US20230227130A1 - A temporary working platform, a transport system, a vessel, and a method - Google Patents

A temporary working platform, a transport system, a vessel, and a method Download PDF

Info

Publication number
US20230227130A1
US20230227130A1 US18/007,615 US202118007615A US2023227130A1 US 20230227130 A1 US20230227130 A1 US 20230227130A1 US 202118007615 A US202118007615 A US 202118007615A US 2023227130 A1 US2023227130 A1 US 2023227130A1
Authority
US
United States
Prior art keywords
working platform
temporary working
column
clamping
temporary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
US18/007,615
Inventor
Marijn Jaap Anton Maria HOOGHOUDT
Philippus Johannes Eduardus Maria DE JONG
Adrianus Huibert DE RUITER
Floris Peter DE LAAT
Vincent Johannes Adrianus THÖNISSEN
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ampelmann Holding BV
Original Assignee
Ampelmann Holding BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ampelmann Holding BV filed Critical Ampelmann Holding BV
Assigned to AMPELMANN HOLDING B.V. reassignment AMPELMANN HOLDING B.V. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DE JONG, PHILLIPPUS JOHANNES EDUARDUS MARIA, DE LAAT, Floris Peter, Hooghoudt, Marijn Jaap Anton Maria, THÖNISSEN, Vincent Johannes Adrianus, DE RUITTER, ADRIANUS HUIBERT
Assigned to AMPELMANN HOLDING B.V. reassignment AMPELMANN HOLDING B.V. CORRECTIVE ASSIGNMENT TO CORRECT THE THE CONVEYING PARTY DATA PREVIOUSLY RECORDED AT REEL: 062495 FRAME: 0239. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT. Assignors: DE RUITER, Adrianus Huibert, DE JONG, PHILLIPPUS JOHANNES EDUARDUS MARIA, DE LAAT, Floris Peter, Hooghoudt, Marijn Jaap Anton Maria, THÖNISSEN, Vincent Johannes Adrianus
Publication of US20230227130A1 publication Critical patent/US20230227130A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B25/00Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby
    • B63B25/18Detachable decks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B25/00Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B27/00Arrangement of ship-based loading or unloading equipment for cargo or passengers
    • B63B27/14Arrangement of ship-based loading or unloading equipment for cargo or passengers of ramps, gangways or outboard ladders ; Pilot lifts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B39/00Equipment to decrease pitch, roll, or like unwanted vessel movements; Apparatus for indicating vessel attitude
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G3/00Scaffolds essentially supported by building constructions, e.g. adjustable in height
    • E04G3/24Scaffolds essentially supported by building constructions, e.g. adjustable in height specially adapted for particular parts of buildings or for buildings of particular shape, e.g. chimney stacks or pylons
    • E04G3/243Scaffolds essentially supported by building constructions, e.g. adjustable in height specially adapted for particular parts of buildings or for buildings of particular shape, e.g. chimney stacks or pylons following the outside contour of a building
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B27/00Arrangement of ship-based loading or unloading equipment for cargo or passengers
    • B63B27/14Arrangement of ship-based loading or unloading equipment for cargo or passengers of ramps, gangways or outboard ladders ; Pilot lifts
    • B63B2027/141Arrangement of ship-based loading or unloading equipment for cargo or passengers of ramps, gangways or outboard ladders ; Pilot lifts telescopically extendable

Definitions

  • the invention relates to a temporary working platform, in particular a temporary working platform for removable attachment to a column of an offshore structure.
  • Temporary working platforms for marine applications are typically used to accommodate workers performing tasks such as maintenance activities to columns of offshore structures.
  • temporary working platforms are mounted to the columns using mounting constructions that are permanently or semi-permanently provided in the exterior wall of the columns. Then, damage may be caused to the carrying structure of the columns reducing their operational lifetime.
  • An object of the invention therefore is to provide a temporary working platform that mitigates at least one of the above mentioned drawbacks.
  • the invention provides a temporary working platform for removable attachment to a column of an offshore structure, comprising a frame for carrying a working structure, in particular a working surface, and a mounting mechanism for releasably mounting the working platform to said column, from a side of the column.
  • the temporary working platform can be easily attached to columns of offshore structures, also to columns that are not provided with mounting elements. Due to the application of a mounting mechanism such as a unit for disposing a non-permanent adhesive, an electromagnetic device for magnetic coupling with a column having magnetizable material such as steel, and/or a clamping construction exploiting frictional forces between the column and the platform, there is no need to realize mechanical permanent or semi-permanent modification to the column structure for carrying the temporary working platform, thereby saving time, costs and reducing a chance that damage may occur at the columns, also after removal of the temporary working platform.
  • a mounting mechanism such as a unit for disposing a non-permanent adhesive
  • an electromagnetic device for magnetic coupling with a column having magnetizable material such as steel, and/or a clamping construction exploiting frictional forces between the column and the platform
  • the clamping mechanism may support the frame and may be arranged for at least partially surrounding the column and for releasably clamping said column.
  • access to the platform can be provided either by a motion compensated access bridge such as a telescopic gangway or via rope access.
  • the clamping mechanism includes a pair of clamping jaws having respective free ends, the jaws being mutually removable between a releasing state wherein the jaw free ends are relatively remote from each other and a clamping state wherein the jaw free ends are relatively close to each other, so as to efficiently provide a clamping principle to the temporary working platform, like a pair of pincers.
  • the pair of clamping jaws can be pivotably mounted to each other such that the clamping jaws are pivotable between the releasing state and the clamping state.
  • the clamping jaws may move in another way, e.g. by shifting relative to each other.
  • an actuator can be provided for controllably driving the clamping mechanism.
  • the frame may include a pair of frame elements, each frame element being supported by a corresponding clamping jaw.
  • multiple pairs of frame elements can be applied, or more generally, a set of individual frame elements.
  • a single frame element can be used, e.g. slidably resting on the clamping jaws.
  • the clamping jaws and/or the frame elements are mainly shaped as curved portions for at least partially surrounding the column of an offshore structure, in order to match, at least partially the exterior curvature of the column.
  • An elastic layer can be mounted on a clamping side of the jaws, e.g. to further reduce a chance that any damage occurs to the column.
  • the clamping jaws and/or the frame elements may be located at mutually opposite locations, thereby providing a balance clamping force to the column.
  • the working structure may include a grating or another working surface, and/or a working device such as a hoist.
  • a first coupling element is provided for releasable coupling to a second coupling element mounted on a transport system transporting the platform to and from the column of the offshore structure. Then, the platform can be deployed and retrieved easily using a motion compensated access bridge such as a gangway, without the use rope structures or hoisting units.
  • the first or second coupling element may include a guiding structure for guiding the first and second coupling elements towards each other and/or for providing a secure connection between the transport system and the temporary working platform.
  • the invention also relates to a transport system, such as a telescopic gangway, coupled to a temporary working platform, wherein, preferably, the second coupling element is mounted to a free end of the transport system.
  • a transport system such as a telescopic gangway
  • the invention relates to a vessel, comprising a transport system, such as a telescopic gangway.
  • the invention further relates to a telescopic gangway and a temporary working platform, wherein the telescopic gangway comprises first and second gangway parts which are telescopable relative to each other in a longitudinal direction, as well as a primary coupling element for removably coupling the telescopic gangway to the temporary working platform, and wherein the temporary working platform comprises a secondary coupling element for removably coupling the temporary working platform to the telescopic gangway, as well as an actuated clamping mechanism suitable for removably attaching the working platform to a column of an offshore construction by at least partially surrounding said column with said actuated clamping mechanism.
  • the invention relates to a method of handling a temporary working platform.
  • FIG. 1 shows a schematic perspective view of a temporary working platform according to the invention
  • FIG. 2 shows a schematic top view of the temporary working platform shown in FIG. 1 ;
  • FIG. 3 shows a schematic side view of the temporary working platform shown in FIG. 1 ;
  • FIG. 4 shows a schematic front view of the temporary working platform shown in FIG. 1 ;
  • FIG. 5 shows a vessel comprising a telescopic gangway coupled to a temporary working platform according to the invention
  • FIG. 6 shows the vessel depicted in FIG. 5 , wherein the temporary working platform is attached to a column of an offshore construction
  • FIG. 7 shows the vessel depicted in FIG. 5 , wherein the temporary working platform has been decoupled
  • FIG. 8 shows the vessel depicted in FIG. 5 , wherein the telescopic gangway is coupling to the temporary working platform
  • FIG. 9 shows the vessel depicted in FIG. 5 , wherein the temporary working platform has been released from the column of an offshore construction
  • FIG. 10 shows a flow diagram of a method according to the invention
  • FIG. 11 A shows a schematic top view of another temporary working platform according to the invention, in a first state
  • FIG. 11 B shows a schematic top view of the temporary working platform of FIG. 11 A in a second state
  • FIG. 12 A shows a schematic side view of the temporary working platform of FIG. 11 A in the first state
  • FIG. 12 B shows a schematic side view of the temporary working platform of FIG. 11 A in the second state
  • FIG. 13 A shows a schematic top view of yet another temporary working platform according to the invention, in a first state
  • FIG. 13 B shows a schematic top view of the temporary working platform of FIG. 13 B in a second state.
  • FIG. 1 shows a schematic perspective view of a temporary working platform 1 according to the invention.
  • the temporary working platform 1 includes a frame 2 and a mounting mechanism for releasably mounting the working platform to a column 20 of an offshore structure, from a side of the column 20 .
  • the mounting mechanism is provided, in the shown embodiment, with a clamping mechanism 3 supporting the frame.
  • the temporary working platform 1 can be removably attached to said column 20 , using the clamping mechanism 3 .
  • the offshore structure is e.g. a drilling rig, drilling platform or offshore windmill, the column also referred to as jacket leg.
  • the frame 2 of the temporary working platform 1 is arranged for carrying a working structure such as a working surface 4 or another working structure such as a hoisting device.
  • the working surface 4 may be implemented as a grating or another working surface such as a supporting plate.
  • the clamping mechanism 3 is arranged for at least partially surrounding a column 20 of an offshore structure and for releasably clamping said column 20 .
  • the clamping mechanism 3 includes a pair of clamping jaws 3 a,b that are pivotably mounted to each other such that the clamping jaws 3 a,b are pivotable with respect to a pivoting axis PA between a releasing state and a clamping state.
  • Each of the clamping jaws 3 a,b has a free end 5 a,b , respectively, also referred to as distal free ends 5 a,b .
  • the jaw free ends 5 a,b are relatively remote from each other, while, in the clamping state, the jaw free ends 5 a,b are relatively close to each other.
  • the clamping mechanism 3 may include a locking element for locking the jaw free ends 5 a,b to each other, in the clamping state so as to counteract that the clamping jaws 3 a,b move unintentionally away from each other.
  • the platform 1 In the releasing state, the platform 1 can be moved towards or from the column 20 of the offshore structure. In the clamping state, the platform 1 is releasably attached to said column 20 .
  • the temporary working platform 1 further includes an actuator 6 for controllably driving the clamping mechanism 2 .
  • the actuator 6 may include a motor 6 ′′ such as a hydraulic or an electric motor, as well as a driving element 6 ′ driven by said motor 6 ′′ for moving a first clamping jaw 3 a relative to a second clamping jaw 3 b such that the clamping mechanism opens from or closes towards the clamping state, like a pair of pincers.
  • the actuator 6 may be operated by a control unit having an interface for manual or remote interaction by a user of the actuator 6 .
  • FIG. 2 shows a schematic top view of the temporary working platform 1 shown in FIG. 1 .
  • the clamping mechanism 3 is shown in both the clamping state CS and the releasing state RS.
  • the driving element 6 ′ pivots the first clamping jaw 3 a relative to the second clamping jaw 3 b by exerting a driving force to the first clamping jaw 3 a .
  • the first clamping jaw 3 a is formed as a lever rotating around the pivoting axis PA having a proximal end 3 a ′ to which the driving element 6 ′ is connected for receiving said driving force.
  • one of the jaw free distal ends 5 a,b or both jaw free distal ends 5 a,b move along a displacement path DPa, DPb that is mainly circular.
  • the jaw free distal ends 5 a,b move in a symmetric way relative to a plane of symmetry PS, e.g. for balancing reasons.
  • the actuator may be provided in or on the platform 1 or on another structure such as a telescopic gangway or another transport system coupled to the temporary working platform 1 .
  • the clamping mechanism 3 may be implemented as another structure wherein the clamping jaws 3 a,b controllably move towards and from each other, e.g. following a non-circular curved or straight path, contrary to the circular displacement path DPa, DPb.
  • the clamping mechanism may include more than two clamping jaws or clamping elements for releasably clamping a column 20 of an offshore construction.
  • the frame 2 includes a pair of frame elements 2 a,b wherein each frame element 2 a,b is supported by a corresponding clamping jaw 2 a,b . Then, a wide angle range access to the column 20 is provided, e.g. at least 180 degrees or more. Further, a number of workers may work on the platform, up to a safety load of e.g. 500 kg. In another embodiment, the frame 2 includes more than two frame elements, e.g. four or six frame elements. Further, the frame 2 may include a single frame element, e.g. supported by one of the clamping jaws 3 a,b.
  • the clamping jaws 3 and the frame elements 2 are mainly shaped as curved portions for at least partially surrounding the column 20 of an offshore structure.
  • the clamping jaws and/or the frame element 2 are mainly shaped as annular portion segments around a common axis of symmetry AS mainly coinciding with a longitudinal axis of the column 20 , in the clamped state of the platform 1 .
  • a radial inner contour 7 of the clamping jaws 3 and/or the frame elements 2 may have a constant curvature of radiation that may mainly match with the curvature of the exterior wall of the column 20 .
  • the clamping jaws 3 may be provided with an elastic layer mounted on a clamping side of said jaws, such as the above mentioned radial inner contour 7 , thereby reducing a chance that permanent damage may occur at the column 20 to be clamped. Further, the clamping jaws 3 may be provided with clamping shoes, at the radial inner contour 7 .
  • the frame elements 2 and/or the clamping jaws are located at mutually opposite locations, symmetric with respect to the plane of symmetry, facing each other and clamping the column 20 between the opposite clamping jaws 3 , as a pair of pincers.
  • FIG. 3 shows a schematic side view of the temporary working platform 1 shown in FIG. 1 .
  • FIG. 4 shows a schematic front view of the temporary working platform 1 shown in FIG. 1 .
  • the shown temporary working platform 1 is coupled to a telescopic gangway 72 described in more detail below.
  • the temporary working platform 1 has a first coupling element 8 , e.g. mounted on the frame 2 or clamping mechanism 3 , the first coupling element 8 being coupled to a second coupling element 9 mounted on the free end or tip 73 of the telescopic gangway 72 .
  • the telescopic gangway 72 can transport the platform 1 to and from the column 20 of the offshore structure.
  • the second coupling element 8 serving as a launch mechanism, may be mounted to a different gangway or to another transport system such as a crane.
  • the first coupling element 8 is provided with a guiding structure for guiding the first and second coupling elements 8 , 9 towards each other.
  • the guiding structure may include a self centering or self aligning structure such as tapered or V-shaped guiding plates for aligning the second coupling element 9 in a horizontal and/or vertical direction, during a positioning/coupling process.
  • the second coupling element 9 may include a corresponding wedge-shaped insertion element or tapered pin module to be guided and/or received by the guiding structure of the first coupling element 8 .
  • the guiding structure may allow freedom for alignment and in a vertical plane for landing under different angles. Further, the guiding structure provides a secure locking position of the second coupling element.
  • the second coupling element 9 may be provided with a guiding structure for guiding the first coupling element 8 .
  • the platform 1 includes a locking element 10 for locking the first coupling element 8 to the second coupling element 9 .
  • FIG. 5 shows a vessel 60 comprising a telescopic gangway 72 coupled to a temporary working platform 1 according to the invention.
  • a motion compensated gangway 70 comprises a movable transition deck 71 and a telescopic gangway 72 connected to the transition deck 71 .
  • the telescopic gangway 72 has a tip 73 that may be held, during operation of the motion compensated gangway 70 , in close proximity of an object such as an offshore construction 21 to or from which a load or a person has to be transferred.
  • the motion compensation system 70 may use actuators, e.g. hydraulic pistons 74 , to compensate for relative motion between the vessel 60 on which the motion compensated gangway 70 is mounted and the object to or from which the load/person can be transferred. Said relative motion may for example result from waves or rolling, pitching, and/or yawing motion of a vessel or boat 60 floating on the water 61 .
  • the telescopic gangway 72 may comprise a first and second gangway part, for example a telescoping and main boom, which are telescopable with respect to each other in a longitudinal direction to adjust a longitudinal length of the telescopic gangway.
  • a telescopable is meant to be construed as being movable, such as being able to move in and out of each other and/or with respect to each other along said longitudinal direction.
  • the first and second gangway part may each have a walkboard or walkplank to facilitate transfer of persons and/or goods.
  • Motion compensated gangways per se such as for compensating for vessel motions when transferring personnel and/or loads are known in the art.
  • Ampelmann® system as disclosed in general in NL1027103, or systems disclosed in WO2012/138227 and WO2013/10564.
  • Patent publication NL1027103 discloses a vessel with a Stewart type construction for compensating motions of a ship.
  • the construction comprises a transition deck, borne on six hydraulic cylinders, and motion sensors.
  • the motions of the vessel are measured.
  • the orientation and/or position of the cylinders is driven continuously so that the transition deck remains approximately stationary relative to the fixed world.
  • a luffing gangway is connected to the transition deck. In this manner, motions of the vessel are compensated and for instance people or loads can be transferred from the vessel onto a stationary offshore construction, or vice versa.
  • the telescopic gangway 72 is coupled to the temporary working platform 1 using the coupling elements 8 , 9 described above, for moving or deploying the platform to a column 20 of the offshore construction 21 .
  • FIG. 6 shows the vessel 60 depicted in FIG. 5 , wherein the temporary working platform 1 is releasably attached to a column or pillar 20 of an offshore construction 21 .
  • the clamping mechanism 3 also referred to as actuated clamping mechanism, has been actuated to move to the clamping state for clampingly attachment or clamp on to the column 21 .
  • the telescopic gangway 72 pushes the platform 1 against the column 20 to temporarily fix a desired position of the platform 1 relative to the column 20 during closure of the clamping mechanism 3 .
  • persons and/or goods can be transferred to the platform 1 , e.g. for maintenance activities to the column 20 .
  • the actuated clamping mechanism is suitable for removably attaching the working platform to a column of an offshore construction by at least partially surrounding said column with said actuated clamping mechanism.
  • FIG. 7 shows the vessel 60 depicted in FIG. 5 , wherein the temporary working platform 1 has been decoupled or disconnected.
  • the telescopic gangway 72 is moving away from the temporary working platform 1 attached to the column 20 .
  • FIG. 8 shows the vessel 60 depicted in FIG. 5 , wherein the telescopic gangway 72 is landing for coupling to the temporary working platform 1 , e.g. for potential people and/or goods transfer.
  • FIG. 9 shows the vessel 60 depicted in FIG. 5 , wherein the temporary working platform 1 has been released from the column 20 of an offshore construction 21 .
  • the clamping mechanism 3 has been brought into the releasing state for retrieval of the platform 1 that can be re-used at another location of the column 20 , to another column 20 or for further applications.
  • FIG. 10 shows a flow chart of a method of handling a temporary working platform according to the invention. Particularly, the method includes a step of handling 100 a temporary working platform 1 as described above.
  • the method may include a step of controllably driving the clamping mechanism 3 to a clamping state wherein the clamping mechanism 3 clamps a column 20 of an offshore construction 21 .
  • the method may also include a step of decoupling the temporary working platform 1 from a transport system such as a telescopic gangway 72 , after the step of controllably driving the clamping mechanism to the clamping state
  • the method may include a step of coupling the temporary working platform 1 to a transport system such as a telescopic gangway 72 , the temporary working platform 1 being removably attached to a column of an offshore construction.
  • the method may include a step of driving the clamping mechanism 3 to a releasing state wherein the clamping mechanism 3 releases the column 20 of the offshore construction 21 .
  • FIG. 11 A shows a schematic top view of another temporary working platform 200 according to the invention, in a first state wherein the platform 20 is not mounted to the column 20 of the offshore structure.
  • FIG. 11 B shows a schematic top view of the temporary working platform 200 of FIG. 11 A in a second state wherein the platform 20 is mounted to the column 20 .
  • the clamping mechanism includes a multiple number of wedges 201 , 202 , 203 , 204 oriented such that their tapered end 207 points upwardly. Further, the wedges 201 - 204 are located on a contour 208 for at least partly surrounding the column 20 .
  • At least one wedge 201 of the multiple number of wedges 201 - 204 is movable along a moving direction M, between a first position P 1 , shown in FIG. 11 A , enabling the column 20 to be received into said contour 208 , and a second position P 2 , shown in FIG. 11 B , wherein the column 20 is actually received into said contour 208 .
  • the clamping mechanism further includes a locking ring, in the shown embodiment including two mainly semi-annular elements 205 , 206 that are pivotable to each other between an open state for receiving the column 20 , as shown in FIG. 11 A and a closed state for locking the column 20 , as shown in FIG. 11 B .
  • FIG. 12 A shows a schematic side view of the temporary working platform 200 of FIG. 11 A in the first state, corresponding with FIG. 11 A .
  • the at least one wedge 201 is brought in the first position P 1 , and the semi-annular elements 205 , 206 are brought in the open state, as shown in FIG. 11 A . Then, the column 20 is received into the contour 208 and in the semi-annular elements 205 , 206 . Subsequently, the at least one wedge 201 is brought into the second position P 2 , and the semi-annular elements 205 , 206 are brought into the closed state, as shown in FIG. 11 B , thereby locking the column 20 in a mainly horizontal plane.
  • the semi-annular elements 205 , 206 move downwardly along a mainly downward direction D, thereby pressing the wedges 201 - 204 radially inwardly towards the column 20 so as to clamp the platform 200 to the column 20 , the locking ring blocking any movement of the wedges 201 - 204 in a radial, circumferential or downward direction D.
  • FIG. 12 B shows a schematic side view of the temporary working platform 200 of FIG. 11 A in the second state, corresponding to FIG. 11 B , after moving the semi-annular elements 205 , 206 downwardly.
  • the temporary working platform 200 can be removed from the column 20 by performing the above steps in a reverse order.
  • wedges more or less than four wedges can be applied.
  • pressure shoes can be applied pressurizable against the column from respective circumferential positions.
  • a clamping belt can be applied releasably enclosing the column, from a side of the column 20 .
  • FIG. 13 A shows a schematic top view of yet another temporary working platform 200 according to the invention, in a first state.
  • FIG. 13 B shows a schematic top view of the temporary working platform 200 of FIG. 13 B in a second state.
  • the clamping mechanism of the platform 200 includes two mainly semi-annular clamping elements 211 , 212 that are mutually rotatable between the first state wherein they mainly overlap, and the second state wherein they do not overlap or only for minor portion.
  • the clamping elements 211 , 212 may receive the column 20
  • said clamping elements 211 , 212 lock the column 20 in a mainly horizontal plane.
  • Any movement in a vertical direction may be blocked by an additional mechanism, such as pressurizing shoes described above. Further, a downward movement of the semi-annular clamping elements 211 , 212 may be blocked, in the second state, if the column 20 has a conical shape, tapered upwardly.
  • the mounting mechanism of the temporary working platform may further include other mounting structures, optionally instead of a clamping mechanism, such as a unit for disposing a non-permanent adhesive between the column and the platform, and/or an electromagnetic device for magnetic coupling with a column having magnetizable material such as steel.
  • a clamping mechanism such as a unit for disposing a non-permanent adhesive between the column and the platform, and/or an electromagnetic device for magnetic coupling with a column having magnetizable material such as steel.
  • a telescopic gangway and a temporary working platform are provided, wherein the telescopic gangway comprises first and second gangway parts which are telescopable relative to each other in a longitudinal direction, as well as a primary coupling element for removably coupling the telescopic gangway to the temporary working platform, and wherein the temporary working platform comprises a secondary coupling element for removably coupling the temporary working platform to the telescopic gangway, as well as an actuated clamping mechanism suitable for removably attaching the working platform to a column of an offshore construction by at least partially surrounding said column with said actuated clamping mechanism.
  • the primary coupling element corresponds with the second coupling element described above arranged for removably coupling the telescopic gangway to the temporary working platform
  • the secondary coupling element corresponds with the first coupling element described above for removably coupling the temporary working platform to the telescopic gangway.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Ocean & Marine Engineering (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Earth Drilling (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Working Measures On Existing Buildindgs (AREA)
  • Supplying Of Containers To The Packaging Station (AREA)

Abstract

A temporary working platform for removable attachment to a column of an offshore structure. The platform comprises a frame for carrying a working structure such as a working surface. Further, the platform comprises a mounting mechanism for releasably mounting the working platform to said column, from a side of the column. The mounting mechanism may include a clamping mechanism supporting the frame. The clamping mechanism may be arranged for at least partially surrounding a column of an offshore structure and for releasably clamping said column.

Description

  • The invention relates to a temporary working platform, in particular a temporary working platform for removable attachment to a column of an offshore structure.
  • Temporary working platforms for marine applications are typically used to accommodate workers performing tasks such as maintenance activities to columns of offshore structures. Usually, temporary working platforms are mounted to the columns using mounting constructions that are permanently or semi-permanently provided in the exterior wall of the columns. Then, damage may be caused to the carrying structure of the columns reducing their operational lifetime.
  • An object of the invention therefore is to provide a temporary working platform that mitigates at least one of the above mentioned drawbacks.
  • Thereto, the invention provides a temporary working platform for removable attachment to a column of an offshore structure, comprising a frame for carrying a working structure, in particular a working surface, and a mounting mechanism for releasably mounting the working platform to said column, from a side of the column.
  • By providing a mounting mechanism for releasably mounting the working platform to said column, from a side of the column, the temporary working platform can be easily attached to columns of offshore structures, also to columns that are not provided with mounting elements. Due to the application of a mounting mechanism such as a unit for disposing a non-permanent adhesive, an electromagnetic device for magnetic coupling with a column having magnetizable material such as steel, and/or a clamping construction exploiting frictional forces between the column and the platform, there is no need to realize mechanical permanent or semi-permanent modification to the column structure for carrying the temporary working platform, thereby saving time, costs and reducing a chance that damage may occur at the columns, also after removal of the temporary working platform.
  • The clamping mechanism may support the frame and may be arranged for at least partially surrounding the column and for releasably clamping said column.
  • After installation of the platform, access to the platform can be provided either by a motion compensated access bridge such as a telescopic gangway or via rope access.
  • Preferably, the clamping mechanism includes a pair of clamping jaws having respective free ends, the jaws being mutually removable between a releasing state wherein the jaw free ends are relatively remote from each other and a clamping state wherein the jaw free ends are relatively close to each other, so as to efficiently provide a clamping principle to the temporary working platform, like a pair of pincers.
  • The pair of clamping jaws can be pivotably mounted to each other such that the clamping jaws are pivotable between the releasing state and the clamping state. However, in another structure the clamping jaws may move in another way, e.g. by shifting relative to each other.
  • Advantageously, an actuator can be provided for controllably driving the clamping mechanism.
  • The frame may include a pair of frame elements, each frame element being supported by a corresponding clamping jaw. However, multiple pairs of frame elements can be applied, or more generally, a set of individual frame elements. Further, a single frame element can be used, e.g. slidably resting on the clamping jaws.
  • Preferably, the clamping jaws and/or the frame elements are mainly shaped as curved portions for at least partially surrounding the column of an offshore structure, in order to match, at least partially the exterior curvature of the column.
  • An elastic layer can be mounted on a clamping side of the jaws, e.g. to further reduce a chance that any damage occurs to the column.
  • The clamping jaws and/or the frame elements may be located at mutually opposite locations, thereby providing a balance clamping force to the column.
  • Advantageously, the working structure may include a grating or another working surface, and/or a working device such as a hoist.
  • Preferably, a first coupling element is provided for releasable coupling to a second coupling element mounted on a transport system transporting the platform to and from the column of the offshore structure. Then, the platform can be deployed and retrieved easily using a motion compensated access bridge such as a gangway, without the use rope structures or hoisting units.
  • The first or second coupling element may include a guiding structure for guiding the first and second coupling elements towards each other and/or for providing a secure connection between the transport system and the temporary working platform.
  • The invention also relates to a transport system, such as a telescopic gangway, coupled to a temporary working platform, wherein, preferably, the second coupling element is mounted to a free end of the transport system.
  • Further, the invention relates to a vessel, comprising a transport system, such as a telescopic gangway.
  • The invention further relates to a telescopic gangway and a temporary working platform, wherein the telescopic gangway comprises first and second gangway parts which are telescopable relative to each other in a longitudinal direction, as well as a primary coupling element for removably coupling the telescopic gangway to the temporary working platform, and wherein the temporary working platform comprises a secondary coupling element for removably coupling the temporary working platform to the telescopic gangway, as well as an actuated clamping mechanism suitable for removably attaching the working platform to a column of an offshore construction by at least partially surrounding said column with said actuated clamping mechanism.
  • Also, the invention relates to a method of handling a temporary working platform.
  • The invention will be further elucidated on the basis of exemplary embodiments which are represented in the drawings. The exemplary embodiments are given by way of non-limitative illustration of the invention. In the drawings:
  • FIG. 1 shows a schematic perspective view of a temporary working platform according to the invention;
  • FIG. 2 shows a schematic top view of the temporary working platform shown in FIG. 1 ;
  • FIG. 3 shows a schematic side view of the temporary working platform shown in FIG. 1 ;
  • FIG. 4 shows a schematic front view of the temporary working platform shown in FIG. 1 ;
  • FIG. 5 shows a vessel comprising a telescopic gangway coupled to a temporary working platform according to the invention,
  • FIG. 6 shows the vessel depicted in FIG. 5 , wherein the temporary working platform is attached to a column of an offshore construction,
  • FIG. 7 shows the vessel depicted in FIG. 5 , wherein the temporary working platform has been decoupled,
  • FIG. 8 shows the vessel depicted in FIG. 5 , wherein the telescopic gangway is coupling to the temporary working platform,
  • FIG. 9 shows the vessel depicted in FIG. 5 , wherein the temporary working platform has been released from the column of an offshore construction,
  • FIG. 10 shows a flow diagram of a method according to the invention,
  • FIG. 11A shows a schematic top view of another temporary working platform according to the invention, in a first state,
  • FIG. 11B shows a schematic top view of the temporary working platform of FIG. 11A in a second state,
  • FIG. 12A shows a schematic side view of the temporary working platform of FIG. 11A in the first state,
  • FIG. 12B shows a schematic side view of the temporary working platform of FIG. 11A in the second state,
  • FIG. 13A shows a schematic top view of yet another temporary working platform according to the invention, in a first state, and
  • FIG. 13B shows a schematic top view of the temporary working platform of FIG. 13B in a second state.
  • In the figures identical or corresponding parts are represented with the same reference numerals. The drawings are only schematic representations of embodiments of the invention, which are given by manner of non-limited examples.
  • FIG. 1 shows a schematic perspective view of a temporary working platform 1 according to the invention. The temporary working platform 1 includes a frame 2 and a mounting mechanism for releasably mounting the working platform to a column 20 of an offshore structure, from a side of the column 20. The mounting mechanism is provided, in the shown embodiment, with a clamping mechanism 3 supporting the frame. In use, the temporary working platform 1 can be removably attached to said column 20, using the clamping mechanism 3. The offshore structure is e.g. a drilling rig, drilling platform or offshore windmill, the column also referred to as jacket leg.
  • The frame 2 of the temporary working platform 1 is arranged for carrying a working structure such as a working surface 4 or another working structure such as a hoisting device. The working surface 4 may be implemented as a grating or another working surface such as a supporting plate.
  • The clamping mechanism 3 is arranged for at least partially surrounding a column 20 of an offshore structure and for releasably clamping said column 20.
  • In the shown embodiment, the clamping mechanism 3 includes a pair of clamping jaws 3 a,b that are pivotably mounted to each other such that the clamping jaws 3 a,b are pivotable with respect to a pivoting axis PA between a releasing state and a clamping state. Each of the clamping jaws 3 a,b has a free end 5 a,b, respectively, also referred to as distal free ends 5 a,b. In the releasing state, the jaw free ends 5 a,b are relatively remote from each other, while, in the clamping state, the jaw free ends 5 a,b are relatively close to each other. Further, the clamping mechanism 3 may include a locking element for locking the jaw free ends 5 a,b to each other, in the clamping state so as to counteract that the clamping jaws 3 a,b move unintentionally away from each other. In the releasing state, the platform 1 can be moved towards or from the column 20 of the offshore structure. In the clamping state, the platform 1 is releasably attached to said column 20.
  • The temporary working platform 1 further includes an actuator 6 for controllably driving the clamping mechanism 2. The actuator 6 may include a motor 6″ such as a hydraulic or an electric motor, as well as a driving element 6′ driven by said motor 6″ for moving a first clamping jaw 3 a relative to a second clamping jaw 3 b such that the clamping mechanism opens from or closes towards the clamping state, like a pair of pincers. The actuator 6 may be operated by a control unit having an interface for manual or remote interaction by a user of the actuator 6.
  • FIG. 2 shows a schematic top view of the temporary working platform 1 shown in FIG. 1 . Here, the clamping mechanism 3 is shown in both the clamping state CS and the releasing state RS.
  • In the shown embodiment, the driving element 6′ pivots the first clamping jaw 3 a relative to the second clamping jaw 3 b by exerting a driving force to the first clamping jaw 3 a. Here, the first clamping jaw 3 a is formed as a lever rotating around the pivoting axis PA having a proximal end 3 a′ to which the driving element 6′ is connected for receiving said driving force. During movement, one of the jaw free distal ends 5 a,b or both jaw free distal ends 5 a,b move along a displacement path DPa, DPb that is mainly circular. In the shown embodiment, the jaw free distal ends 5 a,b move in a symmetric way relative to a plane of symmetry PS, e.g. for balancing reasons.
  • Generally, the actuator may be provided in or on the platform 1 or on another structure such as a telescopic gangway or another transport system coupled to the temporary working platform 1.
  • Further, the clamping mechanism 3 may be implemented as another structure wherein the clamping jaws 3 a,b controllably move towards and from each other, e.g. following a non-circular curved or straight path, contrary to the circular displacement path DPa, DPb. Also, the clamping mechanism may include more than two clamping jaws or clamping elements for releasably clamping a column 20 of an offshore construction.
  • The frame 2 includes a pair of frame elements 2 a,b wherein each frame element 2 a,b is supported by a corresponding clamping jaw 2 a,b. Then, a wide angle range access to the column 20 is provided, e.g. at least 180 degrees or more. Further, a number of workers may work on the platform, up to a safety load of e.g. 500 kg. In another embodiment, the frame 2 includes more than two frame elements, e.g. four or six frame elements. Further, the frame 2 may include a single frame element, e.g. supported by one of the clamping jaws 3 a,b.
  • In the shown embodiment, the clamping jaws 3 and the frame elements 2 are mainly shaped as curved portions for at least partially surrounding the column 20 of an offshore structure. Preferably, the clamping jaws and/or the frame element 2 are mainly shaped as annular portion segments around a common axis of symmetry AS mainly coinciding with a longitudinal axis of the column 20, in the clamped state of the platform 1. A radial inner contour 7 of the clamping jaws 3 and/or the frame elements 2 may have a constant curvature of radiation that may mainly match with the curvature of the exterior wall of the column 20.
  • The clamping jaws 3 may be provided with an elastic layer mounted on a clamping side of said jaws, such as the above mentioned radial inner contour 7, thereby reducing a chance that permanent damage may occur at the column 20 to be clamped. Further, the clamping jaws 3 may be provided with clamping shoes, at the radial inner contour 7.
  • The frame elements 2 and/or the clamping jaws are located at mutually opposite locations, symmetric with respect to the plane of symmetry, facing each other and clamping the column 20 between the opposite clamping jaws 3, as a pair of pincers.
  • FIG. 3 shows a schematic side view of the temporary working platform 1 shown in FIG. 1 .
  • FIG. 4 shows a schematic front view of the temporary working platform 1 shown in FIG. 1 .
  • The shown temporary working platform 1 is coupled to a telescopic gangway 72 described in more detail below. In the shown embodiment, the temporary working platform 1 has a first coupling element 8, e.g. mounted on the frame 2 or clamping mechanism 3, the first coupling element 8 being coupled to a second coupling element 9 mounted on the free end or tip 73 of the telescopic gangway 72. In the coupled state, the telescopic gangway 72 can transport the platform 1 to and from the column 20 of the offshore structure.
  • It is noted that the second coupling element 8, serving as a launch mechanism, may be mounted to a different gangway or to another transport system such as a crane.
  • Advantageously, the first coupling element 8 is provided with a guiding structure for guiding the first and second coupling elements 8, 9 towards each other. The guiding structure may include a self centering or self aligning structure such as tapered or V-shaped guiding plates for aligning the second coupling element 9 in a horizontal and/or vertical direction, during a positioning/coupling process. Accordingly, the second coupling element 9 may include a corresponding wedge-shaped insertion element or tapered pin module to be guided and/or received by the guiding structure of the first coupling element 8. In a horizontal plane, the guiding structure may allow freedom for alignment and in a vertical plane for landing under different angles. Further, the guiding structure provides a secure locking position of the second coupling element. Alternatively, the second coupling element 9 may be provided with a guiding structure for guiding the first coupling element 8.
  • Further, the platform 1 includes a locking element 10 for locking the first coupling element 8 to the second coupling element 9.
  • FIG. 5 shows a vessel 60 comprising a telescopic gangway 72 coupled to a temporary working platform 1 according to the invention.
  • Generally, a motion compensated gangway 70 comprises a movable transition deck 71 and a telescopic gangway 72 connected to the transition deck 71. The telescopic gangway 72 has a tip 73 that may be held, during operation of the motion compensated gangway 70, in close proximity of an object such as an offshore construction 21 to or from which a load or a person has to be transferred. The motion compensation system 70 may use actuators, e.g. hydraulic pistons 74, to compensate for relative motion between the vessel 60 on which the motion compensated gangway 70 is mounted and the object to or from which the load/person can be transferred. Said relative motion may for example result from waves or rolling, pitching, and/or yawing motion of a vessel or boat 60 floating on the water 61.
  • The telescopic gangway 72 may comprise a first and second gangway part, for example a telescoping and main boom, which are telescopable with respect to each other in a longitudinal direction to adjust a longitudinal length of the telescopic gangway. Within the context of this application the term telescopable is meant to be construed as being movable, such as being able to move in and out of each other and/or with respect to each other along said longitudinal direction.
  • The first and second gangway part may each have a walkboard or walkplank to facilitate transfer of persons and/or goods.
  • Motion compensated gangways per se, such as for compensating for vessel motions when transferring personnel and/or loads are known in the art. For example from the Ampelmann® system as disclosed in general in NL1027103, or systems disclosed in WO2012/138227 and WO2013/10564.
  • Patent publication NL1027103 discloses a vessel with a Stewart type construction for compensating motions of a ship. The construction comprises a transition deck, borne on six hydraulic cylinders, and motion sensors. During use, with the aid of the sensors, the motions of the vessel are measured. With the aid of these measurements, the orientation and/or position of the cylinders is driven continuously so that the transition deck remains approximately stationary relative to the fixed world. A luffing gangway is connected to the transition deck. In this manner, motions of the vessel are compensated and for instance people or loads can be transferred from the vessel onto a stationary offshore construction, or vice versa.
  • In FIG. 5 , the telescopic gangway 72 is coupled to the temporary working platform 1 using the coupling elements 8, 9 described above, for moving or deploying the platform to a column 20 of the offshore construction 21.
  • FIG. 6 shows the vessel 60 depicted in FIG. 5 , wherein the temporary working platform 1 is releasably attached to a column or pillar 20 of an offshore construction 21. Here, the clamping mechanism 3, also referred to as actuated clamping mechanism, has been actuated to move to the clamping state for clampingly attachment or clamp on to the column 21. Preferably, the telescopic gangway 72 pushes the platform 1 against the column 20 to temporarily fix a desired position of the platform 1 relative to the column 20 during closure of the clamping mechanism 3. Also, persons and/or goods can be transferred to the platform 1, e.g. for maintenance activities to the column 20.
  • Generally, the actuated clamping mechanism is suitable for removably attaching the working platform to a column of an offshore construction by at least partially surrounding said column with said actuated clamping mechanism.
  • FIG. 7 shows the vessel 60 depicted in FIG. 5 , wherein the temporary working platform 1 has been decoupled or disconnected. Here, the telescopic gangway 72 is moving away from the temporary working platform 1 attached to the column 20.
  • FIG. 8 shows the vessel 60 depicted in FIG. 5 , wherein the telescopic gangway 72 is landing for coupling to the temporary working platform 1, e.g. for potential people and/or goods transfer.
  • FIG. 9 shows the vessel 60 depicted in FIG. 5 , wherein the temporary working platform 1 has been released from the column 20 of an offshore construction 21. Here, the clamping mechanism 3 has been brought into the releasing state for retrieval of the platform 1 that can be re-used at another location of the column 20, to another column 20 or for further applications.
  • FIG. 10 shows a flow chart of a method of handling a temporary working platform according to the invention. Particularly, the method includes a step of handling 100 a temporary working platform 1 as described above.
  • The method may include a step of controllably driving the clamping mechanism 3 to a clamping state wherein the clamping mechanism 3 clamps a column 20 of an offshore construction 21.
  • The method may also include a step of decoupling the temporary working platform 1 from a transport system such as a telescopic gangway 72, after the step of controllably driving the clamping mechanism to the clamping state
  • Further, the method may include a step of coupling the temporary working platform 1 to a transport system such as a telescopic gangway 72, the temporary working platform 1 being removably attached to a column of an offshore construction. As a next step, the method may include a step of driving the clamping mechanism 3 to a releasing state wherein the clamping mechanism 3 releases the column 20 of the offshore construction 21.
  • FIG. 11A shows a schematic top view of another temporary working platform 200 according to the invention, in a first state wherein the platform 20 is not mounted to the column 20 of the offshore structure. FIG. 11B shows a schematic top view of the temporary working platform 200 of FIG. 11A in a second state wherein the platform 20 is mounted to the column 20. Here, the clamping mechanism includes a multiple number of wedges 201, 202, 203, 204 oriented such that their tapered end 207 points upwardly. Further, the wedges 201-204 are located on a contour 208 for at least partly surrounding the column 20. Preferably, at least one wedge 201 of the multiple number of wedges 201-204 is movable along a moving direction M, between a first position P1, shown in FIG. 11A, enabling the column 20 to be received into said contour 208, and a second position P2, shown in FIG. 11B, wherein the column 20 is actually received into said contour 208.
  • The clamping mechanism further includes a locking ring, in the shown embodiment including two mainly semi-annular elements 205, 206 that are pivotable to each other between an open state for receiving the column 20, as shown in FIG. 11A and a closed state for locking the column 20, as shown in FIG. 11B.
  • FIG. 12A shows a schematic side view of the temporary working platform 200 of FIG. 11A in the first state, corresponding with FIG. 11A.
  • During a process of mounting the temporary working platform 200 to the column 20, the at least one wedge 201 is brought in the first position P1, and the semi-annular elements 205, 206 are brought in the open state, as shown in FIG. 11A. Then, the column 20 is received into the contour 208 and in the semi-annular elements 205, 206. Subsequently, the at least one wedge 201 is brought into the second position P2, and the semi-annular elements 205, 206 are brought into the closed state, as shown in FIG. 11B, thereby locking the column 20 in a mainly horizontal plane.
  • As a next step, the semi-annular elements 205, 206 move downwardly along a mainly downward direction D, thereby pressing the wedges 201-204 radially inwardly towards the column 20 so as to clamp the platform 200 to the column 20, the locking ring blocking any movement of the wedges 201-204 in a radial, circumferential or downward direction D.
  • FIG. 12B shows a schematic side view of the temporary working platform 200 of FIG. 11A in the second state, corresponding to FIG. 11B, after moving the semi-annular elements 205, 206 downwardly.
  • The temporary working platform 200 can be removed from the column 20 by performing the above steps in a reverse order.
  • Various variations are possible. As an example, more or less than four wedges can be applied. Further, in addition or alternative to the wedges, pressure shoes can be applied pressurizable against the column from respective circumferential positions. Also, a clamping belt can be applied releasably enclosing the column, from a side of the column 20.
  • FIG. 13A shows a schematic top view of yet another temporary working platform 200 according to the invention, in a first state. Further, FIG. 13B shows a schematic top view of the temporary working platform 200 of FIG. 13B in a second state. Here, the clamping mechanism of the platform 200 includes two mainly semi-annular clamping elements 211, 212 that are mutually rotatable between the first state wherein they mainly overlap, and the second state wherein they do not overlap or only for minor portion. In the first state, the clamping elements 211, 212 may receive the column 20, while in the second state, said clamping elements 211, 212 lock the column 20 in a mainly horizontal plane. Any movement in a vertical direction may be blocked by an additional mechanism, such as pressurizing shoes described above. Further, a downward movement of the semi-annular clamping elements 211, 212 may be blocked, in the second state, if the column 20 has a conical shape, tapered upwardly.
  • The mounting mechanism of the temporary working platform may further include other mounting structures, optionally instead of a clamping mechanism, such as a unit for disposing a non-permanent adhesive between the column and the platform, and/or an electromagnetic device for magnetic coupling with a column having magnetizable material such as steel.
  • According to an aspect of the invention a telescopic gangway and a temporary working platform are provided, wherein the telescopic gangway comprises first and second gangway parts which are telescopable relative to each other in a longitudinal direction, as well as a primary coupling element for removably coupling the telescopic gangway to the temporary working platform, and wherein the temporary working platform comprises a secondary coupling element for removably coupling the temporary working platform to the telescopic gangway, as well as an actuated clamping mechanism suitable for removably attaching the working platform to a column of an offshore construction by at least partially surrounding said column with said actuated clamping mechanism. Here, the primary coupling element corresponds with the second coupling element described above arranged for removably coupling the telescopic gangway to the temporary working platform, while the secondary coupling element corresponds with the first coupling element described above for removably coupling the temporary working platform to the telescopic gangway.
  • It will be clear to the skilled person that the invention is not limited to the exemplary embodiment represented here. Many variations are possible.
  • Such variations shall be clear to the skilled person and are considered to fall within the scope of the invention as defined in the appended claims.
  • LIST OF REFERENCE SIGNS
      • AS Axis of symmetry
      • PA Pivoting Axis
      • PS Plane of symmetry
      • CS Clamping State
      • RS Releasing State
      • DPa Displacement Path a
      • DPb Displacement Path b
      • 1. Temporary Working Platform
      • 2. Frame, frame elements
      • 3. Clamping mechanism, clamping jaws
      • 4. Working surface
      • 5. Free end of clamping jaws
      • 6. Actuator
      • 7. Radial inner contour of clamping jaw
      • 8. First coupling element
      • 9. Second coupling element
      • 10. Locking element
      • 20. Column
      • 21. Offshore construction
      • 60. Vessel
      • 61. Water
      • 70. Motion compensated gangway
      • 71. Movable Transition Deck
      • 72. Telescopic gangway
      • 73. Tip
      • 74. Hydraulic piston
      • 200. Temporary Working Platform
      • 201-204. Wedge
      • 205-206. Semi-annular element
      • 207. Wedge tapered end
      • 208. Contour
      • 211-212. Semi-annular clamping element

Claims (26)

1. A temporary working platform for removable attachment to a column of an offshore structure, comprising a frame for carrying a working structure, in particular a working surface, and a mounting mechanism for releasably mounting the working platform to said column, from a side of the column.
2. The temporary working platform according to claim 1, wherein the mounting mechanism includes at least one of a unit for disposing a non-permanent adhesive, an electromagnetic device and a clamping mechanism.
3. The temporary working platform according to claim 2, wherein the clamping mechanism supports the frame and is arranged for at least partially surrounding the column and for releasably clamping said column.
4. The temporary working platform according to claim 3, wherein the clamping mechanism includes a pair of clamping jaws having respective free ends, the jaws being mutually removable between a releasing state wherein the jaw free ends are relatively remote from each other and a clamping state wherein the jaw free ends are relatively close to each other.
5. The temporary working platform according to claim 4, wherein the pair of clamping jaws are pivotably mounted to each other such that the clamping jaws are pivotable between the releasing state and the clamping state.
6. The temporary working platform according to claim 3, further comprising an actuator for controllably driving the clamping mechanism.
7. The temporary working platform according to claim 3, wherein the frame includes a pair of frame elements, each frame element being supported by a corresponding clamping jaw.
8. The temporary working platform according to claim 7, wherein the clamping jaws and/or the frame elements are mainly shaped as curved portions for at least partially surrounding the column of an offshore structure.
9. The temporary working platform according to claim 4, wherein the clamping jaws include an elastic layer mounted on a clamping side of said clamping jaws.
10. The temporary working platform according to claim 7, wherein the clamping jaws and/or the frame elements are located at mutually opposite locations.
11. The temporary working platform according to claim 1, wherein the working structure includes a grating or another working surface, and/or a working device such as a hoist.
12. The temporary working platform according to claim 1, further comprising a first coupling element for releasable coupling to a second coupling element mounted on a transport system transporting the platform to and from the column of the offshore structure.
13. The temporary working platform according to claim 12, wherein the transport system is a telescopic gangway.
14. The temporary working platform according to claim 12, wherein the first or second coupling element includes a guiding structure for guiding the first and second coupling elements towards each other.
15. The temporary working platform according to claim 12, further comprising a locking element for locking the first coupling element to the second coupling element.
16. The temporary working platform according to claim 2, wherein the clamping mechanism clamps a column of an offshore construction.
17. A transport system, in particular a telescopic gangway, comprising a second coupling element for releasable coupling to a first coupling element of the temporary working platform according to claim 12.
18. The transport system according to claim 17, wherein the second coupling element is mounted to a free end or tip of the transport system.
19. The transport system according to claim 17, coupled to the temporary working platform.
20. A vessel, comprising a transport system, such as a telescopic gangway, according to claim 17.
21. A telescopic gangway and a temporary working platform, wherein the telescopic gangway comprises first and second gangway parts which are telescopable relative to each other in a longitudinal direction, as well as a primary coupling element for removably coupling the telescopic gangway to the temporary working platform, and wherein the temporary working platform comprises a secondary coupling element for removably coupling the temporary working platform to the telescopic gangway, as well as an actuated clamping mechanism suitable for removably attaching the working platform to a column of an offshore construction by at least partially surrounding said column with said actuated clamping mechanism.
22. A method of handling a temporary working platform according to claim 2.
23. The method according to claim 22, comprising a step of controllably driving the clamping mechanism to a clamping state wherein the clamping mechanism clamps a column of an offshore construction.
24. The method according to claim 23, further comprising a step of decoupling the temporary working platform from a transport system, after the step of controllably driving the clamping mechanism to the clamping state.
25. The method according to claim 22, comprising a step of coupling the temporary working platform to a transport system, the temporary working platform being removably attached to a column of an offshore construction.
26. The method according to claim 25, further comprising a step of driving the clamping mechanism to a releasing state wherein the clamping mechanism releases the column of the offshore construction, after the coupling step.
US18/007,615 2020-06-17 2021-06-17 A temporary working platform, a transport system, a vessel, and a method Pending US20230227130A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
NL2025849A NL2025849B1 (en) 2020-06-17 2020-06-17 A temporary working platform, a transport system, a vessel, and a method
NL2025849 2020-06-17
PCT/NL2021/050381 WO2021256928A1 (en) 2020-06-17 2021-06-17 A temporary working platform, a transport system, a vessel, and a method

Publications (1)

Publication Number Publication Date
US20230227130A1 true US20230227130A1 (en) 2023-07-20

Family

ID=73498222

Family Applications (1)

Application Number Title Priority Date Filing Date
US18/007,615 Pending US20230227130A1 (en) 2020-06-17 2021-06-17 A temporary working platform, a transport system, a vessel, and a method

Country Status (5)

Country Link
US (1) US20230227130A1 (en)
EP (1) EP4168304A1 (en)
AU (1) AU2021292871A1 (en)
NL (1) NL2025849B1 (en)
WO (1) WO2021256928A1 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1027103C2 (en) 2004-09-24 2006-03-27 Univ Delft Tech Vessel is for transfer of persons or goods to an offshore construction and has an upper deck with a platform regulatable as to its position
WO2012138227A1 (en) 2011-04-08 2012-10-11 U-Sea Beheer B.V. Transfer system, ship and method for transferring persons and/or goods to and/or from a floating ship
WO2013010564A1 (en) 2011-10-20 2013-01-24 Potemkin Alexander Method for conditioning liquid low-level radioactive waste
NL2009740C2 (en) * 2012-11-01 2014-05-06 Ihc Holland Ie Bv Device for and method of transferring personnel, equipment and/or structural elements from a surface vessel to an offshore structure.
NL2010104C2 (en) * 2013-01-10 2014-07-15 Ampelmann Operations B V A vessel, a motion platform, a control system, a method for compensating motions of a vessel and a computer program product.
NL2015790B1 (en) * 2015-11-13 2017-06-02 Ampelmann Holding B V Method and apparatus for transferring loads between a vehicle and a transfer area spaced apart from said vehicle.

Also Published As

Publication number Publication date
AU2021292871A1 (en) 2022-11-10
WO2021256928A1 (en) 2021-12-23
NL2025849B1 (en) 2022-02-17
EP4168304A1 (en) 2023-04-26

Similar Documents

Publication Publication Date Title
JP7295862B2 (en) pile retention system
US10487806B2 (en) Device and a ship for maintaining an offshore wind turbine
RU2230967C2 (en) Pipe laying vessel and method of laying pipe lines (versions)
US7878735B2 (en) Marine pipelay system and method
AU658092B2 (en) Disconnectable mooring system
US8366352B2 (en) System usable with a pipe laying vessel
CN101389562B (en) Cranes
CN112770995B (en) Device and method for erecting a tubular element having a longitudinal direction at the outer end
AU2021200735A1 (en) Disconnectable tower yoke assembly and method of using same
US20230228246A1 (en) Method and device for connecting a blade of a wind turbine to a hub
RU2563490C1 (en) Split connection of upper deck with barge and system used to this end
EP2328726B1 (en) An apparatus for splash zone operations
US20200317300A1 (en) Disconnectable tower yoke mooring system and methods for using same
US20230227130A1 (en) A temporary working platform, a transport system, a vessel, and a method
US11597478B2 (en) Systems for handling one or more elongated members and methods for using same
WO2016144164A1 (en) Method for positioning a drilling rig onto an offshore platform
CN113023095B (en) Marine wind power installation tower section of thick bamboo fixing device of ship and tower section of thick bamboo transportation frock
NL2025848B1 (en) A telescopic gangway, a motion compensated gangway, a vessel, a load and a method
US20160159440A1 (en) Lifting device, vessel and method for removal and/or installation of at least one part of a sea platform
NO325335B1 (en) Device and method of a traverse crane on a floating vessel
KR20090022045A (en) Method to load big size block to floating dock and rendezvous on the sea for erection using the same
EP3938274B1 (en) Offshore system, vessel and method for performing subsea wellbore related activities
EP3019392B1 (en) Disconnectable submerged buoy mooring device comprising clamping dogs
RU2229053C2 (en) Pipe-laying vessel and method of pipe laying
GB2226539A (en) Improvements in load handling

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: APPLICATION UNDERGOING PREEXAM PROCESSING

AS Assignment

Owner name: AMPELMANN HOLDING B.V., NETHERLANDS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HOOGHOUDT, MARIJN JAAP ANTON MARIA;DE JONG, PHILLIPPUS JOHANNES EDUARDUS MARIA;DE RUITTER, ADRIANUS HUIBERT;AND OTHERS;SIGNING DATES FROM 20230111 TO 20230123;REEL/FRAME:062495/0239

AS Assignment

Owner name: AMPELMANN HOLDING B.V., NETHERLANDS

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE THE CONVEYING PARTY DATA PREVIOUSLY RECORDED AT REEL: 062495 FRAME: 0239. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT;ASSIGNORS:HOOGHOUDT, MARIJN JAAP ANTON MARIA;DE JONG, PHILLIPPUS JOHANNES EDUARDUS MARIA;DE RUITER, ADRIANUS HUIBERT;AND OTHERS;SIGNING DATES FROM 20230113 TO 20230306;REEL/FRAME:063117/0147

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION