmission and reception of a wireless signal by an antenna in conformity with a designated communication standard, wherein the control section calculates propagation time of a first signal and a second signal between the wireless communication device and another wireless communication device on a basis of fixed time and delay time related to internal transfer in the wireless communication device, the first signal being transmitted from the antenna, the second signal being transmitted from the other wireless communication device in response to the first signal, the fixed time being decided in advance.
- a system comprising: a first wireless communication device; and a second wireless communication device, wherein the first wireless communication device includes a first control section configured to control transmission and reception of a wireless signal by a first antenna in conformity with a designated communication standard, the first control section calculates propagation time of a first signal and a second signal between the first wireless communication device and the second wireless communication device on a basis of fixed time and first delay time related to internal transfer in the first wireless communication device, the first signal being transmitted from the first antenna, the second signal being transmitted from the second wireless communication device in response to the first signal, the fixed time being decided in advance, the second wireless communication device includes a second control section configured to control transmission and reception of a wireless signal by a second antenna in conformity with a designated communication standard, and the second control section controls a timing of causing the second antenna to transmit the second signal in response to the first signal received by the second antenna, on a basis of the fixed time and second delay time related to internal transfer in the
- FIG. 1 is a block diagram illustrating a configuration example of a system 1 according to an embodiment of the present invention.
- FIG. 2 is a sequence diagram for describing a method of calculating propagation time of wireless signals between an in-vehicle device 10 and a portable device 20 according to the embodiment.
- FIG. 3 is a diagram for describing calculation of delay time by a control section 210 of the portable device 20 with regard to internal transfer of signals in the portable device 20 according to the embodiment.
- FIG. 4 is a sequence diagram illustrating an example of a flow of operation of the system 1 according to the embodiment.
- FIG. 1 is a block diagram illustrating the configuration example of the system 1 according to the present embodiment.
- the system 1 includes an in-vehicle device 10 and a portable device 20 .
- the portable device 10 according to the present embodiment is an example of a first wireless communication device according to the present embodiment.
- the in-vehicle device 10 according to the present embodiment is installed in a mobile object such as a vehicle used by a user, and the in-vehicle device 10 performs wireless communication with the portable device 20 carried by the user in conformity with a designated communication standard.
- the in-vehicle device 10 includes a control section 110 , a digital-to-analog converter 120 , an antenna 130 , and an analog-to-digital converter 140 .
- the control section 110 controls transmission and reception of wireless signals by the antenna 130 in conformity with the designated communication standard.
- control section 110 calculates propagation time of the wireless signals between the in-vehicle device 10 and the portable device 20 (more specifically, between the antenna 130 of the in-vehicle device 10 and an antenna 230 of the portable device 20 ) in conformity with the designated communication standard.
- Examples of the designated communication standard according to the present embodiment include ultra-wideband wireless communication.
- the control section 110 according to the present embodiment controls transmission and reception of ultra-wideband signals (hereinafter, also referred to as UWB signals) by the antenna 130 .
- UWB signals ultra-wideband signals
- the designated communication standard according to the present embodiment is not limited thereto.
- the examples of the designated communication standard according to the present embodiment include various kinds of communication standards that makes it possible to measure propagation time of signals between devices.
- control section 110 The functions of the control section 110 according to the present embodiment are implemented by a processor such as a CPU. Note that, details of the functions of the control section 110 according to the present embodiment will be described later.
- the digital-to-analog converter 120 converts an input digital signal into an analog signal.
- the digital-to-analog converter 120 may convert a digital signal input from the control section 110 into an analog signal, and may output the analog signal to the antenna 130 .
- the antenna 130 according to the present embodiment transmits and receives wireless signals in conformity with the designated communication standard. For example, under the control of the control section 110 , the antenna 130 according to the present embodiment transmits a first signal, and receives a second signal transmitted from the portable device 20 in response to the first signal.
- the analog-to-digital converter 140 converts an input analog signal into a digital signal.
- the analog-to-digital converter 140 may convert an analog signal input from the antenna 130 into a digital signal, and may Output the digital signal to the control section 110 .
- the portable device 20 according to the present embodiment is an example of a second wireless communication device according to the present embodiment.
- the portable device 20 according to the present embodiment is carried by the user, and the portable device 20 performs wireless communication with the in-vehicle device 10 installed in the mobile object such as the vehicle used by the user in conformity with the designated communication standard.
- the portable device 20 may be a smartphone, a wearable device, a dedicated device, or the like.
- the portable device 20 includes a control section 210 , a digital-to-analog converter 220 , an antenna 230 , and an analog-to-digital converter 240 .
- the control section 210 controls transmission and reception of wireless signals by the antenna 230 in conformity with the designated communication standard.
- control section 210 causes the antenna 230 to transmit the second signal in response to the first signal received by the antenna 230 .
- one of features of the control section 210 according to the present embodiment is to control a timing of causing the antenna 230 to transmit the second signal.
- control section 210 The functions of the control section 210 according to the present embodiment are implemented by a processor such as a CPU. Note that, details of the functions of the control section 210 according to the present embodiment will be described later.
- the digital-to-analogue converter 220 converts an input digital signal into an analog signal.
- the digital-to-analog converter 220 may convert a digital signal input from the control section 210 into an analog signal, and may output the analog signal to the antenna 230 .
- the antenna 230 according to the present embodiment transmits and receives wireless signals in conformity with the designated communication standard.
- the antenna 230 according to the present embodiment receives the first signal transmitted from the in-vehicle device 10 .
- the antenna 230 according to the present embodiment transmits the second signal under the control of the control section 210 .
- the analog-to-digital converter 240 converts an input analog signal into a digital signal.
- the analog-to-digital converter 240 may convert an analog signal input from the antenna 230 into a digital signal, and may output the digital signal to the control section 210 .
- the configuration example of the system 1 according to the present embodiment has been described above. Note that, the configuration described above with reference to FIG. 1 is a mere example. The configuration of the system 1 according to the present embodiment is not limited thereto. The configuration of the system 1 according to the present embodiment may be flexibly modified in accordance with specifications and operations.
- FIG. 2 is a sequence diagram for describing the method of calculating propagation time of wireless signals between the in-vehicle device 10 and the portable device 20 according to the embodiment.
- the antenna 130 of the in-vehicle device 10 first transmits the first signal in conformity with the designated communication standard under the control of the control section 110 (S 102 ).
- the control section 210 of the portable device 20 causes the antenna 130 to transmit the second signal in response to the first signal and in conformity with the designated communication standard (Step S 104 ).
- the control section 110 of the in-vehicle device 10 calculates propagation time of the first signal and the second signal between the in-vehicle device 10 and the portable device 20 (Step S 106 ).
- the control section 110 calculates the propagation time on the basis of a time period ⁇ T 1 and a time period ⁇ T 2 .
- the time period ⁇ T 1 is time from when the antenna 130 transmits the first signal to when the antenna 130 receives the second signal.
- the time period ⁇ T 2 is time from when the antenna 230 of the portable device 20 receives the first signal to when the antenna 230 transmits the second signal.
- control section 110 calculates the time it takes to propagate the first signal and the second signal (that is, time it takes to perform round-trip communication) by subtracting the time period ⁇ T 2 from the time period ⁇ T 1 .
- control section 110 calculate time it takes to propagate the first signal or the second signal (that is, time it takes to perform one-way communication) by dividing the calculated time by 2.
- control section 110 calculates an estimation value of a distance between the in-vehicle device 10 and the portable device 20 , that is, a ranging value.
- control section 210 of the portable device 20 may include information related to the time period ⁇ T 2 into the second signal or another signal and may cause the antenna 230 to transmit the signal.
- the time period ⁇ T 2 is set as fixed time and sharing the fixed time between the in-vehicle device 10 and the portable device 20 .
- the fixed time is time decided in advance.
- the control section 210 of the portable device 210 wait for the fixed time, which has been decided in advance, and then start the transmission process of the second signal.
- delay occurs in time from when the control section 110 generates the first signal as a digital signal to when the antenna 130 emits the first signal as an analog signal
- delay also occurs in time from when the antenna 130 receives the second signal as an analog signal to when the second signal is input to the control section 110 as a digital signal.
- delay occurs in time from when the antenna 230 receives the first signal as the analog signal to when the first signal is input to the control section 210 as the digital signal.
- delay also occurs in time from when the control section 210 generates the second signal to when the antenna 230 emits the second signal as the analog signal.
- the calculated ranging value and propagation time of signals vary depending on the delay times.
- the above-described delay time varies from device to device including the in-vehicle device 10 and the portable device 20 . Therefore, to calculate accurate ranging values and accurate propagation time of signals, it is necessary to accurately measure delay time specific to each device and correct the delay time.
- the present invention is made in view of the aforementioned issues, and the present invention makes it possible to calculate propagation time of signals transmitted and received between devices more easily and accurately.
- one of features of the control section 210 of the portable device 20 is to control a timing of causing the antenna 230 to transmit the second signal in response to the first signal received by the antenna 230 , on the basis of fixed time and delay time related to internal transfer of signals in the portable device 20 .
- the fixed time is time decided in advance.
- the control section 210 of the portable device 20 may wait for a time obtained by subtracting the delay time from the fixed time (fixed time ⁇ delay time) and then may start the transmission process of the second signal,
- the above-described transmission process of the second signal may be started when the control section 210 generates the second signal as a digital signal and outputs the digital signal to the digital-to-analogue converter.
- Such control makes it possible to more accurately calculate the ranging value and the propagation time of signals in view of the delay time in internal transfer of signals in the portable device 20 .
- control section 110 of the in-vehicle device 10 is to calculate propagation time of the first signal transmitted from the antenna 130 and the second signal transmitted from the portable device 20 between the in-vehicle device 10 and the portable device 20 on the basis of the fixed time, which has been decided in advance, and the delay time in internal transfer of signals in the in-vehicle device 10 .
- control section 110 of the in-vehicle device 10 may calculate the propagation time of the first signal and the second signal between the in-vehicle device 10 and the portable device 20 by subtracting the delay time from time (time period ⁇ T 1 ) from start of the transmission process of the first signal to confirmation of reception of the second signal and further subtracting the fixed time from the subtracted time.
- control section 100 makes it possible to calculate the propagation time of the first signal and the second signal by performing computation using (time period ⁇ T 1 ⁇ delay time) ⁇ fixed time.
- the above-described transmission process of the second signal may be started when the control section 110 generates the first signal as a digital signal and outputs the digital signal to the digital-to-analogue converter.
- control section 110 may confirm reception of the second signal on the basis that the second signal received by the antenna 130 is converted into a digital signal by the analog-to-digital converter 240 and that the digital signal is input to the control section 110 .
- Such control makes it possible to more accurately calculate the ranging value and the propagation time of signals in view of the delay time in internal transfer of the signals in the portable device 20 .
- FIG. 3 is a diagram for describing calculation of delay time by the control section 210 of the portable device 20 with regard to internal transfer of signals in the portable device 20 according to the embodiment.
- the control section 210 When calculating the delay time, the control section 210 first generates a digital signal and outputs the digital signal to the digital-to-analogue converter 220 . At this time, the control section 210 stores time To of outputting the digital signal to the digital-to-analogue converter 220 .
- the digital-to-analog converter 220 converts the input digital signal into an analog signal, and outputs the analog signal to the antenna 230 .
- the antenna 230 emits the input analog signal and outputs the analog signal to the analog-to-digital converter 240 .
- the analog-to-digital converter 240 converts the input analog signal into a digital signal, and outputs the digital signal to the control section 210 .
- control section 210 stores time Ti of inputting the digital signal output from the analog-to-digital converter 240 to the control section 210 .
- control section 210 calculates delay time, which is time from the time To of outputting the digital signal to the digital-to-analogue converter 220 to the time Ti of inputting the digital signal output from the analog-to-digital converter 240 to the control section 210 .
- FIG. 3 exemplifies the case where the control section 210 of the portable device 20 calculates the delay time in internal transfer of signals in the portable device 20 .
- the control section 110 of the in-vehicle device 10 it is also possible for the control section 110 of the in-vehicle device 10 to calculate delay time in internal transfer of signals in the in-vehicle device 10 by using a similar way.
- control section 110 of the in-vehicle device 10 may calculate the delay time, which is time from the time To of outputting the digital signal to the digital-to-analogue converter 120 to the time Ti of inputting the digital signal output from the analog-to-digital converter 140 to the control section 110 .
- FIG. 4 is a sequence diagram illustrating an example of the flow of the operation of the system 1 according to the present embodiment.
- control section 110 of the in-vehicle device 10 first starts the transmission process of the first signal and cause the antenna 130 to transmit the first signal (Step S 202 ).
- Step S 204 the control section 210 of the portable device 20 waits for a time obtained by subtracting the delay time in the portable device 20 from the fixed time (Step S 204 ).
- Step S 204 the control section 210 of the portable device 20 starts the transmission process of the second signal and causes the antenna 230 to transmit the second signal (Step S 206 ).
- control section 110 of the in-vehicle device 10 calculates propagation time of the first signal and the second signal by using the time period ⁇ T 1 , the delay time in the in-vehicle device 10 , and the fixed time (Step S 208 ).
- Step S 210 the control section 110 of the in-vehicle device 10 calculates a ranging value of a distance between the in-vehicle device 10 and the portable device 20 (Step S 210 ).
- the first signal according to the present embodiment may be transmitted from the portable device 20 .
- the in-vehicle device 10 may transmit the second signal in response to the first signal transmitted from the portable device 20 .
- the portable device 20 may calculate the propagation time and the ranging value on the basis of the second signal that has been received.
- the operation of the system 1 according to the present embodiment may be flexibly modified in accordance with specifications and operations.
- a program that configures the software is stored in advance in, for example, a non-transitory computer readable storage medium installed inside or outside each of the devices.
- the program is loaded into RAM, and executed by a processor such as a CPU.
- the storage medium may be a magnetic disk, an optical disc, a magneto-optical disc, flash memory, or the like, for example.
- the above-described computer program may he distributed via a network without using the storage medium, for example.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Quality & Reliability (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Lock And Its Accessories (AREA)
- Mobile Radio Communication Systems (AREA)
- Radar Systems Or Details Thereof (AREA)
Abstract
A wireless communication device having a control section configured to control transmission and reception of a wireless signal by an antenna in conformity with a designated communication standard, wherein the control section controls a timing of causing the antenna to transmit a second signal in response to a first signal received by the antenna, on a basis of fixed time and delay time related to internal transfer in the wireless communication device, the fixed time being decided in advance.
Description
- This is a Continuation of U.S. application Ser. No. 17/400,608 filed Aug. 12, 2021, which claims benefit of priority from Japanese Patent Application No. 2020-153198, filed on Sep. 11, 2020. The disclosure of each of the applications identified above is herein incorporated by reference in its entirety.
- The present invention relates to a wireless communication device and a system.
- In recent years, technologies of performing various kinds of processes in accordance with a result of transmitting/receiving a wireless signal between devices have been developed. For example, JP 2020-118030A discloses a technology of performing ranging between devices by using ultra-wideband (UWB) signals.
- To perform more accurate ranging in the above-described system, it is important to more accurately measure propagation times of signals transmitted and received between the devices. However, to calculate the propagation times more accurately, it is necessary to eliminate delay time related to internal transfer of the signal in each device.
- Accordingly, the present invention is made in view of the aforementioned issue, and an object of the present invention is to calculate the propagation times of signals transmitted and received between the devices more easily and accurately.
- To solve the above described problem, according to an aspect of the present invention, there is provided a wireless communication device comprising a control section configured to control transmission and reception of a wireless signal by an antenna in conformity with a designated communication standard, wherein the control section controls a timing of causing the antenna to transmit a second signal in response to a first signal received by the antenna, on a basis of fixed time and delay time related to internal transfer in the wireless communication device, the fixed time being decided in advance.
- To solve the above described problem, according to another aspect of the present invention, there is provided a wireless communication device comprising a control section configured to control transmission and reception of a wireless signal by an antenna in conformity with a designated communication standard, wherein the control section calculates propagation time of a first signal and a second signal between the wireless communication device and another wireless communication device on a basis of fixed time and delay time related to internal transfer in the wireless communication device, the first signal being transmitted from the antenna, the second signal being transmitted from the other wireless communication device in response to the first signal, the fixed time being decided in advance.
- To solve the above described problem, according to another aspect of the present invention, there is provided a system comprising: a first wireless communication device; and a second wireless communication device, wherein the first wireless communication device includes a first control section configured to control transmission and reception of a wireless signal by a first antenna in conformity with a designated communication standard, the first control section calculates propagation time of a first signal and a second signal between the first wireless communication device and the second wireless communication device on a basis of fixed time and first delay time related to internal transfer in the first wireless communication device, the first signal being transmitted from the first antenna, the second signal being transmitted from the second wireless communication device in response to the first signal, the fixed time being decided in advance, the second wireless communication device includes a second control section configured to control transmission and reception of a wireless signal by a second antenna in conformity with a designated communication standard, and the second control section controls a timing of causing the second antenna to transmit the second signal in response to the first signal received by the second antenna, on a basis of the fixed time and second delay time related to internal transfer in the second wireless communication device.
- As described above, according to the present invention, it is possible to calculate propagation times of signals transmitted and received between devices more easily and accurately.
-
FIG. 1 is a block diagram illustrating a configuration example of asystem 1 according to an embodiment of the present invention. -
FIG. 2 is a sequence diagram for describing a method of calculating propagation time of wireless signals between an in-vehicle device 10 and aportable device 20 according to the embodiment. -
FIG. 3 is a diagram for describing calculation of delay time by acontrol section 210 of theportable device 20 with regard to internal transfer of signals in theportable device 20 according to the embodiment. -
FIG. 4 is a sequence diagram illustrating an example of a flow of operation of thesystem 1 according to the embodiment. - Hereinafter, referring to the appended drawings, preferred embodiments of the present invention will be described in detail. It should be noted that, in this specification and the appended drawings, structural elements that have substantially the same function and structure are denoted with the same reference numerals, and repeated explanation thereof is omitted.
- First, a configuration example of a
system 1 according to an embodiment of the present invention will be described.FIG. 1 is a block diagram illustrating the configuration example of thesystem 1 according to the present embodiment. - As illustrated in
FIG. 1 , thesystem 1 according to the present embodiment includes an in-vehicle device 10 and aportable device 20. - The
portable device 10 according to the present embodiment is an example of a first wireless communication device according to the present embodiment. The in-vehicle device 10 according to the present embodiment is installed in a mobile object such as a vehicle used by a user, and the in-vehicle device 10 performs wireless communication with theportable device 20 carried by the user in conformity with a designated communication standard. - As illustrated in
FIG. 1 , the in-vehicle device 10 according to the present embodiment includes acontrol section 110, a digital-to-analog converter 120, anantenna 130, and an analog-to-digital converter 140. - The
control section 110 according to the present embodiment controls transmission and reception of wireless signals by theantenna 130 in conformity with the designated communication standard. - In addition, the
control section 110 according to the present embodiment calculates propagation time of the wireless signals between the in-vehicle device 10 and the portable device 20 (more specifically, between theantenna 130 of the in-vehicle device 10 and anantenna 230 of the portable device 20) in conformity with the designated communication standard. - Examples of the designated communication standard according to the present embodiment include ultra-wideband wireless communication. In this case, the
control section 110 according to the present embodiment controls transmission and reception of ultra-wideband signals (hereinafter, also referred to as UWB signals) by theantenna 130. - On the other hand, the designated communication standard according to the present embodiment is not limited thereto. The examples of the designated communication standard according to the present embodiment include various kinds of communication standards that makes it possible to measure propagation time of signals between devices.
- The functions of the
control section 110 according to the present embodiment are implemented by a processor such as a CPU. Note that, details of the functions of thecontrol section 110 according to the present embodiment will be described later. - The digital-to-
analog converter 120 according to the present embodiment converts an input digital signal into an analog signal. - The digital-to-
analog converter 120 according to the present embodiment may convert a digital signal input from thecontrol section 110 into an analog signal, and may output the analog signal to theantenna 130. - The
antenna 130 according to the present embodiment transmits and receives wireless signals in conformity with the designated communication standard. For example, under the control of thecontrol section 110, theantenna 130 according to the present embodiment transmits a first signal, and receives a second signal transmitted from theportable device 20 in response to the first signal. - The analog-to-
digital converter 140 according to the present embodiment converts an input analog signal into a digital signal. - The analog-to-
digital converter 140 according to the present embodiment may convert an analog signal input from theantenna 130 into a digital signal, and may Output the digital signal to thecontrol section 110. - The
portable device 20 according to the present embodiment is an example of a second wireless communication device according to the present embodiment. Theportable device 20 according to the present embodiment is carried by the user, and theportable device 20 performs wireless communication with the in-vehicle device 10 installed in the mobile object such as the vehicle used by the user in conformity with the designated communication standard. - For example, the
portable device 20 according to the present embodiment may be a smartphone, a wearable device, a dedicated device, or the like. - As illustrated in
FIG. 1 , theportable device 20 according to the present embodiment includes acontrol section 210, a digital-to-analog converter 220, anantenna 230, and an analog-to-digital converter 240. - The
control section 210 according to the present embodiment controls transmission and reception of wireless signals by theantenna 230 in conformity with the designated communication standard. - For example, the
control section 210 according to the present embodiment causes theantenna 230 to transmit the second signal in response to the first signal received by theantenna 230. - At this time, one of features of the
control section 210 according to the present embodiment is to control a timing of causing theantenna 230 to transmit the second signal. - The functions of the
control section 210 according to the present embodiment are implemented by a processor such as a CPU. Note that, details of the functions of thecontrol section 210 according to the present embodiment will be described later. - The digital-to-
analogue converter 220 according to the present embodiment converts an input digital signal into an analog signal. - The digital-to-
analog converter 220 according to the present embodiment may convert a digital signal input from thecontrol section 210 into an analog signal, and may output the analog signal to theantenna 230. - The
antenna 230 according to the present embodiment transmits and receives wireless signals in conformity with the designated communication standard. For example, theantenna 230 according to the present embodiment receives the first signal transmitted from the in-vehicle device 10, In addition, for example, theantenna 230 according to the present embodiment transmits the second signal under the control of thecontrol section 210. - The analog-to-
digital converter 240 according to the present embodiment converts an input analog signal into a digital signal. - The analog-to-
digital converter 240 according to the present embodiment may convert an analog signal input from theantenna 230 into a digital signal, and may output the digital signal to thecontrol section 210. - The configuration example of the
system 1 according to the present embodiment has been described above. Note that, the configuration described above with reference toFIG. 1 is a mere example. The configuration of thesystem 1 according to the present embodiment is not limited thereto. The configuration of thesystem 1 according to the present embodiment may be flexibly modified in accordance with specifications and operations. - Next, details of the control of the
system 1 according to the present embodiment will be described. Here, a method of calculating the propagation time of wireless signals between the in-vehicle device 10 and theportable device 20 will be described first. -
FIG. 2 is a sequence diagram for describing the method of calculating propagation time of wireless signals between the in-vehicle device 10 and theportable device 20 according to the embodiment. - In the case of the example illustrated in
FIG. 2 , theantenna 130 of the in-vehicle device 10 first transmits the first signal in conformity with the designated communication standard under the control of the control section 110 (S102). - Next, on the basis that the
antenna 230 has received the first signal in Step 5102, thecontrol section 210 of theportable device 20 causes theantenna 130 to transmit the second signal in response to the first signal and in conformity with the designated communication standard (Step S104). - Next, on the basis of the first signal transmitted from the
antenna 130 in Step S102 and the second signal received by theantenna 130 in Step S104, thecontrol section 110 of the in-vehicle device 10 calculates propagation time of the first signal and the second signal between the in-vehicle device 10 and the portable device 20 (Step S106). - At this time, it is possible for the
control section 110 to calculate the propagation time on the basis of a time period ΔT1 and a time period ΔT2. The time period ΔT1 is time from when theantenna 130 transmits the first signal to when theantenna 130 receives the second signal. The time period ΔT2 is time from when theantenna 230 of theportable device 20 receives the first signal to when theantenna 230 transmits the second signal. - More specifically, it is possible for the
control section 110 to calculate the time it takes to propagate the first signal and the second signal (that is, time it takes to perform round-trip communication) by subtracting the time period ΔT2 from the time period ΔT1. In addition it is possible for thecontrol section 110 to calculate time it takes to propagate the first signal or the second signal (that is, time it takes to perform one-way communication) by dividing the calculated time by 2. - In addition, by multiplying the value obtained through (time period ΔT1−time period ΔT2)/2 by speed of the signals, it is possible for the
control section 110 to calculate an estimation value of a distance between the in-vehicle device 10 and theportable device 20, that is, a ranging value. - Note that, at this time, to calculate the ranging value, it is necessary for the
control section 110 of the in-vehicle device 10 to recognize the value of the time period ΔT2. - Accordingly, the
control section 210 of theportable device 20 may include information related to the time period ΔT2 into the second signal or another signal and may cause theantenna 230 to transmit the signal. - On the other hand, it is also possible to omit such transmission of the information related to the time period ΔT2, by setting the time period ΔT2 as fixed time and sharing the fixed time between the in-
vehicle device 10 and theportable device 20. The fixed time is time decided in advance. - In this case, after the
antenna 230 has received the first signal, it is sufficient for thecontrol section 210 of theportable device 210 to wait for the fixed time, which has been decided in advance, and then start the transmission process of the second signal. - However, to calculate the ranging value and the propagation time of signals more accurately here, it is important to consider respective delay times related to internal transfer of signals in the in-
vehicle device 10 and theportable device 20. - For example, in the case of the in-
vehicle device 10, delay occurs in time from when thecontrol section 110 generates the first signal as a digital signal to when theantenna 130 emits the first signal as an analog signal, in addition, delay also occurs in time from when theantenna 130 receives the second signal as an analog signal to when the second signal is input to thecontrol section 110 as a digital signal. - In a similar way, in the case of the
portable device 20, delay occurs in time from when theantenna 230 receives the first signal as the analog signal to when the first signal is input to thecontrol section 210 as the digital signal. In addition, delay also occurs in time from when thecontrol section 210 generates the second signal to when theantenna 230 emits the second signal as the analog signal. - Therefore, even in the case of using the fixed time as described above, the calculated ranging value and propagation time of signals vary depending on the delay times.
- The above-described delay time varies from device to device including the in-
vehicle device 10 and theportable device 20. Therefore, to calculate accurate ranging values and accurate propagation time of signals, it is necessary to accurately measure delay time specific to each device and correct the delay time. - The present invention is made in view of the aforementioned issues, and the present invention makes it possible to calculate propagation time of signals transmitted and received between devices more easily and accurately.
- Accordingly, one of features of the
control section 210 of theportable device 20 according to an embodiment of the present invention is to control a timing of causing theantenna 230 to transmit the second signal in response to the first signal received by theantenna 230, on the basis of fixed time and delay time related to internal transfer of signals in theportable device 20. The fixed time is time decided in advance. - For example, after the
antenna 230 has received the first signal, thecontrol section 210 of theportable device 20 according to the present embodiment may wait for a time obtained by subtracting the delay time from the fixed time (fixed time−delay time) and then may start the transmission process of the second signal, - Note that, the above-described transmission process of the second signal may be started when the
control section 210 generates the second signal as a digital signal and outputs the digital signal to the digital-to-analogue converter. - Such control makes it possible to more accurately calculate the ranging value and the propagation time of signals in view of the delay time in internal transfer of signals in the
portable device 20. - In addition, one of features of the
control section 110 of the in-vehicle device 10 according to the present embodiment is to calculate propagation time of the first signal transmitted from theantenna 130 and the second signal transmitted from theportable device 20 between the in-vehicle device 10 and theportable device 20 on the basis of the fixed time, which has been decided in advance, and the delay time in internal transfer of signals in the in-vehicle device 10. - For example, the
control section 110 of the in-vehicle device 10 may calculate the propagation time of the first signal and the second signal between the in-vehicle device 10 and theportable device 20 by subtracting the delay time from time (time period ΔT1) from start of the transmission process of the first signal to confirmation of reception of the second signal and further subtracting the fixed time from the subtracted time. - In other words, the control section 100 makes it possible to calculate the propagation time of the first signal and the second signal by performing computation using (time period ΔT1−delay time)−fixed time.
- Note that, the above-described transmission process of the second signal may be started when the
control section 110 generates the first signal as a digital signal and outputs the digital signal to the digital-to-analogue converter. - In addition, the
control section 110 may confirm reception of the second signal on the basis that the second signal received by theantenna 130 is converted into a digital signal by the analog-to-digital converter 240 and that the digital signal is input to thecontrol section 110. - Such control makes it possible to more accurately calculate the ranging value and the propagation time of signals in view of the delay time in internal transfer of the signals in the
portable device 20. - A method of calculating the delay time to perform the above-described control will be described.
FIG. 3 is a diagram for describing calculation of delay time by thecontrol section 210 of theportable device 20 with regard to internal transfer of signals in theportable device 20 according to the embodiment. - When calculating the delay time, the
control section 210 first generates a digital signal and outputs the digital signal to the digital-to-analogue converter 220. At this time, thecontrol section 210 stores time To of outputting the digital signal to the digital-to-analogue converter 220. - Next, the digital-to-
analog converter 220 converts the input digital signal into an analog signal, and outputs the analog signal to theantenna 230. - Next, the
antenna 230 emits the input analog signal and outputs the analog signal to the analog-to-digital converter 240. - Next, the analog-to-
digital converter 240 converts the input analog signal into a digital signal, and outputs the digital signal to thecontrol section 210. - Next, the
control section 210 stores time Ti of inputting the digital signal output from the analog-to-digital converter 240 to thecontrol section 210. - Next, the
control section 210 calculates delay time, which is time from the time To of outputting the digital signal to the digital-to-analogue converter 220 to the time Ti of inputting the digital signal output from the analog-to-digital converter 240 to thecontrol section 210. - By using the above-described calculation method, it is possible to accurately calculate delay time from when the
antenna 230 receives the first signal to when the first signal is input to thecontrol section 110 as a digital signal, and delay time from when thecontrol section 210 outputs the second signal to the digital-to-analogue converter 220 as the digital signal to when theantenna 230 emits the second signal as an analog signal. - Note that,
FIG. 3 exemplifies the case where thecontrol section 210 of theportable device 20 calculates the delay time in internal transfer of signals in theportable device 20. However, it is also possible for thecontrol section 110 of the in-vehicle device 10 to calculate delay time in internal transfer of signals in the in-vehicle device 10 by using a similar way. - In other words, the
control section 110 of the in-vehicle device 10 may calculate the delay time, which is time from the time To of outputting the digital signal to the digital-to-analogue converter 120 to the time Ti of inputting the digital signal output from the analog-to-digital converter 140 to thecontrol section 110. - By using the above-described calculation method, it is possible to accurately calculate delay time from when the
control section 110 outputs the first signal to the digital-to-analogue converter 120 as the digital signal to when theantenna 130 emits the first signal as an analog signal, and delay time from when theantenna 130 receives the second signal to when the second signal is input to thecontrol section 110 as a digital signal. - Next, a flow of operation of the
system 1 according to the present embodiment will be described in detail.FIG. 4 is a sequence diagram illustrating an example of the flow of the operation of thesystem 1 according to the present embodiment. - As illustrated in
FIG. 1 , thecontrol section 110 of the in-vehicle device 10 first starts the transmission process of the first signal and cause theantenna 130 to transmit the first signal (Step S202). - Next, after the
antenna 230 receives the first signal in Step S202, thecontrol section 210 of theportable device 20 waits for a time obtained by subtracting the delay time in theportable device 20 from the fixed time (Step S204). - After the standby time in Step S204, the
control section 210 of theportable device 20 starts the transmission process of the second signal and causes theantenna 230 to transmit the second signal (Step S206). - Next, the
control section 110 of the in-vehicle device 10 calculates propagation time of the first signal and the second signal by using the time period ΔT1, the delay time in the in-vehicle device 10, and the fixed time (Step S208). - In addition, on the basis of the propagation time calculated in Step S208, the
control section 110 of the in-vehicle device 10 calculates a ranging value of a distance between the in-vehicle device 10 and the portable device 20 (Step S210). - The example of the flow of operation of the
system 1 according to the present embodiment has been described above. However, the flow of operation of thesystem 1 according to the present embodiment is not limited to the example illustrated inFIG. 4 . - For example, the first signal according to the present embodiment may be transmitted from the
portable device 20. In this case, the in-vehicle device 10 may transmit the second signal in response to the first signal transmitted from theportable device 20. In addition, theportable device 20 may calculate the propagation time and the ranging value on the basis of the second signal that has been received. The operation of thesystem 1 according to the present embodiment may be flexibly modified in accordance with specifications and operations. - Heretofore, preferred embodiments of the present invention have been described in detail with reference to the appended drawings, but the present invention is not limited thereto. It should be understood by those skilled in the art that various changes and alterations may be made without departing from the spirit and scope of the appended claims.
- Note that, a series of processes performed by the respective devices described in this specification may he implemented by any of software, hardware, and a combination of software and hardware. A program that configures the software is stored in advance in, for example, a non-transitory computer readable storage medium installed inside or outside each of the devices. In addition, for example, when a computer executes each of the programs, the program is loaded into RAM, and executed by a processor such as a CPU. The storage medium may be a magnetic disk, an optical disc, a magneto-optical disc, flash memory, or the like, for example. Alternatively, the above-described computer program may he distributed via a network without using the storage medium, for example.
Claims (13)
1. A wireless communication device comprising
a controller that controls transmission and reception of a wireless signal by an antenna in conformity with a designated communication standard,
wherein the controller controls a timing of causing the antenna to transmit a second signal in response to a first signal received by the antenna, on a basis of fixed time and delay time related to internal transfer in the wireless communication device, the fixed time being decided in advance, and
wherein, after the antenna receives the first signal, the controller waits for a time obtained by subtracting, the delay time from the fixed time, and then starts a transmission process of the second signal,
wherein the controller calculates the delay time, which is a time from when a digital signal generated by the controller is converted into an analog signal as input to the antenna to when the analog signal outputted from the antenna is converted into a digital signal as input to the controller.
2. The wireless communication device according to claim 1 ,
wherein the fixed time is used for calculating propagation time of the first signal and the second signal between the wireless communication device and another wireless communication device that transmits the first signal.
3. The wireless communication device according to claim 1 ,
wherein the propagation time of the first signal and the second signal is used for estimating a distance between the wireless communication device and another wireless communication device that transmits the first signal.
4. The wireless communication device according to claim 1 ,
wherein the designated communication standard includes ultra-wideband wireless communication.
5. The wireless communication device according to claim 1 ,
wherein the wireless communication device is carried by a user.
6. The wireless communication device according to claim 1 , further comprising:
a digital-to-analog converter that converts the digital signal generated by the controller into the analog signal as input to the antenna.
7. The wireless communication device according to claim 1 , further comprising:
an analog-to-digital converter that converts the analog signal outputted from the antenna into the digital signal as input to the controller.
8. A wireless communication device comprising
a controller that controls transmission and reception of a wireless signal by an antenna in conformity with a designated communication standard,
wherein the controller calculates propagation time of a first signal and a second signal between the wireless communication device and another wireless communication device on a basis of fixed time and delay time related to internal transfer in the wireless communication device, the first signal being transmitted from the antenna, the second signal being transmitted from the other wireless communication device in response to the first signal, the fixed time being decided in advance, and
wherein, after the antenna receives the first signal, the controller waits for a time obtained by subtracting the delay time from the fixed time, and then starts a transmission process of the second signal,
wherein the controller calculates the delay time, which is a time from when a digital signal generated by the controller is converted into an analog signal as input to the antenna to when the analog signal outputted from the antenna is converted into a digital signal as input to the controller.
9. The wireless communication device according to claim 8 ,
wherein the controller calculates the propagation time of the first signal and the second signal between the wireless communication device and the other wireless communication device by subtracting the delay time from a time from start of a transmission process of the first signal to confirmation of reception of the second signal and further subtracting the fixed time from the subtracted time.
10. The wireless communication device according to claim 8 ,
wherein the wireless communication device is installed in a mobile object.
11. The wireless communication device according to claim 8 , further comprising:
a digital-to-analog converter that converts the digital signal generated by the controller into the analog signal as input to the antenna.
12. The wireless communication device according to claim 8 , further comprising:
an analog-to-digital converter that converts the analog signal outputted from the antenna into the digital signal as input to the controller.
13. A system comprising:
a first wireless communication device; and
a second wireless communication device,
wherein the first wireless communication device includes a first controller that controls transmission and reception of a wireless signal by a first antenna in conformity with a designated communication standard,
the first controller calculates propagation time of a first signal and a second signal between the first wireless communication device and the second wireless communication device on a basis of fixed time and first delay time related to internal transfer in the first wireless communication device, the first signal being transmitted from the first antenna, the second signal being transmitted from the second wireless communication device in response to the first signal, the fixed time being decided in advance, wherein, after the first antenna receives the first signal, the first controller waits for a time obtained by subtracting the first delay time from the fixed time, and then starts a transmission process of the second signal, wherein the first controller calculates the first delay time, which is a time from when a digital signal generated by the first controller is converted into an analog signal as input to the first antenna to when the analog signal outputted from the first antenna is converted into a digital signal as input to the controller,
the second wireless communication device includes a second controller that controls transmission and reception of a wireless signal by a second antenna in conformity with a designated communication standard, and
the second controller controls a timing of causing the second antenna to transmit the second signal in response to the first signal received by the second antenna, on a basis of the fixed time and second delay time related to internal transfer in the second wireless communication device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US18/127,230 US20230239821A1 (en) | 2020-09-11 | 2023-03-28 | Wireless communication device and system |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020153198A JP2022047338A (en) | 2020-09-11 | 2020-09-11 | Wireless communication device, system, and program |
JP2020-153198 | 2020-09-11 | ||
US17/400,608 US11647474B2 (en) | 2020-09-11 | 2021-08-12 | Wireless communication device and system |
US18/127,230 US20230239821A1 (en) | 2020-09-11 | 2023-03-28 | Wireless communication device and system |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/400,608 Continuation US11647474B2 (en) | 2020-09-11 | 2021-08-12 | Wireless communication device and system |
Publications (1)
Publication Number | Publication Date |
---|---|
US20230239821A1 true US20230239821A1 (en) | 2023-07-27 |
Family
ID=80351668
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/400,608 Active US11647474B2 (en) | 2020-09-11 | 2021-08-12 | Wireless communication device and system |
US18/127,230 Abandoned US20230239821A1 (en) | 2020-09-11 | 2023-03-28 | Wireless communication device and system |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/400,608 Active US11647474B2 (en) | 2020-09-11 | 2021-08-12 | Wireless communication device and system |
Country Status (4)
Country | Link |
---|---|
US (2) | US11647474B2 (en) |
JP (1) | JP2022047338A (en) |
CN (1) | CN114257320A (en) |
DE (1) | DE102021122838A1 (en) |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040135992A1 (en) * | 2002-11-26 | 2004-07-15 | Munro James F. | Apparatus for high accuracy distance and velocity measurement and methods thereof |
US20040142660A1 (en) * | 2001-09-14 | 2004-07-22 | Churan Gary G. | Network-assisted global positioning systems, methods and terminals including doppler shift and code phase estimates |
US20050020279A1 (en) * | 2003-02-24 | 2005-01-27 | Russ Markhovsky | Method and system for finding |
US20060012476A1 (en) * | 2003-02-24 | 2006-01-19 | Russ Markhovsky | Method and system for finding |
US20060104198A1 (en) * | 2004-11-18 | 2006-05-18 | Sony Corporation | Ranging system, transmitting terminal, receiving terminal, ranging method, and computer program |
US20070164728A1 (en) * | 2005-12-30 | 2007-07-19 | Intel Corporation | Systems and methods for measuring signal propagation delay between circuits |
US20070233383A1 (en) * | 2003-01-09 | 2007-10-04 | Atc Technologies, Llc | Network-Assisted Global Positioning Systems, Methods and Terminals Including Doppler Shift and Code Phase Estimates |
US20100183063A1 (en) * | 2008-12-18 | 2010-07-22 | Panasonic Corporation | Wireless Distance Measurement System and Wireless Terminal |
US20190190635A1 (en) * | 2017-12-19 | 2019-06-20 | Qualcomm Incorporated | Time synchronization for wireless communications |
US20190239172A1 (en) * | 2018-01-31 | 2019-08-01 | Qualcomm Incorporated | Scheduling for a time-synchronized wireless network |
US20210033737A1 (en) * | 2019-07-29 | 2021-02-04 | Lonprox Corporation | System and method for indoor location |
US20210297965A1 (en) * | 2018-07-02 | 2021-09-23 | Telefonaktiebolaget Lm Ericsson (Publ) | Methods and systems for providing time-sensitive services related to wireless devices |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6453168B1 (en) * | 1999-08-02 | 2002-09-17 | Itt Manufacturing Enterprises, Inc | Method and apparatus for determining the position of a mobile communication device using low accuracy clocks |
JP4254879B2 (en) * | 2007-04-03 | 2009-04-15 | ソニー株式会社 | Digital data transmission device, reception device, and transmission / reception system |
CN106507957B (en) * | 2010-12-10 | 2014-07-02 | 上海机电工程研究所 | A kind of time delay scaling method of radio frequency target simulation system |
JP6334311B2 (en) * | 2014-08-08 | 2018-05-30 | 株式会社東海理化電機製作所 | Distance measuring system |
EP3255851B1 (en) * | 2016-06-08 | 2019-08-07 | Nxp B.V. | Processing module for a communication device and method therefor |
JP6702845B2 (en) | 2016-10-28 | 2020-06-03 | 株式会社東海理化電機製作所 | Electronic key system |
US10885729B2 (en) * | 2018-10-12 | 2021-01-05 | Denso International America, Inc. | Passive entry/passive start systems using continuous wave tones and synchronization words for detecting range extender type relay station attacks |
JP7225997B2 (en) | 2019-03-22 | 2023-02-21 | 東京電力ホールディングス株式会社 | Landing mound creation method |
CN111289952B (en) * | 2020-03-27 | 2023-08-15 | 华清瑞达(天津)科技有限公司 | Radar target echo simulation method and device |
JP2020118030A (en) | 2020-04-13 | 2020-08-06 | 株式会社東海理化電機製作所 | Electronic key system |
-
2020
- 2020-09-11 JP JP2020153198A patent/JP2022047338A/en active Pending
-
2021
- 2021-08-12 CN CN202110924246.8A patent/CN114257320A/en active Pending
- 2021-08-12 US US17/400,608 patent/US11647474B2/en active Active
- 2021-09-03 DE DE102021122838.7A patent/DE102021122838A1/en not_active Withdrawn
-
2023
- 2023-03-28 US US18/127,230 patent/US20230239821A1/en not_active Abandoned
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040142660A1 (en) * | 2001-09-14 | 2004-07-22 | Churan Gary G. | Network-assisted global positioning systems, methods and terminals including doppler shift and code phase estimates |
US20040135992A1 (en) * | 2002-11-26 | 2004-07-15 | Munro James F. | Apparatus for high accuracy distance and velocity measurement and methods thereof |
US20070233383A1 (en) * | 2003-01-09 | 2007-10-04 | Atc Technologies, Llc | Network-Assisted Global Positioning Systems, Methods and Terminals Including Doppler Shift and Code Phase Estimates |
US20050020279A1 (en) * | 2003-02-24 | 2005-01-27 | Russ Markhovsky | Method and system for finding |
US20060012476A1 (en) * | 2003-02-24 | 2006-01-19 | Russ Markhovsky | Method and system for finding |
US20060104198A1 (en) * | 2004-11-18 | 2006-05-18 | Sony Corporation | Ranging system, transmitting terminal, receiving terminal, ranging method, and computer program |
US20070164728A1 (en) * | 2005-12-30 | 2007-07-19 | Intel Corporation | Systems and methods for measuring signal propagation delay between circuits |
US20100183063A1 (en) * | 2008-12-18 | 2010-07-22 | Panasonic Corporation | Wireless Distance Measurement System and Wireless Terminal |
US20190190635A1 (en) * | 2017-12-19 | 2019-06-20 | Qualcomm Incorporated | Time synchronization for wireless communications |
US20190239172A1 (en) * | 2018-01-31 | 2019-08-01 | Qualcomm Incorporated | Scheduling for a time-synchronized wireless network |
US20210297965A1 (en) * | 2018-07-02 | 2021-09-23 | Telefonaktiebolaget Lm Ericsson (Publ) | Methods and systems for providing time-sensitive services related to wireless devices |
US20210033737A1 (en) * | 2019-07-29 | 2021-02-04 | Lonprox Corporation | System and method for indoor location |
Also Published As
Publication number | Publication date |
---|---|
JP2022047338A (en) | 2022-03-24 |
US11647474B2 (en) | 2023-05-09 |
CN114257320A (en) | 2022-03-29 |
US20220086785A1 (en) | 2022-03-17 |
DE102021122838A1 (en) | 2022-03-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9810780B2 (en) | Time of flight (ToF) measurement | |
KR102246274B1 (en) | Apparatus and method for compensating error in range estimation in a wireless communicationsystem | |
US9491706B2 (en) | Reduced-power transmitting from a communications device | |
US10374736B2 (en) | Slave device, serial communications system, and communication method for serial communications system | |
JP6272703B2 (en) | Radar equipment | |
WO2007100403A3 (en) | Interactive voice browsing for mobile devices on wireless networks | |
WO2007102904A3 (en) | Interactive voice browsing server for mobile devices on wireless networks | |
CN110913399A (en) | Method and device for determining coverage distance | |
US20230239821A1 (en) | Wireless communication device and system | |
WO2019223515A1 (en) | Information measurement method and information measurement device | |
US10887008B2 (en) | Apparatus and method for compensating optical transmission delay | |
WO2007111726A3 (en) | Interactive voice browsing system for mobile devices on wireless networks | |
KR20100082068A (en) | Apparatus and method for delay time computing and delay adjusting between base station and remote radio frequency unit in broadband wireless access system | |
JP2009236881A (en) | Ground device of dme, and method for monitoring its response efficiency | |
CN108781179A (en) | Communication equipment, communication system, communication means and there is the recording medium of signal procedure in above-noted | |
KR20190117181A (en) | Learning-based mismatch compensation of wireless high-frequency analog circuit method and device | |
US20220167292A1 (en) | Wireless communication device, system, and storage medium | |
US20060083340A1 (en) | Two-way ranging between radio transceivers | |
JP2005326184A (en) | Positioning system | |
WO2020218939A1 (en) | Method for synchronizing built-in clocks | |
EP3667933A1 (en) | Adaptive nfc receiver sensitivity control | |
US10230478B2 (en) | System for interference cancellation and method thereof | |
RU2326401C2 (en) | Method of signal detection | |
KR101192310B1 (en) | Compensation method of frequency error in terminal station of satellite communication system | |
CN110324095B (en) | Multimode concurrency-based interference elimination method, device, equipment and storage medium |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: KABUSHIKI KAISHA TOKAI RIKA DENKI SEISAKUSHO, JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:FURUTA, MASATERU;FUKAGAI, TADASHI;KONO, YUKI;AND OTHERS;SIGNING DATES FROM 20210730 TO 20210803;REEL/FRAME:063128/0929 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |